Advances in Pure Mathematics, 2012, 2, 1-5

o2% Scientific
http://dx.doi.org/10.4236/apm.2012.21001 Published Online January 2012 (http://www.SciRP.org/journal/apm)

#3% Research

Real Hypersurfaces in CP? and CH? Equipped with
Structure Jacobi Operator Satisfying £l =V I

Konstantina Panagiotidou, Philippos J. Xenos
Mathematics Division, School of Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
Email: {kapanagi, fxenos}@gen.auth.gr

Received June 27, 2011; revised August 4, 2011; accepted August 20, 2011

ABSTRACT

Recently in [1], Perez and Santos classified real hypersurfaces in complex projective space CP" for n >3, whose Lie
derivative of structure Jacobi operator in the direction of the structure vector field coincides with the covariant deriva-
tive of it in the same direction. The present paper completes the investigation of this problem studying the case n =2 in

both complex projective and hyperbolic spaces.
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1. Introduction

A complex n-dimensional Kaehler manifold of constant
holomorphic sectional curvature ¢ is called a complex
space form, which is denoted by M, (c). A complete
and simply connected complex space form is complex
analytically isometric to a complex projective space
CP" a complex Euclidean space C" or a complex hy-
perbolic space CH" if ¢>0, ¢=0 or ¢ <0 respec-
tively.

The study of real hypersurfaces was initiated by Ta-
kagi (see [2]), who classified homogeneous real hyper-
surfaces in CP" and showed that they could be divided
into six types, which are said to be of type 4, 4>, B, C, D
and E. Berndt (see [3]) classified homogeneous real hy-
persurfaces in CH" with constant principal curvatures.
Okumura (see [4]) in CP" and Montiel and Romero
(see [5]) in CH" gave the classification of real hyper-
surfaces satisfying relation Ap—@pA=0.

Ki and Liu (see [6]) have given the above classifica-
tion as follows:

Theorem A Let M be a real hypersurface of M, (c),
c#0, (n > 2). If it satisfies Ap—pA=0, then M is lo-
cally congruent to one of the following hypersurfaces:

o Incase CP"
(Al ) a geodesic hypersphere of radius r, where

T
0<r<—,

(Az) a tube of radius r over a totally geodesic CP*,

(1Sk$n—2),where 0<r<g.
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o Incase CH"

(AO) a horosphere in CH" , i.e. a Montiel tube,

(Al) a geodesic hypersphere or a tube over a hyper-
plane CH"™,

(Az) a tube over a totally geodesic CH*

(1 <k<n- 2) .

Let M be a real hypersurface in M, (c), (c#0).
Then an almost contact metric structure (¢,&,7,g) can
be defined on M. The structure vector field & is called
principal if A& =& holds on M, where A is the shape
operator of M in M, (c) and « is a smooth function.
A real hypersurface is said to be a Hopf hypersurface if
& is principal.

The Jacobi operator field with respect to X on M is de-
fined by R(-,X )X , where R is the Riemmanian curva-
ture of M. For X =¢& the Jacobi operator is called
structure Jacobi operator and is denoted by /= R(-,&)¢&.
It has a fundamental role in almost contact manifolds.
Many differential geometers have studied real hypersur-
faces in terms of the structure Jacobi operator.

The Lie derivative of the structure Jacobi operator
with respect to & was investigated by Perez, Santos,
Suh (see [7]). More precisely, they classified real hyper-
surfaces in CP" (n>3), whose structure Jacobi op-
erator satisfies the condition: £.,/=0. Ivey and Ryan
(see [8]) classified real hypersurfaces satisfying the same
conditionin CP* and CH”.

The study of real hypersurfaces whose structure Jacobi
operator is parallel is a problem of great importance. In
[9] the nonexistence of real hypersurfaces in nonflat
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complex space form with parallel structure Jacobi opera-
tor (V/=0) was proved. In [10] a weaker condition
(D -parallelness), V,/=0 for any vector field X or-
thogonal to &, was studied and it was proved the non-

existence of such hypersurfaces in case of CP" (n>3).

The parallelness of structure Jacobi operator in combina-
tion with other conditions was another problem that was
studied by many others such as Ki, Kim, Perez, Santos,
Suh (see [11,12]).

Recently Perez-Santos (see [1]) studied real hypersur-
faces in CP" for n >3, whose structure Jacobi opera-
tor satisfies the relation:

L=V, (1)

In the present paper we go on studying the same prob-
lem for CP* and CH>. We prove the following theo-
rem:

Main Theorem Let M be a real hypersurface in CP*
or CH?, whose structure Jacobi operator satisfies rela-
tion (1). Then M is locally congruent to: a geodesic

. T T
sphere of radius r, where 0<r < 5 with r# 7 or to

. . T . .
a tube of radius r=z over a holomorphic curve in

CP? and to a horosphere, a geodesic sphere or a tube
over CH' in CH?% or to a Hopf hypersurface in CH*
with AE=0.

2. Preliminaries

Let M be a connected real hypersurface immersed in a
nonflat complex space form (Mn (c),G), (c#0), with
almost complex structure J of constant holomorphic sec-
tional curvature c. Let N be a unit normal vector field on
M and &=-JN. For a vector field X tangent to M we
can write JX = (D(X)-H](X)N, where p.X and 77(X)N
are the tangential and the normal component of JX re-
spectively. The Riemannian connection V in M, (c)
and V in M are related for any vector fields X, Y on M:

ViX=V,X+g(AY,X)N
V,N=-4X
where g is the Riemannian metric on M induced from G
of M,(c) and A is the shape operator of M in M, (c).
M has an almost contact metric structure (¢,&,77) in-

duced from Jon M, (c¢) where ¢ isa (1,1) tensor field
and 7 isa l-form on M such that
g(pX.Y)=G(JX.Y),
I](X):g(X,g): G(JX,N)
(see [13]). Then we have
P’X =-X+n(X)¢& n(eX)=0, ®
p&=0, n(&)=1

Copyright © 2012 SciRes.
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gloX.pr)=g(X.7)-n(X)n(Y),
g(X.pY)=-g(pX.Y)
VXg = ¢AX>
(Vip)Y =n(Y)AX —g(AX,Y)E
Since the ambient space is of constant holomorphic
sectional curvature c, the equations of Gauss and Codazzi

for any vector fields X, Y, Z on M are respectively given
by

3

“

R(X,Y)Z :%[g(Y,Z)X—g(X,Z)Y+g((pY,Z)(pX

~g(pX.,Z)pY -2g(pX.Y)0Z |
+g(AY,Z)AX —g(AX,Z) AY
)
(V. A)Y =(V,4) =%[77(X)(0Y—77(Y)(0X
~2g(pX,Y)&]

where R denotes the Riemannian curvature tensor on M.
For every point P € M , the tangent space 7,M can
be decomposed as following:

(6)

T,M = span {é‘} @ kern

where  ker(n7)= {X eT,M:n(X)= 0} . Due to the
above decomposition, the vector field 4¢ is decom-
posed as follows:

AE = aé + BU @)
where ﬂ:|¢V§§| and U= —%wg(; eker(n) , pro-

vided that S #0.

All manifolds are assumed connected and all mani-
folds, vector fields etc are assumed smooth (C”).

3. Auxiliary Relations

Suppose now that the ambient space is CP* or CH?,
(ie Mz(c), c#0), then we consider V be the open
subset of points P e M, such that there exists a neighbor-
hood of every P, where @ =0 and Q the open subset
of points O of M such that there exists a neighborhood of
every O, where a#0. Since, o is a smooth function
on M, then V' UQ isan open and dense subset of M.

Proposition 3.1 Let M be a real hypersurface in
M, (c) , equipped with structure Jacobi operator satis-
fying (1). Then, & is principal on V.

Proof: The relation (7) on V, takes the form A& =
PU . From (5) for X =¢U , Y=7Z=¢& we obtain:

lpU :%qu. )]
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Due to the definition of Lie derivative, the relation (1)
for X =¢ yields: /V.&=0. The latter, because of the
first relation of (4) and (8) implies S =0, hence
A& =0. Therefore, & is principal on V. O

On Q if =0, then & is principal. In what fol-
lows we work on W (W < Q), which is the open subset
of points Q€ Q suchthat af#0.

Lemma 3.2 Let M be a real hypersurface in M, (c)
Then the following relations hold on W:

Auz(ﬂ—z—i]wﬁg, ApU = -5 gU 9)
a 4da da

(e _c -
VUg_( a 40!J¢7Ua v{pUé: 40!U’ ng ﬂ¢U (10)

V,U = x,0U, V¢UU=K2¢U—4L§, V.U = kU (11)
o

c B

VU =—iU +| — -2 |¢,

4a «

VuoU =-U, V.U =-x;U- P&

(12)

where «,, k,, k, are smooth functions on M.
Proof: If {U,pU,&} is an orthonormal basis, then
because of (7) we have:

AU =yU + 09U + &, ApU = 6U + ppU, (13)
where 7, 6 and p are smooth functions on M.

The first relation of (4), because of (13) yields:

Vyé&=-0U+ypU, V, ,&=-pU+opU,

(14)
V.&=poU.
The relation (5), using (13) can be written:
U = (%+a7—ﬂ2jU+a5(pU,
(15)

lpU = adU +(ap+gj(pU.

By the definition of Lie derivative, the relation (1)
takes the form:

vl){éE = IVX§~

The latter for X e {&, U} implies [U=0, lpU =0
and then from (15) we obtain:

c L ¢
0=0, =——, y=——— 16
» 4o 4 a 4a (16)
The relations (13) and (14), because of (16) imply (9)
and (10) respectively.

From the well known relation:
Xg(Y.Z)=g(V,Y,Z)+g(Y.V,Z)
for X,Y,Ze {£,U,pU}, using (16) we obtain (11) and
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(12), where «;, x, and x; are smooth functions on M.
g
The Codazzi equation for X, ¥ €{&,U,pU} , because
of Lemma 3.2 yields:

U./}:ﬂxz(4'fz+1], 17)
Brs _ g, (B

a _ﬂKI+4a(cx 40:} (18)
U‘a:é:'ﬂ:WTK'z, (19)
5'0{:40{2%’ (20)
(¢U)oa:ﬂ(a+ic3+j—2], @0

(U)- ="+ P+

((oU)-[ﬂ——iJ =ﬂ(ﬂ—+&—j—;j. 23)

a a a

[ﬂ_z _ LJ’ 22)

a 4da

The Riemannian curvature on M satisfies (5) and on
the other hand is given by the relation
R(X,Y)Z=V,V,Z-V,V,Z-V,, Z.From these two
relations and because of (16) for /{’, )l e{&U,pU} we
obtain:

2
al a 4da a 24)
2
—ﬂK3—K]2—K22—C
a
2
U-K3—§'K]=K2(ﬂ——i—1(3] (25)
a 4o

c c
U) -k, ¢k, = +— |+ - 26
((P ) =& K, KI(KS 4aj ﬂ(’% 20{) (26)
Relation (23), because of (18), (21) and (22), yields:
K, =—4a 27

and so relation (18) becomes:

B, =— [ ‘ —ﬂ—zj—wz. (28)

“4alde @

Differentiating the relations (27) and (28) with respect
to U and & respectively and substituting in (25) and
due to (19), (20) and (27) we obtain:

K, (c-28° -4a’)=0. (29)
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Owing to (29), we consider W, (W, c W) the open
subset of points QW , where x, #0 in a neighbor-
hood of every Q.

Lemma 3.3 Let M be a real hypersurface in M, (c),
equipped with Jacobi operator satisfying (1). Then W,
is empty.

Proof: Due to (29) we obtain: 23 +4a’ =c on W,.
Differentiation of the last relation along & and taking
into account (19), (20) and 24> +4a* =c yields: c¢=0,
which is a contradiction. Therefore, W, is empty. [

On W, because of Lemma 3.3, we have «, =0, hence
the relations (17), (19) and (20) become:

U-a=U-f=¢a=<¢(-=0.
Using the last relations and Lemma 3.2 we obtain:

[U,é]azU—é’-a—é‘-Ua:O,

[U.8la=(V,E-V.U)a

:i(4ﬂ2 +16a’ —c)(;oU)-a.

Combining the last two relations we have:
(48 +160” ~c)(pU)-ar = 0. (30)

Let W,, (W, cW) be the set of points Qe W, for
which there exists a neighborhood of every Q such that
(U)-a=0. So from (30) we have: 16a° +45” =c.
Differentiating the last relation with respect to U and
taking into account (21), (22), (27) and (28), we have:
a’ =0, which is impossible. So W, is empty. Hence,
on W we have (@U)-a=0. Then, relations (21) and
(28), because of (27) imply respectively: c¢=4a” and
Br, =a’ =5 . Relation (26), because of (¢U)-a =0,
c=4a’ and (27) yields: &, =-2/. Substitution of
in Bk, =a’—5p" yields: 3B° =a’. Differentiation of
the last one along @U and taking into account (22) leads
to: =0, which is a contradiction. So we obtain the
following proposition:

Proposition 3.4 Let M be a real hypersurface in
M, (c), equipped with Jacobi operator satisfying (1).
Then M is a Hopf hypersurface.

4. Proof of Main Theorem

Since M is a Hopf hypersurface, we can write AZ = AZ
and ApZ = pupZ with {£,Z,pZ}, being a local or-
thonormal basis and the following relation holds:

Au = %(/1 + 1) +% (Corollary 2.3 [14]). Furthermore,

due to Theorem 2.1 [14], we have that « is constant.
From (5), due to AZ=1Z and ApZ = upZ we
get:

Copyright © 2012 SciRes.
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17 = (a/1+%j Z, lpZ= (a,u+%j(pZ. 31)

The relation (1), because of (31) implies:
al(A-u)=0, for X=Z and au(A-u)=0, for
X =@Z . Combining the last two relations leads to:
oc(/i—,u)2 =0.If =0, in case of CP*, M is locally

.m .
congruent to a tube of radius 7 over a holomorphic

curve in CP*> due to [15] and to a Hopf hypersurface
with 4=0 in CH>. If a#0, the last relation im-
plies: A= and we obtain:

(pA—Ap)X =0, VX eTM,

which because of Theorem A completes the proof of
Main Theorem.
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