

Generalized Quasi Variational-Type Inequalities

Mohammad Kalimuddin Ahmad, Salahuddin

Department of Mathematics, Aligarh Muslim University, Aligarh, India Email: ahmad_kalimuddin@yahoo.co.in, salahuddin12@mailcity.com

Received September 9, 2011; revised November 4, 2011; accepted November 12, 2011

ABSTRACT

In this paper, we define the concepts of (η, h) -quasi pseudo-monotone operators on compact set in locally convex Hausdorff topological vector spaces and prove the existence results of solutions for a class of *generalized quasi variational type inequalities* in locally convex Hausdorff topological vector spaces.

Keywords: Generalized Quasi Variational Type Inequalities (GQVTI); (η,h)-Quasi Pseudo-Monotone Operator; Locally Convex Hausdorff Topological Vector Spaces; Compact Sets; Bilinear Functional; Lower Semicontinuous; Upper Semicontinuous

1. Introduction

Variational inequality theory has appeared as an effective and powerful tool to study and investigate a wide class of problems arising in pure and applied sciences including elasticity, optimization, economics, transportation, and structural analysis, see for instance [1,2]. In 1966, Browdev [3] first formulated and proved the basic existence theorems of solutions to a class of nonlinear variational inequalities. In 1980, Giannessi [1] introduced the vector variational inequality in a finite dimensional Euclidean space. Since then Chen *et al.* [4] have intensively studied vector variational inequalities in abstract spaces and have obtained existence theorems for their inequalities.

The pseudo-monotone type operators was first introduced in [5] with a slight variation in the name of this operator. Later these operators were renamed as pseudomonotone operators in [6]. The pseudomonotone operators are set-valued generalization of the classical pseudomonotone operator with slight variations. The classical definition of a single-valued pseudo-monotone operator was introduced by Brezis, Nirenberg and Stampacchia [7].

In this paper we obtained some general theorems on solutions for a new class of *generalized quasi variational type inequalities* for (η,h) -quasi-pseudo-monotone operators defined as compact sets in topological vector spaces. We have used the generalized version of Ky Fan's minimax inequality [8] due to Chowdhury and Tan [9].

Let X and Y be the topological spaces, $T: X \to 2^{Y}$ be the mapping and the graph of T is the set $G(T) = \{(x, y) \in X \times Y : y \in T(x)\}$. In this paper, Φ denotes either the real field \mathbb{R} or the complex field \mathbb{C} . Let E be a topological vector space over Φ , F be a vector space over Φ and $\langle \cdot, \cdot \rangle : F \times E \to \Phi$ be a bilinear functional.

For each nonempty subset A of E and $\varepsilon > 0$, let $W(x \cdot s) = \int v \epsilon E \cdot |v \cdot x| < s$ and

$$U(A;\varepsilon) = \left\{ y \in F : \sup_{x \in A} |\langle y, x_0 \rangle| < \varepsilon \right\} \text{ for } x_0 \in E \text{ . Let}$$

 $\sigma(F, E)$ be the (weak) topology on F generated by the family $\{W(x; \varepsilon) : x \in E \text{ and } \varepsilon > 0\}$ as a subbase for the neighbourhood system at 0 and $\delta\langle F, E \rangle$ be the (strong) topology on F generated by the family

{ $U(A;\varepsilon)$: *A* is a nonempty bounded subset of *E* and $\varepsilon > 0$ } as a base for the neighbourhood system at 0. The bilinear functional $\langle \cdot, \cdot \rangle : F \times E \to \Phi$ separates points in *F*, *i.e.*, for each $0 \neq y \in F$, there exists $x \in E$ such that $\langle y, x \rangle \neq 0$, then *F* also becomes Hausdorff. Furthermore, for a net $\{y_i\}$ in *F* and for $y \in F$.

 $\begin{array}{ll} \text{thermore, for a net} & \left\{y_{\alpha}\right\}_{\alpha \in \Gamma} & \text{in } F & \text{and for } y \in F \text{,} \\ 1) & y_{\alpha} \to y & \text{in } \sigma \langle F, E \rangle & \text{if and only if} \end{array}$

$$\langle y_{\alpha}, x \rangle \rightarrow \langle y, x \rangle$$
 for each $x \in E$ and

2) $y_{\alpha} \rightarrow y$ in $\sigma \langle F, E \rangle$ if and only if

 $\langle y_{\alpha}, x \rangle \rightarrow \langle y, x \rangle$ uniformaly for $x \in A$ for each nonempty bounded subset A of E.

Given a set-valued map $S: X \to 2^X$ and two set valued maps $M, T: X \to 2^F$, the generalized quasi variational type inequality (GQVTI) problem is to find $\hat{y} \in X$ and $\hat{w} \in T(\hat{y})$ such that $\hat{y} \in S(\hat{y})$ and

$$\operatorname{Re}\left\langle f - \hat{w}, \eta\left(\hat{y}, x\right)\right\rangle \leq 0,$$

for all $x \in S\left(\hat{y}\right)$ and $f \in M\left(\hat{y}\right)$

where $\eta: X \times X \to E$.

If $\eta(\hat{y}, x) = \hat{y} - x$, then generalized quasi variational type inequality (GQVTI) is equivalent to generalized quasi variational inequality (GQVI).

Find $\hat{y} \in X$ and $\hat{w} \in T(\hat{y})$ such that $\hat{y} \in S(\hat{y})$ and

$$\operatorname{Re}\langle f - \hat{w}, \hat{y} - x \rangle \leq 0$$
 for all $x \in S(y)$

and $f \in M(\hat{v})$ was introduced by Shih and Tan [10] in 1989 and later was stated by Chowdhury and Tan in [11].

Definition 1. Let X be a nonempty subset of a topological vector space E over Φ and F be a topological vector space over Φ , which is equipped with the $\sigma(F, E)$ -topology. Let $\langle \cdot, \cdot \rangle : F \times E \to \Phi$ be a bilinear functional. Suppose we have the following four maps.

- 1) $h: X \times X \to \mathbb{R}$
- 2) $\eta: X \times X \to E$
- 3) $M: X \to 2^F$
- 4) $T: X \to 2^F$.

1) Then T is said to be an (η, h) -quasi pseudo-monotone type operator if for each $y \in X$ and every net $\{y_{\alpha}\}_{\alpha\in\Gamma}$ in X converging to y (or weakly to y) with

$$\limsup_{\alpha} \left[\inf_{f \in M(y)} \inf_{u \in T(y_{\alpha})} \operatorname{Re} \left\langle f - u, \eta(y_{\alpha}, y) \right\rangle + h(y_{\alpha}, y) \right] \leq 0.$$

We have

$$\limsup_{\alpha} \left[\inf_{f \in M(x)} \inf_{u \in T(y_{\alpha})} \operatorname{Re} \langle f - u, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) \right]$$

$$\geq \inf_{f \in M(x)} \inf_{w \in T(y)} \operatorname{Re} \langle f - w, \eta(y, x) \rangle + h(y, x),$$

for all $x \in X$;

2) T is said to be h-quasi-pseudomonotone operator if T is (η, h) -quasi-pseudomonotone operator with $\eta(x, y) = x - y$ and for some $h': X \to \mathbb{R}$,

$$h(x, y) = h'(x) - h'(y)$$
 for all $x, y \in X$.

3) a quasi-pseudo monotone operator if T is an h-quasi pseudo-monotone operator with $h \equiv 0$.

Remark 1. If $M \equiv 0$ and T is replaced by -T, then *h*-quasi-pseudo monotone operator reduces to the h-pseudo monotone operator, see for example [5]. The h-pseudo monotone operator defined in [5] is slightly more general than the definition of h-pseudo monotone operator given in [12]. Also we can find the generalization of quasi-pseudo monotone operator in [11] and for more detail see [13].

Theorem 1. [8] Let *E* be a topological vector space, X be a nonempty convex subset of E and

 $f: X \times X \to \mathbb{R} \cup \{-\infty, +\infty\}$ be such that

1) For each $A \in F(X)$ and each fixed $x \in co(A)$, $y \to f(x, y)$ is lower semicontinuous on co(A);

2) For each $A \in F(X)$ and each $y \in co(A)$, $\min f(x,y) \le 0;$

3) For each $A \in F(X)$ and each $x, y \in co(A)$, every

net $\{y_{\alpha}\}_{\alpha\in\Gamma}$ in X converging to y with

 $f(tx+(1-t)y, y_{\alpha}) \le 0$ for all $\alpha \in \Gamma$ and all $t \in [0,1]$ we have $f(x, y) \leq 0$;

4) There exist a nonempty closed compact subset Kof X and $x_0 \in K$ such that

 $f(x_0, y) > 0$ for all $y \in X \setminus K$.

Then there exists $\hat{y} \in K$ such that

 $f(x, \hat{y}) \leq 0$ for all $x \in X$.

2. Preliminaries

In this section, we shall mainly state some earlier work which will be needed in proving our main results.

Lemma 1. [14] Let X be a nonempty subset of a Hausdorff topological vector space E and $S: X \to 2^E$ be an upper semicontinuous map such that S(x) is a bounded subset of E for each $x \in X$. Then for each continuous linear functional p on E, the map $f_n: X \to \mathbb{R}$ defined by

$$f_p(y) = \sup_{x \in S(y)} \operatorname{Re} \langle p, x \rangle \text{ is upper semicontinuous } i.e.,$$

for each $\lambda \in R$,

the set $\left\{ y \in X : f_p(y) = \sup_{x \in S(y)} \operatorname{Re}\langle p, x \rangle < \lambda \right\}$ is open in Χ.

Lemma 2. [15] Let X, Y be topological spaces, $f: X \to \mathbb{R}$ be non-negative and continuous and $g: Y \to \mathbb{R}$ be lower semicontinuous. Then the map $F: X \times Y \to \mathbb{R}$, defined by F(x, y) = f(x)g(y) for all $(x, y) \in X \times Y$, is lower semicontinuous.

Lemma 3. [11] Let *E* be a topological vector space over Φ , X be a nonempty compact subset of E and F be a Hausdorff topological vector space over Φ . Let $\langle \cdot, \cdot \rangle : F \times E \to \Phi$ be a bilinear functional and

 $T: X \to 2^F$ be an upper semicontinuous map such that each T(x) is compact. Let M be a nonempty compact subset of F, $x_0 \in X$ and $h: X \to \mathbb{R}$ be continuous. Define $g: X \to \mathbb{R}$ by

$$g(y) = \left[\inf_{f \in M(x)} \inf_{w \in T(y)} \operatorname{Re} \langle f - w, y - x_0 \rangle\right] + h(y)$$

for each $y \in X$.

Suppose that $\langle\cdot,\cdot\rangle$ is continuous on the (compact) subset $\left| M - \bigcup_{y \in X} T(y) \right| \times X$ of $F \times E$. Then g is lower semicontinuous on X.

Lemma 4. [11] Let E be a topological vector space over Φ , F be a vector space over Φ and X be a nonempty convex subset of E. Let $\langle \cdot, \cdot \rangle : F \times E \to \Phi$ be a bilinear functional, equip F with the $\sigma(F, E)$ -

topology. Let $h: X \times X \to \mathbb{R}$ be convex with second argument and h(x, x) = 0 for all $x \in X$. Let

 $M: X \to F$ be lower semicontinuous along line segments in X to the $\sigma \langle F, E \rangle$ -topology on F. Let $S: X \to 2^X$ and $T: X \to 2^F$ be two maps. Let the continuous map $\eta: X \times X \to E$ be convex with second argument, $\eta(x, x) = 0$ for every $x \in X$. Suppose that there exists $\hat{y} \in X$ such that $\hat{y} \in S(\hat{y})$, $S(\hat{y})$ is convex and

$$\inf_{f \in \mathcal{M}(x)} \inf_{w \in T(y)} \operatorname{Re} \langle f - w, \eta(\hat{y}, x) \rangle + h(x, \hat{y}) \leq 0$$

for all $x \in S(\hat{y})$.

Then

$$\inf_{f \in M(\hat{y})} \inf_{w \in T(\hat{y})} \operatorname{Re} \langle f - w, \eta(\hat{y}, x) \rangle + h(x, \hat{y}) \leq 0$$

for all $x \in S(\hat{y})$.

Theorem 2. [16] Let X be a nonempty convex subset of a vector space and Y be a nonempty compact convex subset of a Hausdorff topological vector space. Suppose that f is a real-valued function on $X \times Y$ such that for each fixed $x \in X$, the map $y \to f(x, y)$, *i.e.*, $f(x, \cdot)$ is lower semicontinuous and convex on Y and for each fixed $y \in Y$, the map $x \to f(x, y)$, *i.e.*, $f(\cdot, y)$ is concave on X. Then

$$\min_{y\in Y} \sup_{x\in X} f(x, y) = \sup_{x\in X} \min_{y\in Y} f(x, y).$$

3. Existence Result

In this section, we prove the existence theorem for the solutions to the *generalized quasi variational type inequalities* for (η,h) -quasi-pseudo monotone operator with compact domain in locally convex Hausdorff topological vector spaces.

Theorem 3. Let *E* be a locally convex Hausdorff topological vector space over Φ , *X* be a nonempty compact convex subset of *E* and *F* a Hausdorff topological vector space over Φ . Let $\langle \cdot, \cdot \rangle : F \times E \to \Phi$ be a bilinear continuous functional on compact subset of $F \times X$. Suppose that

1) $S: X \to 2^X$ is upper semicontinuous such that each S(x) is closed and convex;

2) $h: X \times X \to \mathbb{R}$ is convex with second argument, $h(\cdot, x)$ is lower semicontinuous and h(x, x) = 0 for $x \in X$;

3) $\eta: X \times X \to E$ is convex with second argument, $\eta(\cdot, y)$ is continuous and $\eta(x, x) = 0$ for all $x \in X$;

4) $T: X \to 2^F$ is an (η, h) -quasi-pseudo-monotone operator and is upper semicontinuous such that each T(x) is compact, convex and T(X) is strongly bounded;

5) $M: X \to F$ is a linear and upper semicontinuous

map in X such that each M(x) is (weakly) compact convex;

6) the set

$$\Sigma = \left\{ y \in X : \sup_{x \in S(y)} \inf_{w \in T(y)} \operatorname{Re} \left\langle M(x) - w, \eta(y, x) \right\rangle + h(y, x) - h(x, x) > 0 \right\}$$

is open in X.

Then there exists $\hat{y} \in X$ such that a) $\hat{y} \in S(\hat{y})$ and b) there exists $\hat{w} \in T(\hat{y})$ with $\operatorname{Re}\langle M(\hat{y}) - \hat{w}, \eta(\hat{y}, x) \rangle + h(\hat{y}, x) - h(x, x) \leq 0$ for all $x \in S(\hat{y})$.

Moreover if S(x) = X for all $x \in X$, E is not required to be locally convex and if $T \equiv 0$, the continuity assumption on $\langle \cdot, \cdot \rangle$ can be weakened to the assumption that for each $f \in F$, the map $x \to \langle f, x \rangle$ is continuous on X.

Proof. We divide the proof into three steps.

Step 1. There exists $\hat{y} \in X$ such that $\hat{y} \in S(\hat{y})$ and

$$\sup_{x\in\mathcal{S}(\hat{y})}\left|\inf_{w\in T(\hat{y})}\operatorname{Re}\langle M(x)-w,\eta(\hat{y},x)\rangle\right|$$
$$+h(\hat{y},x)-h(x,x)\right| \leq 0.$$

Contrary suppose that for each $y \in X$, either $y \notin S(y)$ or there exists $x \in S(y)$ such that

$$\inf_{v\in T(y)} \operatorname{Re}\langle M(x) - w, \eta(y, x) \rangle + h(y, x) - h(x, x) > 0,$$

that is for each $y \in X$ either $y \notin S(y)$ or $y \in \Sigma$. If $y \notin S(y)$, then by a Hahn-Banach separation theorem for convex sets is locally convex Hausdorff topological vector spaces, there exists $p \in E^*$ such that

$$\operatorname{Re}\langle p, y \rangle - \sup_{x \in \mathcal{S}(y)} \operatorname{Re}\langle p, x \rangle > 0.$$

For each $p \in E^*$, set

$$V_p = \left\{ y \in X : \operatorname{Re}\langle p, y \rangle - \sup_{x \in \mathcal{S}(y)} \operatorname{Re}\langle p, x \rangle > 0 \right\}.$$

Then V_p is open in X by Lemma 1 and Σ is open in X by hypothesis. Now $X = \Sigma \cup \bigcup_{p \in E^*} V_p$ and

 $\left\{ \Sigma, V_p : p \in E^* \right\} \text{ is an open covering for } X \text{ . Since } X \text{ is compact subset of } E \text{ , there exists } p_1, p_2, \cdots, p_n \in E^* \text{ such that } X = \Sigma \cup \bigcup_{i=1}^n V_{p_i} \text{ for } i = 1, 2, \cdots, n \text{ . Let } V_i = V_{p_i} \text{ for } i = 1, 2, \cdots, n \text{ and } \left\{ \beta_0, \beta_1, \cdots, \beta_n \right\} \text{ be a continuous partition of unity on } X \text{ subordinated to the }$

covering $\{V_0, V_1, \dots, V_n\}$. Then $\beta_0, \beta_1, \dots, \beta_n$ are continuous non-negative real valued functions on X such that β_i vanishes on $X \setminus V_i$ for each $i = 0, 1, \dots, n$

and $\sum_{i=0}^{n} \beta_{i}(x) = 1$ for all $x \in X$ (see [17] p. 83). Define $\varphi: X \times X \to \mathbb{R}$ by $\varphi(x, y) = \beta_{0}(y)$ $\begin{bmatrix} \inf \operatorname{Po}(M(x) - y, p(y, x)) + h(y, x) - h(x, x) \end{bmatrix}$

$$\begin{bmatrix} \inf_{w \in T(y)} \operatorname{Re} \langle M(x) - w, \eta(y, x) \rangle + h(y, x) - h(x, x) \end{bmatrix}$$
$$+ \sum_{i=1}^{n} \beta_i(y) \operatorname{Re} \langle p_i, \eta(y, x) \rangle$$

for each $x, y \in X$. Then we have

1) *E* is Hausdorff for each $A \in F(X)$ and each fixed $x \in co(A)$ the map

$$y \rightarrow \inf_{w \in T(y)} \operatorname{Re} \langle M(x) - w, \eta(y, x) \rangle + h(y, x) - h(x, x)$$

is lower semicontinuous on co(A) by Lemma 3 and the fact that h is continuous on co(A), therefore the map

$$y \to \beta_0(y)$$

$$\left[\inf_{w \in T(y)} \operatorname{Re}\langle M(x) - w, \eta(y, x) \rangle + h(y, x) - h(x, x)\right]$$

is lower semicontinuous on co(A) by Lemma 2. Also for each fixed $x \in X$,

$$y \rightarrow \sum_{i=1}^{n} \beta_i(y) \operatorname{Re}\langle p_i, \eta(y, x) \rangle$$

is continuous on X. Hence for each $A \in F(X)$ and each fixed $x \in co(A)$, the map $y \to \varphi(x, y)$ is lower semicontinuous on co(A).

2) for each $A \in F(X)$ and each $y \in co(A)$, $\min_{x \in A} \varphi(x, y) \le 0$. Indeed, if these were false then for some $A = \{x_1, x_2, \dots, x_n\} \in F(X)$ and some $y \in co(A)$ (say $y = \sum_{i=1}^n \lambda_i x_i$, where $\lambda_1, \lambda_2, \dots, \lambda_n \ge 0$ with $\sum_{i=1}^n \lambda_i = 1$), we have $\min_{X \in A} \varphi(x_i, y) > 0$. Then for each $i = 1, 2, \dots, n$,

$$\beta_0(y) \bigg[\inf_{w \in T(y)} \operatorname{Re} \langle M(x_i) - w, \eta(y, x_i) \rangle + h(y, x_i) - h(x_i, x_i) \bigg] + \sum_{i=1}^n \beta_i(y) \langle p_i, \eta(y, x_i) \rangle > 0.$$

So that

$$\begin{aligned} 0 &= \varphi(y, y) = \beta_0(y) \bigg[\inf_{w \in T(y)} \operatorname{Re} \left\langle M\left(\sum_{i=1}^n \lambda_i x_i\right) - w, \eta\left(y, \sum_{i=1}^n \lambda_i x_i\right) \right\rangle + h\left(y, \sum_{i=1}^n \lambda_i x_i\right) - h\left(\sum_{i=1}^n \lambda_i x_i, \sum_{i=1}^n \lambda_i x_i\right) \bigg] \\ &+ \sum_{i=1}^n \beta_i(y) \operatorname{Re} \left\langle p_i, \eta\left(y, \sum_{i=1}^n \lambda_i x_i\right) \right\rangle \\ &= \beta_0(y) \bigg[\inf_{w \in T(y)} \operatorname{Re} \left\langle \sum_{i=1}^n \lambda_i M\left(x_i\right) - w, \eta\left(y, \sum_{i=1}^n \lambda_i x_i\right) \right\rangle + h\left(y, \sum_{i=1}^n \lambda_i x_i\right) - h\left(\sum_{i=1}^n \lambda_i x_i, \sum_{i=1}^n \lambda_i x_i\right) \bigg] \\ &+ \sum_{i=1}^n \beta_i(y) \operatorname{Re} \left\langle p_i, \eta\left(y, \sum_{i=1}^n \lambda_i x_i\right) \right\rangle \\ &\geq \sum_{i=1}^n \lambda_i \bigg(\beta_0(y) \bigg[\inf_{w \in T(y)} \operatorname{Re} \left\langle M\left(x_i\right) - w, \eta\left(y, x_i\right) \right\rangle + h\left(y, x_i\right) - h\left(\sum_{i=1}^n \lambda_i x_i, \sum_{i=1}^n \lambda_i x_i\right) \bigg] + \sum_{i=1}^n \beta_i(y) \operatorname{Re} \left\langle p_i, \eta\left(y, x_i\right) \right\rangle \\ &\geq 0 \end{aligned}$$

which is a contradiction.

Thus we have $\min_{x \in A} \varphi(x, y) \le 0$ for each $A \in F(x)$ and each $y \in co(A)^{x \in A}$. 3) Suppose that $A \in F(X)$, $x, y \in co(A)$ and

 $\{y_{\alpha}\}_{\alpha\in\Gamma}$ is a net in X converging to y with

 $\varphi(tx + (1-t)y, y_{\alpha}) \le 0 \text{ for all } \alpha \in \Gamma, t \in [0,1].$ **Case 1.** $\beta_0(y) = 0.$

Note that $\beta_0(y_{\alpha}) \ge 0$ for each $\alpha \in \Gamma$ and $\beta_0(y_{\alpha}) \to 0$. Since T(X) is strongly bounded and $\{y_{\alpha}\}_{\alpha \in \Gamma}$ is a bounded net, therefore

$$\lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \left(\min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) \right) \right] = 0.$$
(1)

Also

$$\beta_0(y)\left[\min_{w\in T(y)}\operatorname{Re}\langle M(x)-w,\eta(y,x)\rangle+h(y,x)-h(x,x)\right]=0.$$

Thus

Copyright © 2012 SciRes.

$$\lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \left(\min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) \right) \right] + \sum_{i=1}^n \beta_i(y) \operatorname{Re} \langle p_i, \eta(y, x) \rangle$$

$$= \sum_{i=1}^n \beta_i(y) \operatorname{Re} \langle p_i, \eta(y, x) \rangle \quad \text{by (1)}$$

$$= \beta_0(y) \left[\min_{w \in T(y)} \operatorname{Re} \langle M(x) - w, \eta(y, x) \rangle + h(y, x) - h(x, x) \right] + \sum_{i=1}^n \beta_i(y) \operatorname{Re} \langle p_i, \eta(y, x) \rangle.$$
(2)

When t = 1, we have $\varphi(x, y_{\alpha}) \le 0$ for all $\alpha \in \Gamma$ *i.e.*,

$$\beta_0(y_\alpha) \left[\min_{w \in T(y_\alpha)} \operatorname{Re} \left\langle M(x) - w, \eta(y_\alpha, x) \right\rangle + h(y_\alpha, x) - h(x, x) \right] + \sum_{i=1}^n \beta_i(y_\alpha) \operatorname{Re} \left\langle p_i, \eta(y_\alpha, x) \right\rangle \le 0$$
(3)

for all $\alpha \in \Gamma$.

Therefore by (3), we have

$$\lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) \right] + \lim \inf_{\alpha} \left[\sum_{i=1}^n \beta_i(y_{\alpha}) \operatorname{Re} \langle p_i, \eta(y_{\alpha}, x) \rangle \right]$$

$$\leq \lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) + \sum_{i=1}^n \beta_i(y_{\alpha}) \operatorname{Re} \langle p_i, \eta(y_{\alpha}, x) \rangle \right] \leq 0.$$

Thus

$$\lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) \right] + \sum_{i=1}^{n} \beta_i(y) \operatorname{Re} \langle p_i, \eta(y, x) \rangle \le 0.$$
(4)

Hence by (2) and (4), we have $\varphi(x, y) \le 0$.

Case 2. $\beta_0(y) > 0$. Since $\beta_0(y_{\alpha}) \rightarrow \beta_0(y)$, there exists $\lambda \in \Gamma$ such that $\beta_0(y_{\alpha}) > 0$ for all $\alpha \ge \lambda$. When t = 0, we have $\varphi(y, y_{\alpha}) \le 0$ for all $\alpha \in \Gamma$, *i.e.*,

$$\beta_0(y_{\alpha}) \left[\inf_{w \in T(y_{\alpha})} \operatorname{Re} \left\langle M(y) - w, \eta(y_{\alpha}, y) \right\rangle + h(y_{\alpha}, y) - h(y, y) \right] + \sum_{i=1}^n \beta_i(y_{\alpha}) \operatorname{Re} \left\langle p_i, \eta(y_{\alpha}, y) \right\rangle \le 0$$

for all $\alpha \in \Gamma$.

Thus

$$\lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \left(\inf_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(y) - w, \eta(y_{\alpha}, y) \rangle + h(y_{\alpha}, y) - h(y, y) \right) + \sum_{i=1}^n \beta_i(y_{\alpha}) \operatorname{Re} \langle p_i, \eta(y_{\alpha}, y) \rangle \right] \leq 0.$$
(5)

Hence

$$\lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \left(\inf_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(y) - w, \eta(y_{\alpha}, y) \rangle + h(y_{\alpha}, y) - h(y, y) \right) \right] + \lim \inf_{\alpha} \left[\sum_{i=1}^n \beta_i(y_{\alpha}) \operatorname{Re} \langle p_i, \eta(y_{\alpha}, y) \rangle \right]$$

$$\leq \lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \left(\inf_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(y) - w, \eta(y_{\alpha}, y) \rangle + h(y_{\alpha}, y) - h(y, y) \right) + \sum_{i=1}^n \beta_i(y_{\alpha}) \operatorname{Re} \langle p_i, \eta(y_{\alpha}, y) \rangle \right] \leq 0 \text{ (by (5)).}$$

Since

$$\liminf_{\alpha} \left[\sum_{i=1}^{n} \beta_i(y_{\alpha}) \operatorname{Re} \langle p_i, \eta(y_{\alpha}, y) \rangle \right] = 0,$$

we have

$$\lim \sup_{\alpha} \left[\beta_0(y_{\alpha}) \left(\min_{w \in T(y_{\alpha})} \operatorname{Re} \left\langle M(y) - w, \eta(y_{\alpha}, y) \right\rangle + h(y_{\alpha}, y) - h(y, y) \right) \right] \leq 0.$$
(6)

Copyright © 2012 SciRes.

AM

Since $\beta_0(y_{\alpha}) > 0$ for all $\alpha > \lambda$. It follows that

$$\beta_{0}(y_{\alpha})\lim\sup_{\alpha}\left[\min_{w\in T(y_{\alpha})}\operatorname{Re}\langle M(y)-w,\eta(y_{\alpha},y)\rangle+h(y_{\alpha},y)-h(y,y)\right]$$

$$=\limsup_{\alpha}\left[\beta_{0}(y_{\alpha})\left(\min_{w\in T(y_{\alpha})}\operatorname{Re}\langle M(y)-w,\eta(y_{\alpha},y)\rangle+h(y_{\alpha},y)-h(y,y)\right)\right].$$
(7)

Since $\beta_0(y) > 0$ by (6) and (7), we have

$$\limsup_{\alpha} \left[\min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(y) - w, \eta(y_{\alpha}, y) \rangle + h(y_{\alpha}, y) - h(y, y) \right] \leq 0.$$

Since T is (η, h) -quasi pseudomonotone operator, we have

$$\lim \sup_{\alpha} \left[\min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) \right]$$

$$\geq \min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y, x) \rangle + h(y, x) - h(x, x) \text{ for all } x \in X$$

Since $\beta_0(y) > 0$, we have

$$\beta_{0}(y)\left[\limsup_{\alpha}\left(\min_{w\in T(y_{\alpha})}\operatorname{Re}\langle M(x)-w,\eta(y_{\alpha},x)\rangle+h(y_{\alpha},x)-h(x,x)\right)\right]$$

$$\geq\beta_{0}(y)\left[\min_{w\in T(y)}\operatorname{Re}\langle M(x)-w,\eta(y,x)\rangle+h(y,x)-h(x,x)\right].$$

Thus

$$\beta_{0}(y)\left[\limsup_{\alpha}\left(\min_{w\in T(y_{\alpha})}\operatorname{Re}\langle M(x)-w,\eta(y_{\alpha},x)\rangle+h(y_{\alpha},x)-h(x,x)\right)\right]+\sum_{i=1}^{n}\beta_{i}(y)\operatorname{Re}\langle p_{i},\eta(y,x)\rangle$$

$$\geq\beta_{0}(y)\left[\min_{w\in T(y)}\operatorname{Re}\langle M(x)-w,\eta(y,x)\rangle+h(y,x)-h(x,x)\right]+\sum_{i=1}^{n}\beta_{i}(y)\operatorname{Re}\langle p_{i},\eta(y,x)\rangle.$$
(8)

When t = 1, we have $\varphi(x, y_{\alpha}) \le 0$ for all $\alpha \in \Gamma$, *i.e.*,

$$\beta_{0}(y_{\alpha})\left[\min_{w\in T(y_{\alpha})}\operatorname{Re}\left\langle M(x)-w,\eta(y_{\alpha},x)\right\rangle+h(y_{\alpha},x)-h(x,x)\right]+\sum_{i=1}^{n}\beta_{i}(y_{\alpha})\operatorname{Re}\left\langle p_{i},\eta(y_{\alpha},x)\right\rangle\leq0$$

for all $\alpha \in \Gamma$.

Thus

$$0 \geq \lim \sup_{\alpha} \left[\beta_{0}(y_{\alpha}) \min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) + \sum_{i=1}^{n} \beta_{i}(y_{\alpha}) \operatorname{Re} \langle p_{i}, \eta(y_{\alpha}, x) \rangle \right]$$

$$\geq \lim \sup_{\alpha} \left[\beta_{0}(y_{\alpha}) \min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) \right] + \lim \inf_{\alpha} \left[\sum_{i=1}^{n} \beta_{i}(y_{\alpha}) \operatorname{Re} \langle p_{i}, \eta(y_{\alpha}, x) \rangle \right]$$

$$= \beta_{0}(y) \left[\limsup_{\alpha} \left\{ \min_{w \in T(y_{\alpha})} \operatorname{Re} \langle M(x) - w, \eta(y_{\alpha}, x) \rangle + h(y_{\alpha}, x) - h(x, x) \right\} \right] + \sum_{i=1}^{n} \beta_{i}(y) \operatorname{Re} \langle p_{i}, \eta(y, x) \rangle$$

$$\geq \beta_{0}(y) \left[\min_{w \in T(y)} \operatorname{Re} \langle M(x) - w, \eta(y, x) \rangle + h(y, x) - h(x, x) \right] + \sum_{i=1}^{n} \beta_{i}(y) \operatorname{Re} \langle p_{i}, \eta(y, x) \rangle$$
(9)

Hence, we have $\varphi(x, y) \leq 0$.

Since X is a compact subset of the Hausdorff topological vector space E, it is also closed. Now if we take K = X, then for any $x_0 \in K = X$, we have

$$\varphi(x_0, y) > 0$$
 for all $y \in X \setminus K (= X \setminus X = \emptyset)$.

Thus φ satisfies all the hypothesis of Theorem 1. Hence by Theorem 1, there exists $\hat{y} \in K$ such that

Copyright © 2012 SciRes.

$$\varphi(x, \hat{y}) \leq 0 \text{ for all } x \in X,$$

$$\beta_0(\hat{y}) \bigg[\inf_{w \in T(\hat{y})} \operatorname{Re} \langle M(x) - w, \eta(\hat{y}, x) \rangle + h(\hat{y}, x) - h(x, x) \bigg] + \sum_{i=1}^n \beta_i(\hat{y}) \operatorname{Re} \langle p_i, \eta(\hat{y}, x) \rangle \leq 0 \text{ for all } x \in X.$$
(10)

Now the rest of the proof of Step 1 is similar to the proof in Step 1 of Theorem 1 in [11]. Hence Step 1 is proved.

Step 2.

$$\inf_{w \in T(\hat{y})} \operatorname{Re} \langle M(\hat{y}) - w, \eta(\hat{y}, x) \rangle + h(\hat{y}, x) - h(x, x) \leq 0$$

for all $x \in S(y)$.

From Step 1, we have $\hat{y} \in S(\hat{y})$ and

$$\inf_{w \in T(\hat{y})} \operatorname{Re} \langle M(x) - w, \eta(\hat{y}, x) \rangle + h(\hat{y}, x) - h(x, x) \leq 0$$

for all $x \in S(y)$.

Since $S(\hat{y})$ is a convex subset of X and M is linear, continuous along line segments in X, by Lemma 4 we have

$$\inf_{w \in T(\hat{y})} \operatorname{Re} \langle M(\hat{y}) - w, \eta(\hat{y}, x) \rangle + h(\hat{y}, x) - h(x, x)) \leq 0$$

for all $x \in S(y)$.

Step 3. There exists $\hat{w} \in T(\hat{y})$ with

$$\operatorname{Re}\langle M(\hat{y}) - \hat{w}, \eta(\hat{y}, x) \rangle + h(\hat{y}, x) - h(x, x) \leq 0$$

for all $x \in S(y)$.

By Step 2 and applying Theorem 2 as proved in Step 3 of Theorem 1 in [11], we can show that there exists $\hat{w} \in T(\hat{y})$ such that

$$\operatorname{Re} \langle M(\hat{y}) - \hat{w}, \eta(\hat{y}, x) \rangle + h(\hat{y}, x) - h(x, x) \leq 0$$

for all $x \in S(y)$.

We observe from the above proof that the requirement that *E* be locally convex is needed when and only when the separation theorem is applied to the case $y \notin S(y)$. Thus if $S: X \to 2^X$ is the constant map S(x) = X for all $x \in X$, *E* is not required to be locally convex.

Finally, if $T \equiv 0$, in order to show that for each $x \in X$, $y \to \varphi(x, y)$ is lower semicontinuous, Lemma 3 is no longer needed and the weaker continuity assumption as $\langle \cdot, \cdot \rangle$ that for each $f \in E$, the map $x \to \langle f, x \rangle$ is continuous on X is sufficient. This completes the proof.

REFERENCES

[1] F. Giannessi, "Theorems of Alternative Quadratic Pro-

grams and Complementarity Problems," In: R. W. Cottle, F. Gianessi and J. L. Lions, Eds., *Variational Inequalities and Complementarity Problems*, John Wiley and Sons, Chichester, 1980.

- [2] D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and Their Applications in Pure and Applied Mathematics," Vol. 88, Academic Press, New York, 1980.
- [3] F. E. Browdev, "Existence and Approximation of Solutions of Nonlinear Variational Inequalities," *Proceedings* of the National Academy of Sciences of the United States of America, Vol. 56, No. 4, 1966, pp. 1080-1086.
- [4] G. Y. Chen and G. M. Cheng, "Vector Variational Inequality and Vector Optimizations," *Lecture Notes in Economics and Mathematical Systems*, Vol. 285, 1967, pp. 408-456.
- [5] M. S. R. Chowdhury and K. K. Tan, "Generalization of Ky Fan's Minimax Inequality with Applications to Generalized Variational Inequalities for Pseudomonotone Operators and Fixed Point Theorems," *Journal of Mathematical Analysis and Applications*, Vol. 204, No. 3, 1996, pp. 910-929. doi:10.1006/jmaa.1996.0476
- [6] M. S. R. Chowdhury, "The Surjectivity of Upper Hemicontinuous and Pseudomonotone Type II Operators in Reflexive Banach Ppaces," *Journal Bangladesh Mathematical Society*, Vol. 20, 2000, pp. 45-53.
- [7] H. Brezis, L. Nirenberg and G. Stampacchia, "A Remark on Ky Fan's Minimax Principle," *Bollettino Unione Matematica Italiana*, Vol. 6, No. 4, 1972, pp. 293-300.
- [8] K. Fan, "A Minimax Inequality and Applications," In: O. Shisha, Ed., *Inequalities III*, Academic Press, San Diego, 1972, pp. 103-113.
- [9] M. S. R. Chowdhury and K. K. Tan, "Generalized Variational Inequalities for Quasimonotone Operators and Applications," *Bulletin of Polish Academy of Science*, Vol. 45, No. 1, 1997, pp. 25-54.
- [10] M. H. Shih and K. K. Tan, "Generalized Bi-Quasi Variational Inequalities," *Journal of Mathematical Analysis* and Applications, Vol. 143, No. 1, 1989, pp. 66-85. <u>doi:10.1016/0022-247X(89)90029-2</u>
- [11] M. S. R. Chowdhury and K. K. Tan, "Applications of Upper Hemicontinuous Operators on Generalized Bi-Quasi Variational Inequalities in Locally Convex Topological Vector Spaces," *Positivity*, Vol. 3, No. 4, 1999, pp. 333-344. <u>doi:10.1023/A:1009849400516</u>
- [12] M. S. R. Chowdhury and K. K. Tan, "Applications of Pseudomonotone Operators with Some Kind of Upper Semicontinuity in Generalized Quasi Variational Inequalities on Noncompact Sets," *Proceeding of American Mathematica Society*, Vol. 126, No. 10, 1998, pp. 2957-2968. doi:10.1090/S0002-9939-98-04436-0
- [13] X. P. Ding and E. Tarafdar, "Generalized Variational Like Inequalities with Pseudomonotone Setvalued Mappings," *Archieve Journal of Mathematics*, Vol. 74, No. 4, 2000, pp. 302-313. <u>doi:10.1007/s000130050447</u>
- [14] M. H. Shih and K. K. Tan, "Generalized Quasi Variational Inequalities in Locally Convex Topological Vector Spaces," *Journal of Mathematical Analysis and Applica-*

tions, Vol. 108, No. 2, 1985, pp. 333-343. doi:10.1016/0022-247X(85)90029-0

[15] W. Takahashi, "Nonlinear Variational Inequalities and Fixed Point Theorem," *Journal of Mathematical Society* of Japan, Vol. 28, No. 1, 1976, pp. 168-181. doi:10.2969/jmsj/02810168

- [16] H. Kneser, "Sur un Theoreme Fundamental de la Theorie des Jeux," *CRAS Paris*, Vol. 234, 1952, pp. 2418-2420.
- [17] R. T. Rockafeller, "Convex Analysis," Princeton University Press, Princeton, 1970.