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ABSTRACT

In this paper, we define the concepts of (»,4)-quasi pseudo-monotone operators on compact set in locally convex Haus-
dorff topological vector spaces and prove the existence results of solutions for a class of generalized quasi variational
type inequalities in locally convex Hausdorff topological vector spaces.
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1. Introduction

Variational inequality theory has appeared as an effective
and powerful tool to study and investigate a wide class of
problems arising in pure and applied sciences including
elasticity, optimization, economics, transportation, and
structural analysis, see for instance [1,2]. In 1966, Brow-
dev [3] first formulated and proved the basic existence
theorems of solutions to a class of nonlinear variational
inequalities. In 1980, Giannessi [1] introduced the vector
variational inequality in a finite dimensional Euclidean
space. Since then Chen et al. [4] have intensively studied
vector variational inequalities in abstract spaces and have
obtained existence theorems for their inequalities.

The pseudo-monotone type operators was first intro-
duced in [5] with a slight variation in the name of this
operator. Later these operators were renamed as pseudo-
monotone operators in [6]. The pseudomonotone opera-
tors are set-valued generalization of the classical pseudo-
monotone operator with slight variations. The classical
definition of a single-valued pseudo-monotone operator was
introduced by Brezis, Nirenberg and Stampacchia [7].

In this paper we obtained some general theorems on
solutions for a new class of generalized quasi variational
type inequalities for (,h)-quasi-pseudo-monotone opera-
tors defined as compact sets in topological vector spaces.
We have used the generalized version of Ky Fan’s mini-
max inequality [8] due to Chowdhury and Tan [9].

Let X and Y be the topological spaces,

T:X —2" be the mapping and the graph of T is the
set G(T)={(x,y)e XxY:yeT(x)}. In this paper,
@ denotes either the real field R or the complex field
C. Let E be a topological vector space over @, F
be a vector space over @ and (,-):FxE—>® be a
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bilinear functional.
For each nonempty subset 4 of EF and &£>0, let

W(x0;8)={yeF:|<y,xo>|<g} and
U(A;S):{yeF:sup|<y,x>|<g} for x, e E . Let
xed

o(F,E) be the (weak) topology on F generated by
the family {W(x;g) :xe E and ¢>0! as a subbase for
the neighbourhood system at 0 and &(F,E) be the
(strong) topology on F generated by the family
{U(4;¢): A is a nonempty bounded subset of E
and ¢ >0} as a base for the neighbourhood system at 0.
The bilinear functional (-,-): Fx E — @ separates points
in F,ie,foreach 0= yeF, thereexists xeE such
that (y,x)=0, then F also becomes Hausdorff. Fur-
thermore, foranet {y,}  in F andfor yeF,

1) y, >y in o(F,E) ifandonly if
(y,,xy > (y,x) foreach xeE and

2) y, >y in o(F,E) ifandonly if
(y,,x)y >{y,x) uniformaly for xe 4 for each no-
nempty bounded subset 4 of E.

Given a set-valued map S:X —2* and two set
valued maps M,T:X — 2", the generalized quasi va-
riational type inequality (GQVTI) problem is to find
yeX and weT(p) suchthat yeS(p) and

Re(f -7 (5,x)) <0,
forall xe S(3)and /e M(3),

where n: XxX > E.

If 5(p,x)=p—x, then generalized quasi variational
type inequality (GQVTI) is equivalent to generalized
quasi variational inequality (GQVI).
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Find peX and weT(p) such that jeS(p)
and

Re(f-w, y—x)<0 forallxeS(y)

and feM(p) was introduced by Shih and Tan [10] in
1989 and later was stated by Chowdhury and Tan in [11].

Definition 1. Let X be a nonempty subset of a
topological vector space £ over @ and F be a to-
pological vector space over @, which is equipped with
the o(F,E)-topology. Let (-,-): FxE —>® be a bili-
near functional. Suppose we have the following four
maps.

1) h: XxX >R

2) n:XxX>E

3) M: X 2"

4) T:X —-2".

1) Then T is said to be an (#,h)-quasi pseudo-mono-
tone type operator if for each ye X and every net
{r.},.- in X converging to y (or weakly to y) with

o | feM(y) ueT(ya)

Iimsup{ inf inf Re<f—u,Ij(ya,y)>+h(ya,y)}SO_
We have

Iimsup{ A el )Re<f -uﬁﬂ(ya,x)%h(ya,x)}

2,0 o Rels w0} (),

forall x e X;

2) T is said to be A-quasi-pseudomonotone operator
if T is (y,h)-quasi-pseudomonotone operator with
n(x,y)=x-y andforsome »': X >R,

h(x,y)=h'(x)—h'(y)forallx,yeX.

3) a quasi-pseudo monotone operator if 7 is an A-quasi
pseudo-monotone operator with 2=0.

Remark 1. If M =0 and T is replaced by -T,
then A-quasi-pseudo monotone operator reduces to the
h-pseudo monotone operator, see for example [5]. The
h-pseudo monotone operator defined in [5] is slightly
more general than the definition of A-pseudo monotone
operator given in [12]. Also we can find the generali-
zation of quasi-pseudo monotone operator in [11] and for
more detail see [13].

Theorem 1. [8] Let E be a topological vector space,
X be anonempty convex subset of £ and
i XxX — Ru{~w,+wx} be such that

1) For each 4e F(X) and each fixed xeco(4),
y— f(x,y) islower semicontinuous on co(4);

2) Foreach Ae F(X) andeach yeco(4),
min f(x,7)<0;

*3) For each 4 e F(X) and each x,yeco(4), every
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net {y,} . in X convergingto y with

f(tx+(@-1)y,»,)<0 forall el andall r[0,1]
we have f(x,»)<0;

4) There exist a nonempty closed compact subset K
of X and x, €K suchthat

f(x5,»)>0 forall y e X\ K.

Then there exists y € K such that
f(x,9)<0 forallxe X.

2. Preliminaries

In this section, we shall mainly state some earlier work
which will be needed in proving our main results.
Lemma 1. [14] Let X be a nonempty subset of a
Hausdorff topological vector space £ and S§:X — 2°
be an upper semicontinuous map such that S(x) is a
bounded subset of E for each xe X . Then for each
continuous linear functional p on E, the map
f, X —> R defined by

/,(¥) = sup Re(p,x) is upper semicontinuous i.e.,
xeS(y)

foreach 1 e R,

the set {yeX:fp(y): sup Re(p,x></1} is open in

xes(y)
X.

Lemma 2. [15] Let X,Y be topological spaces,
f:X >R benon-negative and continuous and
g:Y >R be lower semicontinuous. Then the map
F:XxY—>R, defined by F(x,y)=/(x)g(y) for
all (x,y)e XxY, is lower semicontinuous.

Lemma 3. [11] Let E be a topological vector space
over ®, X be anonempty compact subset of £ and
F be a Hausdorff topological vector space over @ . Let
(,y: FxE — ® be abilinear functional and
T:X — 2" be an upper semicontinuous map such that
each T(x) is compact. Let M be a nonempty com-
pact subset of F, x,eX and h:X —>R be con-
tinuous. Define g: X >R by

g(3)=] it inf Re(s—wy-x,) | +h(»)

for each y e X.

Suppose that (-,-y is continuous on the (compact)

subset {M—UT(y)}X of FxE.Then g is lower
yeX
semicontinuous on X .

Lemma 4. [11] Let E be a topological vector space
over @, F be a vector space over ® and X be a
nonempty convex subset of E. Let (,):FxE—>®
be a bilinear functional, equip F with the o(F,FE)-
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topology. Let h: XxX —R be convex with second
argumentand h(x,x)=0 forall xeX .Let

M : X — F be lower semicontinuous along line seg-
ments in X to the o(F,E) -topology on F . Let
S:X—>2" and T:X —2" be two maps. Let the
continuous map 7:XxX — E be convex with second
argument, 7(x, x) 0 for every xe X . Suppose that
there exists peX such that yeS(p), S(p) is
convex and

inf inf Re<f w,n7(, x)>+h(x,)7)£0

‘fEM( )MET(

forallxeS(y).
Then
inf_inf Re<f w, 17(, x)>+h(x,j/)s0

feM (p) weT ()

forall xe S(7).

Theorem 2. [16] Let X be a nonempty convex sub-
set of a vector space and Y be a nonempty compact
convex subset of a Hausdorff topological vector space.
Suppose that f is a real-valued function on X xY
such that for each fixed xe X, themap y— f(x,y),
ie., f(x,) is lower semicontinuous and convex on Y
and for each fixed yeY, the map x—)f(x,y), ie
f(~y) isconcaveon X .Then

m|n supf (x,y)=sup mmf(x ).

xeX xeX V€

3. Existence Result

In this section, we prove the existence theorem for the
solutions to the generalized quasi variational type ine-
qualities for (n,h)-quasi-pseudo monotone operator with
compact domain in locally convex Hausdorff topological
vector spaces.

Theorem 3. Let £ be a locally convex Hausdorff
topological vector space over @, X be a nonempty com-
pact convex subset of £ and F a Hausdorff topo-
logical vector space over ® . Let {,-):FxE—>® be
a bilinear continuous functional on compact subset of
F x X . Suppose that

1) S:X —2* is upper semicontinuous such that
each S(x) isclosed and convex;

2) h:XxX —>R is convex with second argument,
h(-x) is lower semicontinuous and h(x,x)=0 for
xelX;

3) n:XxX — E is convex with second argument,
n(- ) iscontinuousand 7(x,x)=0 forall xeX;

4) T:X —2" is an (y,h)-quasi-pseudo-monotone
operator and is upper semicontinuous such that each
T(x) is compact, convex and 7'(.X) is strongly bound-
ed;

5 M:X — F is a linear and upper semicontinuous
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map in X such that each M (x) is (weakly) compact
CONvex;
6) the set

T= {yeX sup inf Re< (x)- w,n(y,x)>

xeS(y) wel ()

+h(y,x)—h(x,x)> 0}

isopenin X.
Then there exists y € X such that
a)yeS(y) and
b) there exists we T (p) with

Re(M(y)—w, n(y,x)>+h(y,x)—h(x,x)£0
forall xe S(p).

Moreover if S(x)=Xx for all xeX , E is not
required to be locally convex and if 7=0, the con-
tinuity assumption on (.- can be weakened to the
assumption that for each f e F,themap x — (f,x) is
continuous on X .

Proof. We divide the proof into three steps.

Step 1. There exists ye.X suchthat jeS(p) and

sup[ inf Re(M (x)—w, 7(5,x))

xeS(y) weT (7)

+h(37,x)—h(x,x)}£0.

Contrary suppose that for each y e X, either
y¢S(y) orthereexists xeS(y) such that
inf Re< ( ) w, 77(y,x)>+h(y,x)—h(x,x) >0,

weT

that is for each ye X either y¢S(y) or yex. If
y¢S(y), then by a Hahn-Banach separation theorem
for convex sets is locally convex Hausdorff topological
vector spaces, there exists p e E~ such that

Re(p,y)— sup Re(p,x)>0.

xeS(y)
Foreach pecE", set

v, ={yeX:Re<p,y)— sup Re(p,x) >O}.

xeS(y)

Then ¥, isopenin X bylemmaland X isopenin
X by hypothesis. Now X =xu (JV, and

*
peE

{Z.7,:peE"} isan open covering for X . Since X

is compact subset of E, there exists p,,p,,:-,p, €E
suchthat X =xulJ ¥, for i=1,2,---,n.Let

i=1
V,=v, for i=1,2,---,n and {f,,p,---,,} beacon-

tlnuous partition of unlty on X subordinated to the
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covering {V,,V,,---,V,}. Then B, B, ---,, are conti-
nuous non-negative real valued functions on X such
that g, vanisheson X\V, foreach i=0,1,---,n

and Zn‘ﬁ,(x):l forall xe X (see[17]p. 83).
i=0

Define ¢: XxX >R by
o(x,»)= B ()

Ller;f Re(M (x)—w, (3, x)) + (v, x)— h(x, x)}

+Zlﬁ (»)Re(p,. n(».x))

for each x,ye X . Then we have
1) E is Hausdorff for each A4eF(X) and each
fixed xeco(A4) the map

y— inf Re< ( ) w,77(y,x)>+h(y,x)—h(x,x)

weT (y)

is lower semicontinuous on co(A) by Lemma 3 and the
fact that / is continuous on co(4), therefore the map

y%ﬁo(y)
{ inf Re(M(x)—w, n(y,x)>+h(y,x)—h(x,x)}

WET(y)

is lower semicontinuous on co(4) by Lemma 2. Also
for each fixed xe X,

y%Zﬂ( )Re(p,, 7(.x))

is continuous on X . Hence for each 4e F(X) and
each fixed xeco(4), the map y — ¢(x,y) is lower
semicontinuous on co(4).

2) foreach A4e F(X) andeach yeco(4),
min ¢(x,y)<0. Indeed, if these were false then for some

A:{xl,xz,m,x}eF(X) and some yeco(4) (say

A.x,, where 4, 4,,---,4, 20 with >4 =1), we
i=1 i=1
have m|n¢(x »)>0.Then foreach i=1,2,

I<i<n

n

B (y )[ inf Re< (x,)- w,n(y,xi)>+h(y,xl.)—h(xl.,xl.)}+Zﬂ,~(y)<Pi:’7(y,xi)>>0.

weT( )

So that

i=1

0=0(y.y)=f, (y)Ller;f Re< [Z/lx j W, n(y,gﬂixij>+h(y,gﬂixij—h(éﬂixi,éﬂixiﬂ

=4, (v ){ inf Re<ZlM( = W"{yéﬂf’@»*h(y’gi’x’j_h@l’”"’?‘x"ﬂ

wET )

DY (y)Re<Pf' 7 [y WY J>

Zg%{ﬂo(y){ inf Re(M (x,)- w,n(y,xi)>+h(y,x,-)—h@/l,.x,.,g/l,.xiﬂ+l§;ﬁ(y)Re(pi,n(y,xi»}o

MET y)

which is a contradiction.

Thus we have min¢(x,y)<0 for each AeF(x)
and each y eco(A4)™’

3) Suppose that A€ F(X), x,yeco(4) and

o(tx+(1-1)y,y,)<0 forall ael’, t[0,1].
Casel. f,(y)=0
Note that 3, (»,)>0 foreach aeT and

By (y,)—>0. Since T(X) is strongly bounded and

{r.},.- is a net in X converging to y with {y,},.- isabounded net, therefore
Iimsup[ﬂo(ya)( .rr;(in)Re<M(x)—w,r](ya,x)>+h(ya,x)—h(x,x)ﬂ:O. (1)
Also
A y)[}gi(r;)Re(M(x)—w, n(x))+ A y,x)_h(x,x)} =0,
Thus
AM
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Iimstip{ﬂo (y“)(wg(i)rl Re(M(x)—w, U(ya,x)>+h(ya,x)—h(x,x)ﬂ+fzzl‘ﬂ.(y) Re<pi,77(y,x)>
=34 (»)Re(pn(xx) by () @

= f, (y)[MTTi(r;)Re<M(x)— w, n(y,x)>+ h(y,x)—h(x,x)} + iﬁ’l (y)Re(p, 1 (y,x))-

i=1

When =1, wehave ¢(x,y,)<0 forall el ie,

By (ya)Lng(ip Re<M(X)—w,n(ya,X))+h(ya,X)—h(va)}leﬂi (. )Re( i (y,x)) <0 ®)
forall el .
Therefore by (3), we have

imsup] 4 (1,) min R ()7 (35 )=o) timint 54,5, el (30

we (}a)

< Iimsgp{ﬂo (v,) min Re(M (x)=w,n(y,,%))+h(y, x)=h(xx)+ Zlﬂ (Ve )R6<p,~,n(ya,X))} <0.

wel (yg)

Thus

rTTI(In Re<M(x)—w,iy(ya,x)>+h(ya,x)—h(x,x)}+iZ:ﬁ.(y)Re<pi,77(y,x)>SO. 4

wel (v,

Iimsup[ﬁo(ya)

Hence by (2) and (4), we have ¢(x,y)<0.

>0 forall a=4.When #=0, we have

Case2. f,(y)>0. that £, (v, )
<0 forall ael,ie,

Since Sy (v,)— By(»), there exists Ael such o(»,y,)

B, (ya){ inf Re(M (y)-w,7(y,.»))+ h(ya,y)—h(y,y)} + Zlﬂ (v.)Re(pin(3,.¥)) <0

weT(ya)

forall ael.
Thus

|imsgp{ﬂo (7. )( inf )RE(M(y)— Wi (3, 7))+ h(ya.y)—h(y,y)}rgﬂ,- (ya)Re(p,-,n(yaly)ﬂ <0. (5

wel( vy

Hence

limsgp{ﬁo(ya)(WQREQ)REW(y)—w,n(yayy» +h(ya:y)—h(y,y)ﬂ+ liminf [Zﬂ (ya)Re<p,-,n(ya,y))}

i=1

< limsgp{ﬂo (ya)( inf Re(M (y)—wn(y,. 7))+ h(ya,y)—h(y,y)j+ Xlﬁ (ya)Re(p,-.n(ya,y)ﬂ <0 (by (5)).

wel (v,

Since
liminf {Z}ﬁ (ya)Re<pi,77(yayy)>} =0,
we have
imsup| £, () min Re(h (1)) + b )= (3:0) | <0 ©
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Since 3, (y,)>0 forall a> 4. Itfollows that

o imsup| i Re(M (1) (3,00 +h(5,03)H(00)|

a

U]

Ya

=|imSUp{ﬂo(ya)(wQ(i”)RE(M(y)—w,n(ya,y)>+h(ya-y)—h(y.y)ﬂ-
Since 4,(»)>0 by (6)and (7), we have

Iimsup{ min Re(M(y)—w,f](ya,y)>+h(ya,y)—h(y,y)}SO.

a weT| Vo
Since T is (,h)-quasi pseudomonotone operator, we have

Iimsup[wg(i}rl)Re<M(x)— w,f](ya,x)>+ h(y,.x) —h(x,x)}

a

> min Re<M(x)—w,ﬁ(y,x)>+h(y,x)—h(x,x) forall x e X.

wel ya)

Since S, (y)>0, we have

,Bo(y)[limsup[

a

> f, (y)[ min Re<M(x)—w,77(y,x)>+h(y x)—h(x, x)}

m(in)Re(M(X)—W,U(ya,x)>+h(ya,x)_h(x’x)ﬂ

wel (v,

weT(y)

Thus
ﬂo(y)[limsgp(wgig)Re<M(x)—w,i](ya,x)>+h(ya,x) ( )H-i-z,ﬁ( )Re<pl (y,x)>
Zﬂo(y)[ mi(n)Re<M(x)—w,77(y,x)>+h(y x)—h(x, x)}+iﬂi(y)Re<pi,77(y,x)>.

When 7=1,wehave ¢(x,y,)<0 forall ael,ie,

ﬁo(ya)|: min Re(M(x)—w,n(ya,x)>+h(ya,x)—h(x,x)}+§ﬂ,(ya)Re<p,,77(ya,x)>S0

weT(rg)

®)

forall ael.
Thus

0> Iimsgp{ﬂo(ya) m(in Re<M(x)—w,l](ya,x)>+h(ya,x)—h(x,x)+iﬁi(ya)Re<pi,77(ya,x)>}

wel ya) i=1

zlimsgp[ﬂo(ya) min Re(M(x)—w,r;(ya,x)>+h(ya, )—h(x, x)]+||m|nf{2ﬂ (ya)Re<p,,7](ya,x)>}

weT(ya) i=1

:ﬂo(y){limsup{ min Re(M (x)=w,7(y,.x))+h(y,.x) = h(x, )HJ’Zﬂ( JRe( (1))

a weT | ya)

Zﬂ(y)[mm Re(M (x)- w,n(y,x)>+h(y,x)—h(x.x)};ﬂ,-(y)Re<p,-,n(y,x)> (by (8)).

weT( )

)

Hence, we have ¢(x,y)<0. S _ _
. . , 0 forallye X\K (= X\ X =O).
Since X is a compact subset of the Hausdorff (o(xo y) orallye ( )

topological vector space E, it is also closed. Now if we Thus ¢ satisfies all the hypothesis of Theorem 1.
take K =X ,thenforany x, € K =X, we have Hence by Theorem 1, there exists y e K such that

Copyright © 2012 SciRes. AM
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@(x,)<0 forall xeX,

wel (7))

/5’0()3)[ inf Re<M(x)_w,q(y,x)>+h(;,x)—h(x,x)]

+iﬁi(})Re<pi,i7()7,x)>S0 forall x e X.
i=1

(10)
Now the rest of the proof of Step 1 is similar to the
proof in Step 1 of Theorem 1 in [11]. Hence Step 1 is
proved.
Step 2.
in(fA)Re<M()7)—w,n(fz,x)>+h(}?,x)—h(x,x)ﬁo

wel'(y

forall xe S(y).

From Step 1, we have y e S(7) and
inf Re(M(x)—w,n(j/,x)>+h(f/,x)—h(x,x)SO

wer(5)

for all xeS(y).

Since S(») is a convex subset of X and M is
linear, continuous along line segments in X, by Lemma
4 we have

inf Re(M(})—w,n(fz,x)>+h(j/,x)—h(x,x))SO

weT ()

for all xeS(y).

Step 3. There exists weT(p) with
Re<M()7)—v@,n()?,x)>+h()7,x)—h(x,x)s0
forall x e S(y).

By Step 2 and applying Theorem 2 as proved in Step 3
of Theorem 1 in [11], we can show that there exists
weT(p) such that

Re<M()7)—ﬁ/,?](j/,x)>+h(j/,x)—h(x,x)SO
for all xeS(y).

We observe from the above proof that the requirement
that £ be locally convex is needed when and only
when the separation theorem is applied to the case
y&S(y). Thus if S:X —>2* is the constant map
S(x)=Xx for all xeX , E is not required to be
locally convex.

Finally, if 7=0, in order to show that for each
xeX, y—>o(x,y) is lower semicontinuous, Lemma
3 is no longer needed and the weaker continuity
assumption as (-,-) that for each feFE , the map
x—{(f,x) is continuous on X is sufficient. This
completes the proof.
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