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ABSTRACT 

In this paper, we define the concepts of (η,h)-quasi pseudo-monotone operators on compact set in locally convex Haus-
dorff topological vector spaces and prove the existence results of solutions for a class of generalized quasi variational 
type inequalities in locally convex Hausdorff topological vector spaces. 
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1. Introduction 

Variational inequality theory has appeared as an effective 
and powerful tool to study and investigate a wide class of 
problems arising in pure and applied sciences including 
elasticity, optimization, economics, transportation, and 
structural analysis, see for instance [1,2]. In 1966, Brow- 
dev [3] first formulated and proved the basic existence 
theorems of solutions to a class of nonlinear variational 
inequalities. In 1980, Giannessi [1] introduced the vector 
variational inequality in a finite dimensional Euclidean 
space. Since then Chen et al. [4] have intensively studied 
vector variational inequalities in abstract spaces and have 
obtained existence theorems for their inequalities. 

The pseudo-monotone type operators was first intro- 
duced in [5] with a slight variation in the name of this 
operator. Later these operators were renamed as pseudo- 
monotone operators in [6]. The pseudomonotone opera- 
tors are set-valued generalization of the classical pseudo- 
monotone operator with slight variations. The classical 
definition of a single-valued pseudo-monotone operator was 
introduced by Brezis, Nirenberg and Stampacchia [7]. 

In this paper we obtained some general theorems on 
solutions for a new class of generalized quasi variational 
type inequalities for (η,h)-quasi-pseudo-monotone opera- 
tors defined as compact sets in topological vector spaces. 
We have used the generalized version of Ky Fan’s mini- 
max inequality [8] due to Chowdhury and Tan [9].  

Let X  and Y  be the topological spaces,  
 be the mapping and the graph of  is the 

set . In this paper, 
 denotes either the real field  or the complex field 
. Let  be a topological vector space over 

: YT X




2
 G T

E

T
= ,x y   :X Y y T x  


 , F  

be a vector space over  and  be a 

bilinear functional. 

 , :  F E 

For each nonempty subset A  of  and E > 0,  let 

   <0 0; = : ,W x y F y x   and  

   ; = : , <sup
x A

U A y F y x 


  for 0x E . Let  

 ,F E  be the (weak) topology on F  generated by 
the family   ; :  and > 0W x x E    as a subbase for 
the neighbourhood system at 0 and ,F E  be the 
(strong) topology on F  generated by the family  
{  ;U A  : A  is a nonempty bounded subset of  
and 

E
> 0 } as a base for the neighbourhood system at 0. 

The bilinear functional , : F E  ates points 
in 

   separ
F , i.e., for each 0 y F  , th ts ere exis x E  such 

, 0y xthat    , then F  also s  become Hausdorff. Fur- 
thermore, for a net  y 

 in F  and for y F , 
1) y y ,F E    if and only if  in  

,,y x x y      for each x E  and  
in ,2) yy    F E    if and only if  

,,y x x y      u  for niformaly x A  for eac
 subset 

h no- 
nempty bounded A  of E .  

Given a set-valued p S X ma  and two set 
va

: 2X

lued maps , : 2 ,FM T X   the ized quasi va- 
riational type VTI) problem is to find 
ŷ X

 general
Q inequality (G

  and  ˆ ˆw T y  such that  ˆ ˆy S y  and  

 
   

ˆ ˆRe , ,   0,y x  

ˆ ˆfor all  and ,

f w

x S y f M y

 

 
 

where 



: X X E   . 
If  ˆ ˆ, =y x y x , then generalized quasi variational  

type inequality (GQVTI) is equivalent to generalized 
quasi variational inequality (GQVI). 
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Find ŷ X  and  ˆ ˆw T y  su  ˆ ˆy S y  ch that 
and  

 ˆ ˆRe ,  0  for allf w y x x S y     

and  ˆf M y  
 and later w

was introduced by Shih and Tan [10] in 
1989 as stated by Chowdhury and Tan in [11]. 

Definition 1. Let X  be a nonempty subset of a 
topological vector spac E  over   and e F  be a to- 
pological vector space over  , wh h is equ ped with 
the  , -topology.F E Let : F E    be a bili- 
near se w owing four 
maps. 

1) h X

ic

ve the

ip

ll
, 
 ha

e functional. Suppo  fo

: X     
2) : X X E     
3) : 2FM X 

: 2
  

4) FT X  .  
1) Then T  is said to be an (η,h)-quasi pseudo-mono- 

tone type o erator if for each p y X  and every net 
{ }y   in X  converging to y (o ly to y) with  r weak

   
   lim inf inf Re , , ,  0.sup

f M y u T y
f u y y h y y 

 


 

     
 

We have  

   
   

   
   

lim  inf inf Re , , ,sup

 inf inf Re , , , ,  

for all ;

f M x u T y

f M x w T y

f u y x h y x

f w y x h y x

x X

 
 





 

 

    
  



 

2) is said to be h-quasi-pseudomonotone operator 
if 

T  
isT   (η,h)-quasi-pseudomonotone operator with  

 , =x y x y   and for some :h X   ,  

   = h x h y X   ,   for all , .h x y x y  

3) a quasi-pseudo monotone operator if  is an h-quasi 
ps

 is replaced by 

T
eudo-monotone operator with 0h  .  
Remark 1. If 0M   and T T , 

th o mon o

t be a topological vector space, 

en h-quasi-pseud otone perator reduces to the 
h-pseudo monotone operator, see for example [5]. The 
h-pseudo monotone operator defined in [5] is slightly 
more general than the definition of h-pseudo monotone 
operator given in [12]. Also we can find the generali- 
zation of quasi-pseudo monotone operator in [11] and for 
more detail see [13]. 

Theorem 1. [8] Le E  
X  be a nonempty conv  subset of E  and  

: { , }X X      be such that 
ex


f

1) For each A F X  and each fixed  x co A , 
 ,y f x y  is icontinuous on  co

  
lower sem A ;  

2) For each A F X  and each  y co A ,  
 ,in f x y  0 ;  

 
m
x A

3) For each A F X  and each ,  x y co A , every 

net  y 
 in X  conv  with  erging to y

  1x t , 0f t y y    for all    and all [0,1]t  
we have  , y 0f x  ; 

 exist a nonem
 

4) The mpact subset re pty closed co K  
of X  and 0x K  such that  

  > 0  for all0 , \ .f x

ists 

y y K  X

ŷ KT  exhen there  such that  

 ˆ,  0  for all .f x x Xy   

2. Preliminaries 

In this section, we shall mainly state some earlier work 
which will be needed in proving our main results. 

Lemma 1. [14] Let X  be a nonempty subset of a 
Hausdorff topological ve r space E  and : 2cto ES X   
be an upper semicontinuous map s h that uc    
bounded subset of E  for each 

S x  is a
x X . Then each 

continuous linear functional p  on  the map  
:pf X    defined by  

 for 
 E ,

  =

for each

p
x S 

 upper s continuous . .,
y

Re ,   issup emi

,

f y p

pf

x  i e

R
 




the set  
( )

: = R , <sup
x S y

y X y e p x 


 
   

 
 is open in  

X . 
Lemma 2. [  Let15]  ,X Y

e an
 be topological spaces,  

: X    be non-negativ d continuous and  
be lower semicontinuous. Then the map 

f
:g Y
:

   
F X Y   , defined by      , =F x y f x g y  for 
all  ,x y X Y 

 [1
, is lower sem

L  Let E  be a topological v ace 
ov

icon uous. 
ector sp

tin
emma 3. 1]

er  , X  be a none pty compact subset of E  and m
F  be Ha dorff topological vector space over  a us  . Let 

, : F E     be a bilinear functional and  
: 2FT X per semicontinuous map such that   be an up

each  T x  is compact. Let M  be a nonempty com- 
pact  of subset F , 0x X  and :h X    be con- 
tinuous. Define :g X y  

 

   b

   
 0 = inf

.

f M x
inf Re ,

w T y

for each

g y f w  y x h y
 

     

at 

y X

,Suppose th  



  is contin  the (compact)  

su

uous on

bset 
y X

M T X
 

y


    of 
 

F E . Then g  is lower  

semicontinuous on X . 
Lemma 4. [11] L  E

ov
et be a to cal vector space  pologi

er  , F  be a vector space over   and X  be a 
nonem y convex subset of E . Let : F E     
be a b nctional, equip 

pt
ilinea

,
r fu F  with the ,F E   -  
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 such that each  M x  topology. Let :h X X    e conv  
argument and  , = 0h x x  for all 

b ex with second
x X . Let  

:M X F  be ntinuous along line seg- 
ments in 

 lower semico
X  to the ,F E   -to y on polog F . Let 

: 2XS X   and : 2FT X   be two maps. Let the 
continuous p :ma X X E   be convex with cond 

 ,x x ry 


= 0  for eve
 se

argument,  x X . Suppose that 
there exists ŷ   ˆ ˆX  such that y S y ,  ˆS y  is 
convex and

 

  

 
   

 

ˆ ˆinf i , ,
f M x w

f w y x


 nf Re ,  0

ˆfor all .

T y
h x y

x S y





 

Then  

   

 
ˆ ˆ( ) ( )

ˆ ˆinf
f M

inf Re , , ,  0

ˆfor all .

y w T y
f w y x h x y

x S y




  


 

Theorem 2. [16] Let X  
nd 
do

be a nonempty conv ub- 
set of a vector space a be a nonempty compact 
co

ex s
Y  

nvex subset of a Haus rff topological vector space. 
Suppose that f  is a real- alued function on v X Y  
such that for each fixed x X , the map  ,y f x y , 
i.e.,  ,f x   is lower semicontinuous and convex  
and for each fixed 

 on Y
y Y  map , the  ,x f x y , i.e. , 

 , f y  is c oncave on X . Then  

min ,  = minsup sup
y Y yx X x X

  , .
Y

f x f
  

y x y  

3. Existence Result 

the existence theorem for the 
zed quasi variational type ine- 

or sp er 

In this section, we prove 
solutions to the generali
qualities for (η,h)-quasi-pseudo monotone operator with 
compact domain in locally convex Hausdorff topological 
vector spaces. 

Theorem 3. Let E  be a locally convex Hausdorff 
topological vect ace ov  , X  be a nonempty com- 
pact convex subset  E  and of F  a Hausdorff topo- 
logical vector space over  , : F E     be 
a bilinear continuous functional  compact subset of 

. Let 
on

F X . Suppose that 
1) : 2XS X   is upper semicontinuous such that 

 S x  is closed aneach d convex;  

 for 
2)   is convex with second argument, 
 ,h x lower semicontinuous and 

:h X X 
  is  , = 0h x x

x X
:

;  
3) X X E    is convex with secon ent, d argum
 , y   is continuous and  for all   , = 0x x x X ;  
4) : 2FT X   is an (η,h)-quasi-pseudo-monotone 

r and is upper sem us such t ach ope icontinuo hat e

5) 

rato
 is compact,   convex and  T X  is strongly bound- 

ed;  
:

T x

M X F  is a linear a per semicontinuous 

map i X

nd up

n is (weakly) compact 
convex;  

set6) the   

   

   

( )( )
= : sup inf Re , ,

   , , > 0

w T yx S y

      

y X M x w y x

h y x h x x






  


 

is open in 

 


X . 
Then e exists  ther ŷ X  such that 
a)  ˆ ˆy S y  and  
b) there exists  ˆT yŵ  with  

       
 

ˆ ˆ ,w  ˆ, ,  0

ˆfor all .

y x h x x

x S y

ˆRe ,M y h y x   


 

Moreover if   =S x X  for all x X
T 

,  is not 
required to  con- 
tinuity assumption on 

E
, thebe locally convex and if 

,
0

   can be en  to the 
assumption that for each 

 weak ed
f F , the map ,x f x   is 

continuous on 


X . 
Proof. We divide the p o three ste
Step 1. Ther

roof int ps. 
e exists ŷ X  such that  ˆ ˆy S y  and  

 

   

e

ˆ  , ,  0.

 
ˆ( )ˆ( )

ˆinf R , ,sup
w T yx S y

M x w y


x

h y x h x x

   

  

 

y XContrary suppose that for each , either  
 y S y  or there exists  x S y  such  that  

 
       in e , , , , >M x w y x y x h x x  f R 0

w T y
h


,  

that is for each  either  y S yy X  or y . If 
 y S y

vector spa

, then hn-B em  by a Ha anach separatio
Hausdorf

n theor
pologfor convex sets is locally convex f to ical 

ces, there exists *p E  such that  

Re , Re , > 0sup
x

p y p x
  S y

     .  

For each , set  

0

*p E

 
= : , Re , >sup

x S y

p y p x


RepV y X
 

      
 

.  

Then pV  is open in X  by Lemma 1 and is open in    
X  by hypothesis. Now 

*

= p

p E

X V   an  d 


 *, :pV p E  is an op r  X . S Xen covering fo ince   

is compact subset of E , there exists 1 2, , , np p p   
n

*E

such that 
=1

=  pi
i

X V  for = 1, 2,i ,n . Let  

or=i pi
V V  f  and n = 1, 2, ,i n  0 1, , ,     be a con- 
tinuous partition of on unity X  subordinated to the 
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covering  . T  0 1,V V hen , , nV 0 1, , , n  
functio

 

 
       

0

inf Re , , , ,
w T y

y y

M x w y x h y x h x x








     

 

 are conti- 
nuous non-negative real valued ns on X  such 
that i  v \ ianishes on X V  for , ,   

and   = 1
n

i x  for all 

each = 0,1i n

=0i

x X  (see [17] p. 83). 
is lower semicontinuous on  by Lemma 2. Also 
for each fixed 

 co A
x X ,  De Xfine : X 

 

 
 

  

   by  

 ,x y

    



0

=1

inf
w T

n

i

=

Re ,

Re ,

y

i i

y 

,

,

, ,M x w

y



 


y

y p x

 


 

fo

x h y x  h x x 
 

   
=1

Re , ,
n

i i
i

y y p y x   

is continuous on X . Hence for each  A F X  and 
each fixed  x co A , the map  ,y x y  is lower 
semicontinuous on  Aco .  





r each  A F X  y co A2) for each  and each ,  ,x y X . T  we have 
1)  is Hausdo  each 

hen
rff for E  A F X  and  min ,

x A
x y


0 . Indeed, if these were false then for some  each 

 x co A   the map  fixed 

       inf , , ,y M x w y x h x x   
( )

Re
w T y



is lo  semicontinuo

   1 2= , , , nA x x x F X  and some  y co A  (say  
,h y x

wer us on  co A  
 co A

by e 
 is con map  

 Lemm and t
, therefore t

a 3 
he 

h
fact that h tinuous on  

=1

= i i
i

n

y x , where 1 2, , , 0n     with ), we 

have 
=1

= 1i
i


n

 ,ix y
1
min

i n


 
> 0 . Then for each , = 1, 2, ,i n

  
 

          0
=1

inf
w T y

y


 

Re , , , , > 0.
n

i i i i i i
i

M x h y x h x x y p y x         

at  

,w  ,i iy x

So th

 
 

 

 
 

 

0
=1 =1 =1 =1

=1 =1

0
=1 =1

, = inf Re , , , ,

   Re , ,

inf Re , , ,

n n n n n

i i i i i i i i i i
w T y i i i i i

n n

i i i i
i i

i i i i
w T y i i i

y y y M x y x h y x h x x

y p y x

y M x y x h y

     

  

  





                
       

   
 

   
 

    

 

 

 

=1

=1

n n

w

w









0 =

   

 = 

 
 

         

=1 =1

=1 =1

0
=1 =1 =1 =1

,

  Re , ,

  inf Re , , , , Re , , > 0

n n n

i i i i i i
i i

n n

i i i i
i i

n n n n

i i i i i i i i i i i
w T yi i i i

x h x x

y p y x

y M x w y x h y x h x x y p y x

  

  

      


        
    

   
 

          
   

  

 

   

 

 
whic  contradiction. 

Thus we have  for each

   

h is a
  , 0min x y 

x A
  A F x  

and each  y co A .  
3) Suppose that  A F X , ,  x y co A  an

{ }y  
d  

 c to  with onverging y

  1 ,tx t y y 0    for all   , [0,1]t .  
Case 1.  0 = 0y . 
Note that  0 y  0  for each    and  
 y   XT

  is a net in X
0  0 . Since  ded and is strongly boun

{ }y   is a bounded net, therefore  
 

 
 

       0lim min Re , , , ,  = 0.sup
w T y

y M x w y x h y x h x x  
 

 


      
  

                   (1) 

Also  

 
 

       0 min Re , , , , = 0.
w T y

y M x w y x h y x h x x 


     
 

Thus  
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0
=1

=1

0
=1

lim min Re , , , , Re , ,sup

= Re , ,     by (1)

= min Re , , , , Re , , .

n

i i
w T y i

n

i i
i

n

i i
w T y i

y M x w y x h y x h x x y p

y p y x

y M x w y x h y x h x x y p y x

  
 

  

 

   





       
  

        







 

y x

     (2) 

When , we have  for all = 1t  , 0x y     i.e.,  

 
 

           0
=1

min Re , , , , Re , , 0
n

i i
w T y i

y M x w y x h y x h x x y p y x   


  


      
            (3) 

for all   . 
Therefore by (3), we have  

 
 

           

             

0
=1

0
( ) =1

lim min Re , , , , liminf Re , ,sup

  

 lim min Re , , , , Re , , 0.sup

n

i i
w T y i

n

i i
w T y i

y M x w y x h y x h x x y p y x

y M x w y x h y x h x x y p y x

    

    


   

   





         
       




 

Thus  





 
 

           0
=1

lim min Re , , , , Re , , 0.sup
n

i i
w T y i

y M x w y x h y x h x x y p y x  
 

  


      
         (4) 

Hence by (2) and (4), we have 
 

Case 2. . 

 , 0x y  . 

 such 
that  0 > 0y 0 > 0y

 
 for all   . When = 0t

Since 0 0  y y , there exists    
, we have 

 , 0y y   for all   , i.e.,  

 


   


      0 inf Re , , , , , 0
n

w T y
y M y w y y h y y y y p  


  


  

 
  

for all 
=1

Re ,i i
i

h y y y   
 

  . 
Thus  

 
 

           0
=1

lim inf Re , , , , Re , ,   0.sup
n

i i
w T y i

y M y w y y h y y h y y y p y y    


   


        
  

     (5) 

Hence  



 
 

           

 
 

           

0
=1

0
=1

lim inf Re , , , , liminf Re , ,sup

 lim inf Re , , , , Re , ,   0  (by (5)).sup

n

i i
w T y i

n

i i
w T y i

y M y w y y h y y h y y y p y y

y M y w y y h y y h y y y p y y

    

    
 

   

   





               
        

  




 








Since  

   
=1

liminf Re , , = 0,
n

i i
i

y p y y 
  

  
  

we have  

         0
( )

lim min Re , , , ,   0.sup
w T y

y M y w y y h y y h y y  


 


        
                (6) 
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Since  0 > 0y  for all >  . It follows that  

 
 

       

 
 

       

0 lim min Re , , , ,sup

, , , , .sup

w T y

w T y

y M y w y y h y y h y y

M y w y y h y y h y y

  
 

 
 

 







     

   
  

              (7) 

Since by (6) and (7), we have  

0= lim min Rey
 
 

 0 > 0y  

 
       lim min Re , , , ,   0.sup

w T y
M y w y y h y y h y y 

 




     
 

 is (η,h) erator, we have  Since -quasi pseudomonotone opT

 
       

 
     min Re , ,

w T y
 

lim min Re , , , ,sup

, ,   for all .

w T y
M x w y x h y x h x x

M x w y x h y





   x h x x x X

 
 




     
 

 

Since , we have   0 > 0y

 
 

       

 
 

       

0

0

lim min Re , , , ,sup

 y M min Re , , , , .

w T y

w T y

y M x w y x h y x h x x

x w y x h y x h x x

 
 

 







      
  

     

 

Thus  

 
 

           

 
 

           

0
=1

0
=1

lim min Re , , , , Re , ,sup

 min Re , , , , Re , , .

n

i i
w T y i

n

i i
w T y i

y M x w y x h y x h x x y p

y M x w y x h y x h x x y p y x

 
 

  

   





       
  

       




 

y x
    (8) 

When , we have  for all = 1t  , 0x y    , i.e.,  

 
 

           0
=1

min Re , , , , Re , , 0
n

i i
w T y i

y M x w y x h y x h x x y p y x   


  


      
   

for all   . 
Thus  

 
 

           

 
 

           

 
 

       

0
=1

0
=1

0

0 lim min Re , , , , Re , ,sup

 lim [ min Re , , , , ] liminf Re , ,sup

 = lim min Re , , , ,sup

n

i i
w T y i

n

i i
w T y i

w T y

y M x w y x h y x h x x y p y x

y M x w y x h y x h x x y p y x

y M x w y x h y x h x x

    


     

 
 

   

   

 







       

       
     

 





   

 
 

           

=1

0
=1

Re , ,

  min Re , , , , Re , ,   (by (8)).

n

i i
i

n

i i
w T y i

y p y x

y M x w y x h y x h x x y p y x

 

   



 



       





   (9) 

  
Hence, we have 
Since 

 , 0x y  . 
X  et of the Hausdorff 

topological vector space , it is also closed. Now if we 
take then for any

is a compact subs
E
 =K X , 0 =x K X

   0 , > 0  for all \  = \ =x y y X K X X    .

Thus   satisfies all the hypothesis of Theorem 1. 
Hence b heorem 1, there exists  such that  y T ŷ K, we have  
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 ˆ,   0  for all  ,x y x    X

 
 

       

   

0 ˆ
ˆ ˆ ˆf Re , , , ,

ˆ      Re , all

w T y
y M x w y x h y x h x x

y p x X

 

 



     


 

=1

in

ˆ    , 0  for .
n

i i
i

y x 

e  1 
heorem [11]. He

proved. 
Step 2. 

(10) 
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We observe from the above proof that the requir
that  be locally convex is needed when and only 
w

ement 
E

hen the separation theorem is applied to the case 
 y S y . Thus if : 2XS X   is the constant map 

S x  for all   = X x X , E  is not required to be 
locally convex. 

Finally, if , in order to show that for0T   each 
x X ,  ,y x y

er ne
  

 long ed
is lower semicontinuous, Lemma

no ed and the weaker continuity 
 

3 is 
assumption as ,   that for each f E , the map 

,x f x   is continuous on  X  is sufficient. This 
completes the proof. 
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