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ABSTRACT 

We have developed a simple method for the preparation of highly fluorescent and stable, water-soluble CdTe quantum 
dots in sol-gel-derived composite silica spheres which were coated with calix[6]arene. The resulting nanoparticles (NPs) 
were characterized in terms of UV, fluorescence and FT-IR spectroscopy and TEM. The results show that the new NPs 
display more intense fluorescence intensity and are more stable than its precursors of the type SiO2/CdTe. Under the 
optimum, the novel NPs exhibit a higher selectivity and ultrasensitive fluorescence probes for the determination of gly-
phosate over other pesticides, the fluorescence intensity increase with the concentration of glyphosate in the range from 
1.0 to 25.0 nmol/L and the detection limit is low to 0.0725 nmol/L. A mechanism is suggested to explain the inclusion 
process by a Langmuir binding isotherm. 
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1. Introduction 

Glyphosate ([N-(phosponomethyl)glycine]), one of the 
mostly important organophosphorous (OP) pesticides [1], 
is a broad-spectrum, nonselective herbicide to effectively 
control weeds and vegetation [2]. It is widely used in 
lawns, gardens and along sidewalks for urban landscapes. 
In recent years, glyphosate has been attracted increasing 
attention because of its pollution to the aquatic environ- 
ment and its potential adverse effects of these com-
pounds to ecosystems and human [3]. Common method-
ologies used for glyphosate detection are mainly based 
on chromatographic methods [4,5] and electrochemical 
methods [6,7], which suffer from high cost and low sen-
sitivity problems. Thus, it is very necessary to develop a 
simple and convenient method for the efficient detection 
of glyphosate. 

Water-soluble semiconductor nanoparticles (quantum 
dots, QDs) have generated great fundamental and tech-
nical interests due to their superior optical and electronic 
properties [8], and have been widely used as fluorescence 
probes in biology and medicine [9]. Recently, the func-
tionalization of QDs surfaces using macro-cyclic host 
molecules with specific ligands, has attracted consider-
able attention because of its potential applications for 
fabrication of sophisticated sensors [10]. For example, as  

the third generation of host molecules, calixarene and 
their derivatives have been used as capping ligands for 
QDs due to their unique advantages in the construction of 
molecules recognition systems, giving rise to water- 
soluble QDs for their applications [11]. In previous stud- 
ies, the calixarene formed a bilayer structure with TOPO 
(Trioctylphosphine Oxide) molecules surrounding QDs 
by hydrophobic interaction [12-14]. However, TOPO 
layer of QDs is unstable in dynamic equilibrium with the 
surrounding medium, which is a significant obstacle for 
the applications. Therefore, it is necessary to improve the 
stability of surface modification of QDs in solutions. We 
have found that encapsulation of the nanoparticles with 
silica shell is advantageous for applications such as 
bio-labeling, because the inert silica shell can keep the 
nanoparticles out of oxidation. Furthermore, silica parti-
cles can be increased in size by “seeded” growth and 
assembled to bigger aggregates such as photonic crystals 
[15]. Additionally, silica is chemically inert and optically 
transparent. Therefore, QDs coated with inert materials 
may improve the chemical and photochemical stabilities, 
especially in aqueous systems [16]. Based on the above 
research results, we can develop novel fluorescence probes, 
which have synergetic superior properties from both QDs 
and calixarene. 

Herein, we report the synthesis of CdTe nanocrystals *Corresponding author. 
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in sol-gel-derived composite silica spheres which were 
then coated with calix[6]arene (C[6]/SiO2/CdTe NPs, 
Scheme 1), the SiO2/CdTe NPs and C[6]/SiO2/CdTe NPs 
were characterized in terms of UV, fluorescence and 
FT-IR spectroscopy and TEM (the synthesis and charac-
terization of SiO2/CdTe NPs and C[6]/SiO2/CdTe NPs, as 
can be seen from the myself literature [17]). Moreover, 
we also demonstrated the potential application of as- 
prepared QDs as fluorescence probes for simple, rapid, 
ultrasensitive, and highly selective determinations of 
glyphosate. Comparing with other electrochemical and 
chromatographic methods, the present method is simple, 
fasts, lower cost and possess low detection limit for the 
determination of glyphosate. This study may also extend 
the potential application range of C[6]/SiO2/CdTe NPs in 
environmental chemistry. 

2. Experimental 

2.1. Instrumentation 

Fluorescence spectra and relative fluorescence intensities 
were measured on a Hitachi F-4500 spectrofluorometer 
(Tokyo, Japan) with a xenon lamp, 1.0 × 1.0 cm2 quartz 
cell. Excitation and emission bandwidths were set to 5.0 
nm and 5.0 nm, respectively. All measurements were ca- 
rried out at desired temperature using a thermostatic cell 
holder. A model pHS-3C (Dazhong Analytical Instru-
ments Factory, Shanghai, China) pH meter was used for 
accurate adjustment of pH. 

2.2. Reagents 

All reagents used were of analytical-reagent grade or the 
best grade commercially. Doubly deionized water was 
used throughout. Pesticide standards (glyphosate, chlor-
pyrifos, carbaryl, cyromazine, imidacloprid, methiocarb) 
were obtained from Aladdin-reagent, China. All pesticide 

standards were up to 99% purity. Chlorpyrifos and me-
thiocarb were dissolved in the mixture of water and eth- 
anol, and others were dissolved in water and stored at 
room temperature. 

2.3. Determination of Pesticides 

The selectivity of the SiO2/CdTe NPs and C[6]/SiO2/ 
CdTe NPs as fluorescence probes for glyphosate is eva- 
luated by testing the response of assay to other environ- 
ment relevant various pesticides. Figure 1 shows the 
effect of 1 × 10–5 mol/L relevant pesticides on the fluo-
rescence of SiO2/CdTe NPs and C[6]/SiO2/CdTe NPs, 
including glyphosate, chlorpyrifos, carbaryl, cyromazine, 
imidacloprid, methiocarb, which are shown in Figure 2. 
Only glyphosate has a selective effect on the fluores- 
cence of C[6]/SiO2/CdTe NPs over turns out to be in- 
creased sensitively in the presence of glyphosate in water. 
Yet for SiO2/CdTe NPs, all pesticides have very little 
effects. It is rational that C[6] plays an important role in 
selective fluorescence response to glyphosate. It is known 
that the well-defined structure of the calixarene cavities 
can be exploited for the inclusion of organic guest. How- 
ever, the cavity of C[6] is not sufficiently large enough to 
accommodate bulk aromatic pesticides excluding a small 
linear molecule like glyphosate, which results in the se- 
lective fluorescence response to glyphosate. 

3. Results and Discussion 

3.1. Effect of pH Fluorescence Intensity of 
C[6]/SiO2/CdTe NPs 

The pH of the solution has a great effect on the fluores-
cence intensity of the C[6]/SiO2/CdTe NPs. The pH ef-
fect is investigated in a range between 4.0 and 11.0. It is 
found that the fluorescence intensity is decreased quickly 
in acidic, meanwhile, in also decreased gradually in strong 
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Scheme 1. Formation of C[6]/SiO2/CdTe NPs. 
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Figure 1. Effect of 1 × 10–5 mol/L relevant pesticides on the 
fluorescence of SiO2/CdTe NPs and C[6]/SiO2/CdTe NPs 
(from 0 to 6: control, chlorpyrifos, cyromazine, carbaryl, 
imidacloprid, methiocarb, and glyphosate). 
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Figure 2. The chemical structure of pesticides investigated. 
 
basic media, as shown in Figure 3. At low pH, the sur-
face of C[6]/SiO2/CdTe NPs may be dissolved, resulting 
in surface defects. In a pH medium up to 4.0, the fluo- 
rescence emission has been completely quenched. How- 
ever, at high pH, OH– could nucleophilicly attack the sur- 
face to cleave calixarene and create surface defects. There- 
fore, we select pH = 9.0 for further study. 

3.2. Effect of the C[6]/SiO2/CdTe NPs 
Concentration 

In the experiment, C[6]/SiO2/CdTe NPs are fluorescence 
reagent and its concentration can effect the response to 
glyphosate. When C[6]/SiO2/CdTe NPs concentration is  

 

Figure 3. Effect of pH fluorescence intensity of C[6]/SiO2/ 
CdTe NPs, 293 K. 
 
too low, the fluorescence intensity increased with in- 
creasing glyphosate concentration, but the fluorescence 
intensity of the host system is weak and the linear range 
is narrow; when C[6]/SiO2/CdTe NPs concentration is 
too high, the blank signal is too high and the increase 
effects by low concentration of glyphosate decreased. 
Considering these factors, 6.0 × 10–7 mol/L C[6]/SiO2/ 
CdTe NPs is recommended in our experiments (see Fig-
ure 4). 

3.3. Calibration Curve and Detection Limit 

According to the proposed method a calibration curve is 
constructed under the optimal conditions. Figure 5 de- 
scribes the glyphosate concentration (C) dependence of 
the fluorescence intensity of the C[6]/SiO2/CdTe NPs (F). 
It can see that the emission intensity of C[6]/SiO2/CdTe 
NPs increases sharply in response to glyphosate. The 
linear range is obtained from 1.0 to 25.0 nmol/L. The 
linear regression equation is as follows: F = 480.605 + 
21.186C (nmol/L), with a correlation coefficient of 0.99947 
(n = 13), the detection limit (LOD), calculated following 
the 3σ IUPAC criteria, is low to 0.0725 nmol/L and the 
relative standard deviation is 0.1048% (eleven replicate 
measurements of a solution). For comparative purpose, 
the analytical performance of several selected methods 
for glyphosate detection is summarized in Table 1. In 
comparison with previous results, the proposed method 
possesses comparable or superior detection limit and linear 
range, as shown in Table 1. 

3.4. Discussion of Interaction Mechanism 

The glyphosate concentration dependence of the fluores-
cence intensity of C[6]/SiO2/CdTe NPs shown in Figure 
6. Curve A shows that the emission intensity of C[6]/ 
SiO2/CdTe NPs increases sharply in response to glypho- 
sate at a concentration of 0 - 600 nmol/L. However, if the 
concentration of glyphosate reaches 100 nmol/L, the 
fluorescence intensity is decreased. The concentration 
dependence of fluorescence intensity follows the binding 
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Table 1. Comparison of the linear range and detection limit of different methods for determination of glyphosate. 

Method Reagent/sample Linear range (mol/L) Detection limit (mol/L) Reference 

GC/EI/MS/MS AMPA (0.029 - 2.96) × 10–8 1.48 × 10–10 [18] 

HPLC/EC Water (0.59 - 106.5) × 10–5 2.3 × 10–6 [7] 

HILIC Copper (Ⅱ) complex (0.059 - 20.1) × 10–5 5.9 × 10–7 [19] 

IC/ICP/MS Soil extracts (0.059 - 59.1) × 10–7 8.87 × 10–9 [20] 

EC NiAl-LDH modified electrodes (0.01 - 0.9) × 10–3 1.0 × 10–6 [21] 

CE Pool water (0.118 - 296) × 10–5 1.18 × 10–6 [22] 

HPLC/ELC Tris (2,2’-bipyridyl)ruthenium (Ⅱ) - 1.0 × 10–8 [6] 

HPLC Soil (5.92 - 59.2) × 10–5 2.36 × 10–7 [23] 

Suppressed conductance Drinking water (0 - 1.18) × 10–5 2.96 × 10–7 [24] 

Fluorescence N-Nitroso Derivative (1.78 - 3.55) × 10–4 2.96 × 10–5 [25] 

Spectrophotometry C[6]/SiO2/CdTe nanparticles (1.0 - 25.0) × 10–9 7.25 × 10–11 This work 

 

0 2
0

100

200

300

400

4 6 8 10

500

F
 -

 F
0

[C[6]/SiO
2
/CdTe] (10-7 mol/L)

560 595 630

1000

 

Figure 4. Effect of the concentration of C[6]/SiO2/CdTe NPs 
on the relative fluorescence intensity (F0 – F) of system, 
where F and F0 are the fluorescence intensity of the C[6]/ 
SiO2/CdTe NPs at given glyphosate concentration and in a 
glyphosate free solution. Cglyphosate = 1.0 × 10–8 mol/L, pH = 
9.0, 293 K. 
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Figure 5. Fluorescence emission spectra of the C[6]/SiO2/ 
CdTe NPs showing changes due to increasing concentration 
of glyphosate (A - M: 1.00, 2.00, 4.00, 6.00, 8.00, 9.00, 14.00, 
15.00, 17.0, 20.00, 22.00, 24.00, 25.00 × 10–9 mol/L). The 
emission intensity of C[6]/SiO2/CdTe NPs increase sharply 
in response to glyphosate, the linear range is obtained from 

900

460480500520540560580600620640
0

200

400

600

800

1000

 

 

increasing

P

A

[glyphosate] nmol/L

F
lu

or
es

ce
nc

e 
in

te
ns

it
y 

(a
.u

)

Wavelength (nm)

 

F
lu

or
es

ce
nc

e 
in

te
ns

it
y 

(a
.u

)

[glyphosate] (10-9 mol/L)  

Figure 6. Curve shows that the emission intensity of C[6]/ 

f glyphosate to the cavity of the C[6] on the surface of 

 sites is defined as θ . The 
ra

( )1b bR K C θ= −            (1) 

The rate of desorption of bound pesticid

SiO2/CdTe NPs increases sharply in response to glyphosate 
at a concentration of 0 - 600 nmol/L. However, if the con- 
centration of glyphosate reaches 100 nmol/L, the fluores- 
cence intensity is decreased. 
 
o
C[6]/SiO2/CdTe NPs and is effectively described by a 
Langmuir-type binding isotherm [26]. The fluorescence 
intensity is increased with increasing glyphosate concen-
tration. According to the Langmuir equation, the surface 
of the C[6]/SiO2/CdTe NPs consists of a finite number of 
binding sites. Each of the binding sites can absorb one 
pesticide from the solution. 

The fraction of occupied
te of binding of pesticides to the surface is proportional 

to the pesticide concentration C in the analytic solution 
and to the fraction of available binding sites 1 θ− . The 
rate of binding bR , of pesticide to the surface is ex- 
pressed as 

e from the sur-
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fa

b bR K θ=                  (2) 

The rate of binding is equal to
eq

( )1d bK K Cθ θ= −            (3) 

The equation ca  solved for θ  as a 

ce depends only on the fraction of occupied binding sites 
and can be express as 

 the rate of desorption at 
uilibrium 

n be function of the 
ratio b dB K K= . 

( ) ( )1BC BCθ = +           (4) 

The fraction of occupied ding sites 
th g

 bin θ , is related to 
e ratio between the signal obtained at iven pesticide 

concentration ( I ) and the maximum intensity ( maxI ). 

maxI Iθ =               (   5) 

Therefore, an expression that r
ce

elated the pesticide con-
ntration C, to the signal intensity can be written as 

( ) ( )max max max1 1I I BI I C= +     (6) 

This equation can be linearized to take the form 

( ) ( )1 1C I BI I C= +    max max   (7) 

Accordingly, if the Langmuir description of t
in

he bind-
g of glyphosate on the surface of the C[6]/SiO2/CdTe 

NPs is correct, a plot of C I  as a function of C should 
be linear. The dependence  of C I  as a function of C, 
where C is the glyphosate conce tion and I is the fluo- 
rescence intensity of the C[6]/SiO2/CdTe NPs at given 
glyphosate concentrations, is shown in Figure 7. A rela- 
tive linearity is observed throughout the entire range of 
glyphosate concentration. The binding constant B is found 
to be 0.069, and the coefficient of the linear fit is 0.99958. 
The remarkable Langmuir fit suggests that the probabil-
ity of binding more than one glyphosate to the surface of 
an individual C[6]/SiO2/CdTe NPs, which is imperative 
for aggregation or non-Langmuir binding isotherm due to 
island formation, is negligible under the experiment con- 
ditions.  

The obs

ntra

erved fluorescence emission enhancement at 
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phosate intercalation restricts the calixarene-cavity dis- 
tort, which induces a uniform arrangement. Such ordered 
orientation and/or enhanced conformational rigidity of 
the surface substituents may suppress the quenching path 
to the medium by effective core protection and thus in- 
crease the fluorescence intensity [27]. A similar mecha- 
nism may be involved in the present case with respect to  
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showing a linear fit throughout the glyphosate concentra- 
tion range, the binding constant B is found to be 0.069 and 
the coefficient of the linear fit is 0.99958. 
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Scheme 2. Formation of Calix[6]arene coated with SiO2

e possibility; we propose recently that the cluster emis- 

3.5. Sample Determinations 

e proposed method, the 

4. Conclusion 

have developed a novel fluorescence  

/ 
CdTe NPs detection of glyphosate. 
 
th
sion is enhanced when the free motion (rotation) of the 
surface substituents is suppressed [28]. The process of its 
formation can be found from Scheme 2. However, when 
the concentration of glyphosate reaches 100 nmol/L, the 
fluorescence intensity is decreased, which may be caused 
by the formation of the network structure and induced 
aggregation [29].  

In order to check the validity of th
standard addition method is applied by adding glyphosate 
to the previously analyzed solution. The recovery of each 
pesticide is calculated by comparing the concentration 
obtained from the spiked mixture with those of the pure 
pesticides. Table 2 shows the results of analysis of syn- 
thetic samples by the standard addition method. 

In this work, we 
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rmination of the samples. 

Number Pesticide Sample R.S.D. (%) Recovery (%) 

 
Table 2. The results of dete

Glyphosate added (nmol/L) Glyphosate found (nmol/L) 

1 1.0 4.0 4.87 3.0 97.4 

2 2.0 3.5 5.52 1.5 100.4 

3 3.0 3.0 5.78 2.6 96.3 

4 4.0 2.5 6.38 1.3 98.2 

5 5.0 2.0 7.12 2.2 101.7 

 
robes can be used for ultrasensitive, highly selective, 
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