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ABSTRACT 

Under study is the problem of optimum allocation of a resource. The following is proposed: the algorithm of dynamic 
programming in which on each step we only use the set of Pareto-optimal points, from which unpromising points are in 
addition excluded. For this purpose, initial approximations and bilateral prognostic evaluations of optimum are used. 
These evaluations are obtained by the method of branch and bound. A new algorithm “descent-ascent” is proposed to 
find upper and lower limits of the optimum. It repeatedly allows to increase the efficiency of the algorithm in the com-
parison with the well known methods. The results of calculations are included. 
 
Keywords: Dynamic Programming; The Pareto Set; Branch and Bound Method; The Curse of Dimensionality;  

Algorithm “Descent-Ascent” 

1. Introduction 

The problem of optimum distribution of limited resource 
R between n consumers was solved by R. Bellman more 
than 50 years ago [1]. His method of dynamic program-
ming allows to find the optimal path (trajectory) and lead 
for n steps of the system from the given initial state to the 
final one.  

While using R. Bellman’s algorithm, which became 
classical, the problem comes to finding the optimal tra-
jectory, connecting nodes of a regular grid, which actu-
ally define the set of states on each step prior to the be-
ginning of the account. 

Later on other realizations of dynamic programming 
have been offered, where the task of regular grid of states 
was not necessary. At the same time as we move from 
the initial point to the end we consider only achievable 
states (points). And from all paths that lead to each state 
remain only the best [2,3]. 

The characteristic feature of traditional algorithms of 
dynamic programming is intensive growth of volume of 
calculations with growth n and R which has the name 
“the curse of dimensionality”.  

So, if possible resource values for each consumer are 
not integer and on a numerical axis are irregularly lo-
cated then application of traditional Bellman’s algorithm 
is conjugated with essential computing difficulties be-
cause of necessity of introduction small discrete and ac-
cordingly a great number of states. If number of con-
sumers and number of possible values of resource for 
each of them reaches some hundreds then time needed 
for the decision of real problems can be unacceptable. 

That is why the search of more effective algorithms es-
pecially for the big dimension problem which built in 
multiply repeated cycle of calculation is actual. This is 
the purpose of this work. 

2. Problem Statement 

Let’s consider the following problem: to find the maxi-
mum of the sum 

 
1

n

i i
i

g x

                (1) 

subject to 

 
1

,  ,  1, 2, ,
n

i i i i
i

f x R x X i n


         (2)  

where Xi—finite sets, ,  and 
 Functions 

  0i if x    0i ig x 
0.R   i if x  and  i ig x  may not be in-

teger. It is supposed that the set of feasible solutions (2) 
is nonempty. 

Variety of problems which can be written in this form, 
comes to allocation given resource R among n consumers. 
Functions  i if x  characterize a resource, and  i ig x — 
is efficiency of it’s use. If  i i i if x p x  and  

 i ig x i iс x  we have the problem of optimum loading 
of vehicle objects, which weights pi, costs сi, and quanti- 
ties  2,0,1,i i x x  [1]. If additionally  0,1iх  ,  
we obtain the well-known problem of “knapsack” [2]. 

It might be needed to look for minimum in (1). In this 
case functions  i if x —a resource, and  i ig x —ex- 
penses. For example,  i if x —resources of time, and 

 i ig x —expenses for realization of some project. 
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Non-integer values of the resource arise in a problem 
surface protection from aggressive influence of environ- 
ment [4,5]. The surface consists of n elements, for pro- 
tection of each of them m various ways can be used. 
Their efficiency and corresponding expenses are various. 
In this problem,  i if x —permissible damage from in- 
complete protection of i-th element of surface, and  

 i ig x —expenses. 
The problem on maximum is reduced to an equivalent 

problem on minimum by replacement in (1)  i ig x  on  

 i iM g x  where  max i i
i

M g x . 

Further the problem (1,2) is being considered on mini- 
mum and the following designations are used:  

 1, , ;  1, ,  j
i ix i n j  

 ,  
k —values  

j j
i i i i ix X f f x   and  j j

i i ig g x
 i i

—the corre- 
sponding values of the functions f x  and  i ig x . 

3. Algorithms with Elimination of States  

Efficiency of dynamic programming can be essentially 
increased by elimination not only the paths leading to 
some state, but also actually unpromising states which 
obviously can’t belong to an optimum trajectory, that is 
optimum sequence of states. 

For the simple knapsack problem, this idea of elimina-
tion of the states is realized [2].  

The algorithms realizing this idea for the decision of a 
more general problem (1,2), we’ll consider a problem on 
minimum.  

 1, ,  j
i x i  

1 2 ik
i i

n we’ll number so that  

if f f   . If 1 j j
i if f 

1
, then we eliminate  

 if  1 1,j j
i if g  j j

iig g  , and we eliminate  ,j j
i if g  

if 1j j
i ig g  .  

However the pair  can be eliminated if   1 1,j jf g  i i
1

 
j j

i if f   and 1 j j
i ig g   as bigger resource should 

correspond smaller expense in the problem on minimum. 
In this case j

if  will be always used instead of 1j
if
 . 

After elimination we get  

i i i  1, ,  1 2 kig g g i   n


  . Hence for any i the 

remained points with coordinates  ,j j
i if g  form Pareto 

set on a plane  , ?f g , all other variants are unpromis-
ing.  

At each step of dynamic programming by the state we 
mean total resource, which already was used. Accord-
ingly after the first step the set of states 1

jf  is such that 
pairs  ,  j j

i if g  form Pareto set. 
At each following step 2, ,  m n   we’ll consider 

set of points  ,m m F G  of the following 

   
1 1

,  m i i m i
i i

m m

iF f x G g x
 

    

where vector  1,  , m

 
1

,  ,  1, ,  .
m

i i i i
i

f x R x X i m


   . 

Let for two points  ,  m mF G   and  ,  m mF G 

 > m m

 where 
the bottom index is number of a step, and top index is 
point number , we have : m m  andF F G G    . A path 
 1 2, , , mx x x    corresponds to point  ,  m m F G   and to 
point  ,  m mF G   corresponds  , m1 2, ,x x x  . 

Point  m,  mF G   can be excluded from consideration 
because path  , , , m1 2x x x    can not be a part of optimal 
trajectory. In fact, let  1 2, , ,m m nx x x   

,  m m

 be optimum 
continuation from  point F G 

  

, which expenses 
G* correspond. Then for trajectory  

2 n m
* *( , ,  .m1 1,  ,m m m , , )  x x x x    x  G G G   G   And 

point  ,  m mF G   is eliminated. 
At m mF F   and m GG   the point  ,  m mF G   

can also be excluded. It means that from the set of points 
 ,  m mF G  on each step m it is possible to leave only 
Pareto subset, and from two congruent points remains 
only one. This rule also includes elimination of ineffi-
cient paths which lead to the same state, and elimination 
of actually unpromising states to which non Pareto points 
correspond.  

Pareto subset of  ,  m mF G  will be designated by  

  , 1, ,k k
m m m mS F G k K   , numbering them accord-  

ing to increasing resource, i.e. 1 2 ,Km
m m mF F F    

1 2 Km
m m mG G G   . Formation of step-by-step ordered 

Pareto sets Sm сan be achieved in different ways. A vari-
ant where at first we form the whole set of admissible 
points and then leave only Pareto points turned to be in-
effective. The algorithm has been realized: 

The first step.  

      
0 1 1 1 1 10,0 ;  , 1,2, ,j j j jS S F f G g j      1k . 

No elimination.  
The general step. Assume that the set  

  1 1 1,  1, ,k k
m m m mS F G k K     1  

is already constructed. At first stage (k = 1) we calculate  

  1 1
1 1,   1, ,j j j j

m m m m m m mF F f G G g j k        

without elimination. At second stage for 12, ,  mk K    

(the external cycle) we consistently calculate  
 1 1,  1, ,k j k j

m m m m mP F f G g j k      (an internal cycle). 
May be only three results of comparison each calculated 
point P with already available (the nearest on value of a 
resource): 

1) P is not included in formed set as there is a domi-
nating point in it; 

x x  runs all values, satisfying the 
conditions 

2) P is included (with reserving the order) as there is 
no dominating point in relation to it, and it isn’t domi-
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nating;  
3) New point P is included in the formed Pareto set, 

and one or probably more points in relation to them P is 
dominating, are eliminated from it.  

Owing to orderliness Pareto set and  no ne-
cessity to analyse all points for search a dominating point. 
At k = 2 and j = 1 search begins with 1, i.e. points with 

0j
mf 

1
mF . At 1  and j = 1 search begins with 

number received by a point with 
3, , mk K  

1
1

k
m

1
mF f

2, ,  mj 


 


 or dominat-
ing over it. At 1  and  search 
in an internal cycle begins with number, received by 
point with 

3,k  

1
1

k
m m

, mK 

j

k

F f 
   or dominating over it. Search 

goes always with increase of resource and comes to an 
end at achievement 1m m

k jF f  , i.e. the resource of the 
new point—“candidate”. In item 3 search of dominated 
points begins with N + 1 where N—number of the new 
point which was included and stops at the first unsuc-
cessful attempt.  

As a result we receive Pareto set of points, which are 
ordered on increase of a resource. 

For problems of big dimension the number of Pareto 
points can be great, especially at non integer values 

i 1, , ; 1, ,j
i f i n j   k



 that has demanded working 
out of the new algorithms, allowing to eliminate some 
unpromising Pareto points. It is possible on each step of 
dynamic programming if to use the approximate decision 
(initial approach) as the top estimation of optimum with 
possibility of its clarification in the process of the ac- 
count or to build bilateral prognostic estimations of op- 
timum. In particular on each step Pareto set include 
points corresponding minimum resources and accord- 
ingly maximum expenses which through some steps can 
already exceed total expenses for all steps, corresponding 
to initial approach. Such situation comes for smaller 
number of steps in the presence of good initial approach. 

Let’s assume that some admissible vector  
* * * *

1 2, , , nx x x x  is calculated and the corresponding 
value of the target function is 

 * *
1

1

n

n i
i

G g x


   

At the decision of a problem (1,2) on minimum on a 
step m Pareto point    ,j j

m m mF G S

*jF F

 is eliminated, if 

n , as it can’t belong to optimum trajectory be-
cause on subsequent steps target function can increase 
only as   

* j
mG G

  0.i ig x 
max :j jIf for and a value  

, then 
k m

0jk
m mG G   * ,

m
*

m m
*   F G  is non Pareto point. It 

is replaced on  ,  jk jk
m mF G ; for i  we remain m *

ix  
(accordingly *

if  and *
ig ), therefore all *

iG m i n   
we decrease on δ, and *

iF  we decrease on *   jk
m mF F


. 

On subsequent steps m i n   corrected values 
*

iF  and  are used for elimination Pareto points. Ex-

penses for the rest part of a trajectory and accordingly the 
top border of total expenses can be calculated approxi-
mately for everyone Pareto point. We decrease , us-
ing minimum of received values of total expenses, and 
receive an opportunity of additional elimination Pareto 
points. Correspondent algorithms use obtained values 

 as the top estimations of optimum, and the bottom 
estimation is equal to zero and, as a rule, it is far from 
optimum.  

*
iG

*
nG

*
nG

We use a combination of dynamic programming and a 
method of branches and borders for construction the im-
proved bilateral estimations of optimum. Thus everyone 
Pareto point on each step is considered as a point of 
branching with construction of bilateral estimations of 
optimum (the bottom and top border). Efficiency of such 
method depends on quantity of states, computing ex-
penses for borders calculation and their nearness to op-
timum. 

Let’s designate expenses for all trajectory, corre-
sponding to initial approach, through E (in a method of 
branches and borders they are called as a record), and 
their bottom border through H. Expenses for the rest part 
of trajectory from a point  , j j

m mF G , corresponding to 
some admissible approach, we will designate through 

j
mE , their bottom border through j

mH . Then condition of 
elimination Pareto points  ,j j

m mF G  will become  
j j

m mG H E  . If j j
m mG E E  , new value of a record is 

j j
m mEG . We modify initial approach accordingly. 
If for some m and j j jE Hm m  there is no sense to 

consider  ,j j
m mF G

E
, as a branching point. If additionally 

j j
m mG E   this point and corresponding trajectory are 

remembered and stored until then yet won’t be obtain 
value of a record smaller, than j j

mG E m . If “the record 
will stand” then corresponding decision is optimum. If on 
some step there will be no Pareto points the record is the 
required decision. On each step it is possible to correct 
the bottom border, replacing H on  

   min  , 1, 2, ,  if  j j
m m mh G H j K ,H h     

and to stop calculation at E Н H  ,  
where ε is defined by demanded accuracy of the decision. 

4. Construction of Initial Approach  
(The Top Border) 

The simple algorithm of construction of initial approach 
consists in the following steps:  

1) For 1, 2, ,i n   consecutive for  it is 
postponed 

1,j  , ik
j

if  on an axis of abscisses, and j
ig  on an 

axis of ordinates and we receive sequence of points, 
which defines strictly monotonously decreasing piece- 
linear function, because  ,  j j

i if g  are Pareto points. 
We will consider that such functions are constructed for 
all i.  
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2) We calculate min
1

=
n

j
i

i

R

 f

R

 and . max
1

=
n

ki
i

i

R f



If min , the problem has no decision. If maxR  R R , 
 fwe have the trivial decision, choosing ij or every-

one i. Let’s designate 
k

1, , I n  . We make k n .  
3) We calculate  minavR R R  k . If  

 ,then we make 1 : ki
i av ii I f R f    * ki

i if f , further 
we eliminate i from I, replace k on k − 1, R on  
and repeat item 3, differently 

ki
iR f

* 1
i i avf f R  i I  and 

we go to item 4. 
4) For  we consistently define  

 and replace 
1, ,i  

*j
i if

n
max  :j f *

if  on j
if . Accordingly 

* j
i ig g .  
5) Initial approach (trajectory) 

 * *

1 1

, 1
m m

m i m i
i i

, ,F f G g m n
 

      

Similarly, it is possible to build initial approach in the 
process of dynamic programming for the rest part of the 
trajectory, starting with any Pareto point. 

5. Calculation of Bilateral Estimations of an  
Optimum 

For construction of bilateral estimations of an optimum 
we use the piece-linear functions received in item 1. 
Those of them which aren’t convex, we will replace on 
their convex shells     1, 2, ,i iw z i n  . As a result 
we receive a continuous estimated problem: to find a 
minimum  

   

 
1

1

,

where , ,   is an unknown vector

n

i i
i

n

W z w z

z z z


 


     (3) 

and 

1

1

1, ,,    ,
n

ki
i i i i

i

iz R f z f


    n       (4) 

Optimum of a continuous problem (3,4) which it is 
obvious no more an optimum of a problem (1,2), we will 
accept as required bottom border. 

In this problem of nonlinear programming the target 
function and the system of restrictions have essential 
features which will be used for its decision by simple 
algorithm. 

The ends of links of broken lines wi(zi) we will desig-
nate through j

jz (j = 1, ···, pi).  
We have i , if 1 1 ,   ,  pi ki

i i i i iz f z f p  k  i ig f — 
convex function, differently . Values  i ip k

  

we will name biases. Owing to monotony and convexity 
functions  i iw z  sequence of biases  is 
strictly monotonously decreasing.  

 1, ,j
iu i n 

The problem (3,4) has simple sense: it is how much 
necessary to go down on each broken line  i iw z  from 
the initial point that without breaking restriction on the 
sum of abscisses, to receive the minimum sum of ordi-
nates? The simple and obvious enough answer:- on each 
step it is necessary to go down along a link with the 
maximum bias. We will result a formal substantiation of 
this statement. 

Let  * * *
1 , , nz z z —the decision of a problem (3,4). 

We will designate through  

 1, , ;  1, , 1j
iM u i n j pi     —a set of all biases,  

   * 1 *
1 :  |  1, , ;  1, , 1j j

i i i iМ z u z z i n j p      , 

   * * 1
2 :  1, , ;  1, , 1j j j

i i i i iМ z u z z z i n j p        

and  

   * *
3 :   1, , ;  1, ,j j

i i i iМ z u z z i n j p 1       

—accordingly sets of the biases completely used for de-
scent, used partially and not used at descent.  

1 2 3M M M M   . i jM M   for i   j
 , 1,2,3i j    

 * 1 1

1 1 1 1 1

pi pin n n
j j j

i i i i i
i j i i j

W z g u g u j
i 

    

 
    

 
      (5) 

where 1j j j
i i iz z   , if 1 ; j

iu M *j j
i iz z   i , if 

 and 2M 0j
i

j
iu   , if . 3

Let 

j
iu M

 ,i n 1 1max   u u 1,m i . We will prove that 
 1 2u M M 1

m , respectively .  * 1 m mz z
Let’s assume that this statement isn't true. We take the 

minimum bias  1 2
r

ku M M 
r

k

, to it corresponds 
 Having reduced 0.r

k    by some Δ, we receive 
target function increase on  and possibility of its 
reduction by the big value  without violating re-
striction on the resource, as k . Hence  not an 
optimum. The received contradiction proves necessity of 
use of the maximum bias. Necessity of whole using of 
the maximum from unused biases is similarly proved, the 
resource won’t be settled yet.  

r
ku 
1
mu 

1  mu  ru *z

As a result we receive the following algorithm of de-
scent:  

1) We take initial point , which cor-
responds the maximum value of target function  

 1 1
1 2, , ,  nz z z z

 1 1

1 1

 
n n

i i i
i i

w f g
 

   

We fix the rest of resource  1

1

.
n

i
i

T R f


 
 

1 1  ?

1, , ;  1, , 1

j j j j
i i i i i

i

u w w z z

i n j p

   

   

j

 
2) From all links of all broken lines we take a link with 
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the maximum bias. Let it will be a link with number j of 
a broken line with number m. On the first step j = 1 ow-
ing to convex and monotony of broken lines. We will 
change only a variable zm. Its increase gives reduction of 
target function with the greatest speed. We calculate a 
movement step  and replace  1min ,j j

m mс z z T   j
mz  

on . Target function will decrease on j
mz с j

mu c , and 
the remained resource will decrease on c. 

3) From all remained links of all broken lines we 
choose again a link with the maximum bias and repeat 
item 2 while remained resource T won’t be settled.  

If there are several links with the maximum bias the 
priority is given to a link with the maximum length 
which the remained resource allows to use completely 

. If a resource is not enough for full use 
of any of such links, any of them is used. 
 1  j j

s sz z T   
Let’s notice that in a minimum point only bias j

su , 
which used by last, can be used partially. If it also is used 
completely, i.e. on last step , the received 
decision of continuous problem coincides with the deci-
sion of initial discrete problem and it is definitive. Oth-
erwise it is initial approach, and value of target function 
in a minimum point is required bottom border H0. If last 
considered a broken line initially was convex 

1  j j
s sz z   T

 s s  
we receive the approached decision of initial discrete 
problem and accordingly record E by canceling last step 
(it explains the aspiration to make it less). Otherwise we 
define the absciss of the node nearest at the left on bro-
ken line 

k p

 s sg f  using optimum value *
sz

k
. Ordinate of 

this node, we will designate through sg . The bottom 
border H0 doesn’t change, and record  

 *
0

k
s s s

Note that convex shells are used only to calculate the 
borders, but at formation of a set of states on each step, 
we consider all admissible states, i.e. initial broken lines. 

E H z  g w .  

For effective realization of the algorithm essential 
value has a way of search of the greatest biases. The 
simple way consists in sorting of all biases of all links of 
all broken lines. But expenses of operative memory for 
sorting can be excessive as the essential part of biases in 
general can not be demanded at calculation of the bottom 
border and a record. Instead of complete sorting only 
biases of the first elements of broken lines are ordered as 
it should be nonincreasing. With each of them number of 
a broken line and number of its link communicates. Ini-
tial number of its link is equal 1. In the presence of equal 
biases the priority is given to a link with the greatest 
length. The received array of biases we will designate 
through . According to the stated al-
gorithm descent process begins with use 1  and con-
tinues with maximum biases. Further, if the current bias 
is used completely it is replaced in the array U on 1

 1 2,  , ,  nU u u u 
u

u , i.e. 
 

bias of the next link of the same broken line maintaining 
order in the array U. If we can not completely use the 

next bias because of the restriction on resource, it is used 
partially and the descent is finished.  

On the first step 1
1 mu u  and , where  2

1 mu u 
 1, ,i  

u

1 1max ; u um i . The bias 1
 is located in the 

array U so that the condition not increasing of its ele-
ments was satisfied. If 1 2

n u

u   , the elements of U more 
than 1u , move to the left, so on the first place always 
stands the greatest bias. If all links of some broken line s 
were used, the fictitious link with number sk  and a zero 
bias is entered, and process proceeds before resource ex- 
haustion. The total array of biases, and also * j

s sb z z   , 
that is a part of a link of a broken line which was used by 
the last at descent is remembered.  

Alternative to algorithm of descent is ascent from a 
point  1 2

1 2,  , ,  k k kn
nf f f

n
ki

 with the minimum value of  

target function , which increases on each step  
1

i i
i

w f

 

with a minimum speed because we use the next mini-
mum bias. The used resource decreases from max  to R. 
In this algorithm in case of exhaustion of all biases (links) 
of some broken line the fictitious link with number a zero 
is entered. Its bias is equal to a great value.  

R

As a result we receive and remember the new array of 
biases  1, ,  nV v v , and also 1

1
j *

s sb z z  a part of 
a link of a broken line which was used by the last at as-
cent. Both algorithms give the same decision  

—

 *,  nz

u

1 1j j
s sb b b

* *,  ,z z

–

1 2  and value of target function (the bottom 
border H0), but arrays of biases U and V are different. In 
the array U—biases of links—applicants for the further 
descent, and in the array V—on ascent. Everyone i-th 
broken line is presented by a bias of one link, but number 
of this link in array U one more, as  is equal to an 
absciss of the left end of the link presented in the array U 
or the right end in the array V. The exception is made by 
the broken lines presented by biases, appeared as a result 
on the first places  and i . , with them the 
same j-th link of a broken line is connected. This line 
was used by the last. Its number is s, thus  

*
iz

* * *
i iu v*

i

b

v

    . 
The algorithm of ascent is proved similarly as the al-

gorithm of descent. It begins to work with ranking in 
order of decreasing biases of last links of all broken lines.  

The algorithm of descent can be also used for calcula-
tion of borders of expenses on the rest part of a trajectory 
for everyone Pareto point.  

Let’s note two features of this algorithm: 
1) An array of n biases received as a result and the 

data connected with it about numbers of broken lines and 
their links contains the necessary information for deci-
sion restoration z* and corresponding optimum trajectory 
for a continuous problem (sequence of states  

* * * * * *
1 1 2 1 2,   , ,   nz z z z z z    

R
). 

2) If instead of R we have  there is no sense to R
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begin descent anew, it can be continued from received 
for R an optimum point, using a total array and the re-
mained biases. However at R R 

 * , ,  nz z

z z

,   z 



 for updating of the 
received decision we are forced to descend anew. 

3) If from a total array exclude all biases, which con-
cern the first broken line, then the resulting array will 
correspond the decision  of a problem:  *





r 

2

   
2

min 
n

i i
i

W z w z


  , where —an un-  2 , ,  nz

known vector, at restrictions 

 * 1
1 1

2

, 2, ,  
n

ki
i i i i

i

z R w z f f i n


    ,  

because for decision of this problem it should to use the 
maximum biases from all broken lines, except the first. 
In other words, the resulting array of biases corresponds 
to an optimum trajectory from a state which was received 
after the first step of algorithm  up to the 
end. 

  * *
1 1 1,  z w z

Similarly, passing to the next r-th step of algorithm of 
dynamic programming and excluding from array U bi-
ases , we receive the array of biases, 
which corresponds  and therefore to a state 

 1, ,  1j
ru j p 

*
rz  * *,  r rF G  

on an optimum trajectory. 
It is similarly possible to use the algorithm of ascent.  
Essential lacks of the stated algorithms of descent and 

ascent are:  
1) Initial points are far from an optimum.  
2) Information about the optimal trajectory, which was 

found on the first step in solving the continuous problem, 
is not used. 

3) As a rule, new values of a record turn out for the 
points located near to a point on an optimum trajectory. 
But these algorithms find a new value of a record already 
after points which could be eliminated at movement from 
a point on an optimum trajectory were passed.  

New algorithm of calculation of borders which we 
name “descent-ascent” is free from these lacks. Its basic 
points: 

1) The initial estimated problem (3,4) is solved  both 
a method of descent and a ascent method. Arrays U and 
V, as base, and also Δb and Δb1 are remembered. Each 
element of each array connected with number of a broken 
line and number of a link to which it corresponds. That 
gives the chance to restore the optimum point z* and the 
optimum trajectory. 

2) The optimum trajectory   ,   1, ,i i F G i n     
and corresponding borders E0 and H0 are remembered. 
This is decision of an estimated problem, and a deviation 
from an optimum of an initial problem doesn’t exceed 

. 0 0E H
3) We construct Pareto set after the first step of dy-

namic programming. 

4) The biases corresponding to the first broken line are 
excluded from arrays U and V. 

5) Starting with state  * *
1 1,  F G  descent for states 

with 1
*

1
kF F , and ascent for states with 1

*
1
kF F  are 

carried out consistently for definition of  bottom and top 
border costs for the remainder of the trajectory and pos-
sible elimination of a state or record updating. 

6) On the subsequent steps of dynamic programming 
both borders are defined similarly. 

Special is s-th step of algorithm of dynamic program-
ming, where s is a number of a broken line to which 
posesses a link used by last at construction of an opti-
mum trajectory of a problem (3,4). Its bias was used par-
tially, therefore at removing of this bias from base arrays 
of biases, Δb and Δb1 are nulled.  

In aforementioned special cases of a considered prob-
lem all calculations become simpler, as at  i i i if x p x  
and  i i i ig x с x  for everyone a broken line all links 
have one bias, and at  each broken line con-
sists of one link.  

 i 0,1х 

As the algorithm of descent-ascent demands consider-
able volume of calculations, for revealing of its effi-
ciency in comparison with more simple algorithms ex-
perimental calculations have been executed. 

6. Experimental Calculations 

To compare the different algorithms they were imple-
mented in the next computer programs: 

P1—Dynamic Programming with elimination of the 
path which lead to the same state; 

P2—Elimination only nonPareto states; 
P3—Additional elimination of a part unpromising 

Pareto states with use initial approach; 
P4—Additional elimination unpromising Pareto states 

with calculation of the bottom and top borders of an op-
timum on algorithm of descent-ascent. 

Calculations were carried out on personal computer 
Intel Pentium 4, CPU 3.0 GHz, 512 MB the RAM. 

In calculations abscisses and ordinates of broken lines 
are pseudo-casual real numbers from [1,100], but the 
number of tops of broken lines iK K  didn’t depend 
from i.  

Account time depends not only on number of steps n, 
value of K and from a preset value of resource R, but also 
from concrete values j

if  and j
ig .  

In the first calculation small values n = 50 and K = 10 
were set. Results are presented in Table 1. Designations: 
sum—total number of remembered states on all steps, 
max—maximum number of states on a separate step, 
T—time of the account in seconds. 

Calculations on P1 were carried out under an addi-
tional condition: states on each step are considered coin-
ciding if they differ (on a resource) less, than on the set     
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Table 1. Calculations with n = 50 and K = 10. 

R = 1000 R = 2000 R = 3000 R = 4000 

N sum max T sum max T sum max T sum max T 

P1 4,913,186 125,963 1485 8,573,228 285,081 2499 9,774,235 325,130 2767   >3600

P2 749,454 36,890 49 1,205,318 63,635 63 1,426,221 89,532 67 1,452,752 93,875 67 

P3 639,420 31,212 36 752,111 23,399 23 690,340 29,526 14 528,481 19,492 8 

P4 9786 436 0.1 1705 150 0.2 1748 117 0.3 78 8 0.4 

 
value d. 

Attempt to receive result with d = 0.001 was unsuc-
cessful because of excessive for-expenditure machine 
time. In the table the result received at d = 0.005 is pre-
sented. At d = 0.01 account time was essentially less, but 
accuracy of calculation can appear insufficient as on de-
viation target function exceeded 0.1. 

Calculations under other programs were satisfied with- 
out this additional condition, but at comparison of real 
values the constant 10−9 was used.  

Account time on P4 was less than 0.1 sec, and at R = 
4000 the account has come to the end on 30th step. It is 
interesting a sudden reduction of account time on P3 with 
increasing R. In this calculation on P3 uniform distribu-
tion of a resource between consumers appears more close 
to an optimum with increasing resource R as the maxi-
mum requirements for a resource at consumers differ 
slightly.  

In further calculations program P1 wasn’t used be-
cause of hopelessness of algorithm for a considered class 
of problems. The classical algorithm of dynamic pro-
gramming (a method of a regular grid) is especially un-
promising at a grid step d, equal to the value used at 
work with P1. 

Essential influence on growth of time of the account 
renders growth K. So at n = 40 and K = 20 already at R = 
2500 and use P2 sum = 2,748,038, max = 200,040, T = 
809 sec, and at use P3 sum = 1,433,853, max = 81,889, 
T = 241 sec. At increase R the number remaining Pareto 
points becomes unacceptably big. There is a same situa-
tion, as with algorithm P1: operative memory is ex-
hausted, and exchange with connected external memory 
is slow. It is characteristic that in the same calculation on 
P4 at R = 2500 sum = 2886, max = 152, T < 0.5 seconds, 
but at R = 1000 P4 gives sum = 6855, max = 500 and T 
= 1.2 second.  

Similar results have been received under the same 
conditions, but with n= 100 and K = 40. The decision on 
P2 and P3 during comprehensible time managed to be 
received only at d = 0.002 and more. So at R = 2000 and 
d = 0.005 P3 gives sum = 7,367,886, max = 98,087 and 
T = 3208 sec. And at use in this calculation P4 increase R 
gave both increase, and reduction of number of the points 

which have remained after elimination. Accordingly ac-
count time both increase and reduce. Results are pre-
sented in Table 2. 

It is characteristic that in this calculation small change 
of R has essentially affected on account time. It is visible 
from Table 3. 

We explain the received results that at R = 2077 initial 
value of a record differs from an optimum on 0.29, and at 
R = 2078 on 0.34. As appears from resulted above algo-
rithm, with increase R value of a bias j

su  which at cal-
culation of initial values of bottom border H0 and record 
E0 is used by the last, can only decrease. It gives smaller 
value 0 0E H , if * j

s sz z  is constant because  
 *

0 0  j j
s s s . Here E H zu  z *

sz —an absciss of the 
point received at descent on a link of a broken line with 
number s at calculation H0, and j

sz —an absciss of the 
top of this broken line nearest at the left, used at calcula-
tion E0, that is at “rounding off” to the decision of a dis-
crete problem. But reduction j

su  can be compensated 
by difference increase * j

s sz z , which can both to in-
crease, and to decrease with growth R that depends on 
the initial data  ,  j j

i if g . 
For revealing of possibilities of use P4 for the decision 

of problems of the big dimension calculations have been 
executed at K = 20 and n = 100, 200, 300, 400, 500. It is 
established that the number of remembered states and 
accordingly account time essentially depends from R. So 
at n = 400 and R = 28,000 sum = 108,893, max = 1099 
and T = 2 sec. And at R = 2000 only in the same condi-
tions sum = 544,554, max = 3335 and T = 1189 second. 
At n = 500 and R = 35,000 sum = 222475, max = 1740 
and T = 12 second. 

In general the increase n and K doesn’t mean obliga-
tory growth of time of the account as at “successful” R 
that is at small * j

s sz z  this time can be a little and in 
problems of the big dimension. At any initial data exists 
R at which initial approach appears the final decision 
 * 0 .j

s sz z   For this purpose it is enough to repeat 
calculation, having reduced R on * j

s sz z  or having in-
creased R on 1 *j

s sz z  .  
If at use P4 to be limited to approximate solution, for 

example instead of d = 10−9 use d = 10−5, then in the 
same conditions the number of states and account time     
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Table 2. The decision on P4 with various R. 

R = 2000 R = 2100 R = 2500 R = 4000 

N sum max T sum max T sum max T sum max T 

P4 75,663 2192 91 98,270 3856 153 17,191 420 11 16,479 736 6 

 
Table 3. The impact of small change of R on account time. 

R = 2077 R = 2078 R = 2079 R = 2080 

N sum max T sum max T sum max T sum max T 

P4 20,177 475 12 99,514 2274 179 44,056 920 49 54,973 1399 74 

 
essentially decreases. However more perspective appears 
the termination of account when  E H H    in-
stead of increasing d.  

If  = 10−5 in any of calculations, which were dis-
cussed above, the account time on P4 did not exceed 0.5 
sec. 

Thereupon problems with n = 4000 and K = 40, and 
then with n = 5000 and K = 50 in the same conditions of 
a choice ,  j j

i if g  have been solved. At R = 105, 52 10  
and  and  = 10−5 account stopped after the third 
step, and time of the account didn’t exceed 8 seconds. 
Similar results have been received and at a casual choice 

503 1

j
if  from [1,1000], preservation of all other parameters 

of calculation and at various values R. 
In addition as an option in the program P4 descent al-

gorithm was used in place of the descent-ascent algo-
rithm. It is established that the descent algorithm in all 
the calculations required more time than the algorithm of 
descent-ascent. Moreover, the computing time on a P4 
with descent algorithm in some calculations was greater 
than P3, because of the limitations descent algorithm 
noted above. 

7. Conclusions 

The results of comparison between different algorithms 
(P1, P2, P3, P4) leads to the following conclusions: 

1) For the decision of problems (1,2) classical algo-
rithms of dynamic programming can be considered as 
become outdated. 

2) The most perspective is the combined algorithm 
(P4).  

3) At use of the combined algorithm it is expedient to 
search for the approximate solutions, breaking the ac-
count at small a relative error of search of minimum . 
For this purpose it is possible to set acceptable value , 
but instead for the decision of problems of the big di-
mension it is possible to set obviously small , to display 

step-by-step values E, H and  E H H  and finish 
process taking into account current results and elapsed 
time.  

4) At growth R and n it is possible both increasing, and 
decreasing of account time. Actually algorithm P4 if 
doesn’t overcome completely “a dimension damnation” 
does its action selective. 

The problem (1,2) is considered as an example, but the 
algorithms using Pareto sets, although not universal, as 
well as dynamic programming at whole, are applicable 
and for the decision of other problems: a various kind 
two-parametrical problems of distribution of resources, 
storekeeping, calculation of plans of replacement of the 
equipment, a choice of suppliers and so on. 

High-speed algorithm descent-ascent can be used to 
solve the problem of the form (1.2), in which there are 
several restricts (2). This more complicated problem is 
reduced to a multiple solution of (1,2) with one restric-
tion.  

Consideration of these problems is beyond of the pre-
sent article.  
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