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ABSTRACT 

In cognitive radio (CR) networks, unlicensed secondary users need to conduct spectrum sensing to gain access to a li-
censed spectrum band. And cooperation among CR users will solve the problems caused by multipath fading and 
shadowing. In this paper, we propose a multi-threshold method at local nodes to cope with noises of great uncertainty. 
Functions of distance between bodies of evidence are used at fusion centre to make synthetic judgment. To guarantee 
security which is an essential component for basic network functions, we will take selfish nodes into account which try 
to occupy channels exclusively. The proposed technique has shown better performance than conventional algorithms 
without increase the system overhead. 
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1. Introduction 

Cognitive radio is able to fix concurrent problems of sca- 
rce spectrum resources and low utilization rate. As an 
indispensable part of cognitive radio, spectrum sensing 
can be applied to search for spectrum “space holes” and 
determine whether to make use of the frequency range, 
making itself the mostly studied section at present. 

Spectrum sensing technologies can be sorted into sin- 
gle user and cooperative spectrum sensing [1]. When the 
primary user’s information is unknown, utilizing coo- 
perative sensing technologies of multi-CR users exceeds 
single node algorithm [2] in terms of energy consumption 
and accuracy. Based on different ways of fusing sensing 
knowledge, regular fusion algorithms are usually divided 
into two methods consisting of hard information-com- 
bining (HIC) [3] and soft information-combining (SIC) 

[4]. HIC has relatively smaller communication flow. SIC 
includes methods based on likelihood ratio detection and 
linearity. Besides, there are two other special fusion al- 
gorithms, one of which relies on relaying protocol and is 
suited to distributed systems, while the other of which 
relies on cluster tree[5], which actually is classified as 
hybrid fusion algorithm. MAC layer detection algorithm 
focuses on multi-channels and detection time [6]. The 
spectrum security with regards to malicious nodes gra- 
dually becomes the centre of attention [7]. 

With low SNR and interfering energy of relatively 
great uncertainty [8], most of the sensing methods can- 

not lead to correct results. Once every sensing node is in 
a disparate noise environment, the performance of HIC 
will be unstable and the capabilities of SIC will also be 
sharply decreased. The Dempster-Shafer theory [9] of 
evidence has been proposed for decision making [10] 
[11]. However, the existing conflict between various CR 
users is not managed properly by the conventional com- 
bination rules [12]. Considering the relevance between 
CR users, the article will propose an adaptive multi- 
threshold sensing method based on the distance between 
bodies of evidence on condition that flow load and algo- 
rithm complexity are not excessively augmented. The 
proposed sensing method achieves better performance in 
terms of such indexes as probability of false alarm and 
probability of missdetection. 

2. System Description 

Assuming there is a sensing network consisting of a fu- 
sion centre and N sensing nodes in the complex electro- 
magnetic environment, as is shown in Figure 1. 

Sensing nodes receive the noises, interferences and 
information from primary user simultaneously. Each one 
reflects as to its own surroundings, and then sends results 
to fusion centre which makes the final decision after re- 
ceiving judgment results from all sensing nodes: primary 
user exists (H1) or primary user does not exist (H0): 
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Figure 1. System model. 
 
where y(t) denotes mixed signal, x(t) represents received 
signal from primary user, and n(t) represents received 
noise. 

For local nodes, energy detection is a simple and effi-
cient method. It accumulates energy in a certain range of 
frequency. When the energy exceeds a certain threshold 
value VT, it can be concluded that signal from primary 
user exists. After nyquist sampling, received signal en-
ergy can be expressed as: 
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The signal with duration of T and bandwidth of W can 
be represented by N sampling points, while N = 2TW is 
two times product of duration and band width. 

If output sampling points are approximately regarded 
as independent gaussian variables, output energy meets 
chi square distribution. On the condition of H0 and H1, 
output statistics are subject to central and non-central chi 
square distribution with freedom degree of N respectively. 
When N stands at a certain large value, detection statis-
tics can approximately be regarded in accordance with 
gaussian distribution [13]: 
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where 2
n  represents noise variance, 2

x  represents 
signal average power. 

3.1. New Spectrum Sensing Methods 

3.1. Multi-Threshold Detection Methods of Local 
Nodes 

Noise uncertainty will lead to energy fluctuation. When 
the fluctuation goes up to a certain level, just a threshold 
value would not be enough to judge primary users accu- 
rately, since regular fluctuation can also lead to excessive 
uncertainty around the threshold. The article will adopt 
an adaptive multi-threshold detection method at local 
nodes to adjust to different SNR. 

When the SNR is relatively small, if the noise fluctua- 
tion during a detection time appears to be large, it will  
raise probability of false-alarm or probability of missde- 

tection: 
2
nV V T   or      (4) 2 2

n xV V    T

Thus, this algorithm enables every CR user to utilize 
energy detection methods of two thresholds (TH2) or four 
thresholds (TH4) that corresponds to relatively large or 
small SNR respectively. The two thresholds of the for- 
mer one are named as T1 and T2 and the detected energy 
is divided into three ranges, while the four thresholds of 
the later one are named as Tl, Tn2, Tn1 and Th and the de- 
tected energy is divided into five ranges. The eight 
ranges are just demonstrated by three bits value, as is 
shown in Figure 2. 

In four-threshold detection method of low SNR, the 
credibility of energy range 001 and 011 is relatively 
higher than that of the other three. 001 tends to represent 
that primary users do not exist while 011 represents the 
existence of primary users. When the SNR is high, two 
threshold detection methods should be used. In this situa-
tion, 101 and 111 have higher credibility than 110. 

Before putting nodes into service, they need to go 
through an establishing stage when to get familiar with 
noises in the surroundings based on which the SNR can 
be determined, and then the threshold mode would be 
chosen to use. During the working process, the threshold 
mode can be switched if the SNR changes or sensing 
performance turns to be undesirable. 

CR users are allowed to measure the noise energy re-
ceived in the establishing stage when primary user does 
not send signals. The total measuring time is set as nT 
which can be divided into n stages, with the time for each 
stage set as T. Thus, peaks and valley values for n stages 
can be obtained. Average these n groups of data and 
multiply the average number by necessary coefficients so 
that Tl and Th can be approximately obtained. Through 
multiplying all the measured values by their correspond-
ing coefficients, such as 0.9 and 1.1, we can get Tn2, T2 

and Tnl, T1. 
After the fusion centre receives N groups of binary 

number ri from CR users, the following evidence theory 
will be used to decide: R1 primary user exists, R0 it does 
not exist. 

3.2. Evidence Theory Determination of Fusion 
Centre 

The information delivered from different CR users might 
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Figure 2. Multiple thresholds based energy detection. 
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be diverse but undoubtedly related. The article will adopt 
the functions of distance between two bodies of evidence 
[14] in evidence theory, and use parameters like the 
similarity of information transferred among nodes to 
judge synthetically. 

In view of basic belief assignment  0,1m , m(A) 
represents the credibility level evidences have in event A. 
A few basic belief assignments are organized into a be- 
lief function to make all-rounded judgment on events. mi 

represents the basic belief assignment of the ith user, and 
A, B, C represent three focal elements respectively; there- 
fore, mi(A), mi(B) and mi(C) represent the credibility the 
ith user has in the existence of primary user, non-exis- 
tence of primary user and uncertainty. Each of the eight 
conditions for energy detection corresponds to one prob- 
ability combination respectively, and these data are stored 
in fusion centre from the start. In view of the analysis of 
Equation (3), take the following energy range 010 as exa- 
mple to obtain belief assignment with q-function. Like- 
wise, other seven conditions can be deduced: 
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The distance between two bodies of evidence for the ith 
and jth nodes is: 
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the specific computing method of the distance between 
two bodies of evidence is as follows: 
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where 
2

,i i jm m m , ,i jm m  is the inner product 

of mi and mj. 
Then, the similarity between two nodes can be achi- 

eved with the distance between two bodies of evidence: 
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sij=sji and sii=1 can be easily drawn. All sij can be in-
dicated in one matrix to obtain the support of wholly 
sensing network to node CRi 
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The bigger the value of Sup(mi), the more supported 
the node CRi, and the more the fusion centre relying on it. 
All Sup(mi)s need to be normalized to get the weight of 
nodes when combining: 
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The probability distribution after combination can be 
achieved through Equation (5) and (10): 
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When m(A)/m(B) > 1, the probability of primary user’s 
existence is relatively higher; Or according to the objec-
tive probability of false alarm and probability of missde-
tection, a certain proportion value p should be set up, and 
then when m(A)/m(B) > p, primary user exists. 

CRi in Figure 1 might be a selfish node to occupy 
channels exclusively to claim the existence of primary 
user. In this algorithm, selfish nodes would try to send 
the message of “011” or “111”. Thus, common work of 
primary user would be dramatically influenced, and the 
sensing abilities of other nodes would be seriously 
weakened. The safety coefficient sci will be used to avoid 
such a phenomenon as follows: 
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New weight is drawn through Formula (10): 
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This enables the whole system to identify selfish nodes 
to lower adverse influences to the greatest extent. A cer- 
tain test result can also be set up, so when the safety co- 
efficient is less, fusion centre would ditch the informa- 
tion of the relevant node. 

4. Simulation Results 

This section will test the performance of the algorithm 
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(SCS) through simulation. To make the experimental 
results more universal, relatively small product of dur- 
ation and bandwidth TW = 5 is chosen. Primary user 
sends BPSK modulating signal the existence probability 
of which is 50%, assuming channel noises are gaussian 
white noise. 

Comparison algorithms select the classical algorithms 
of “OR” and “AND” that all belong to HIC methods. In 
the algorithm of “OR”, as long as one of the sensing no- 
des detects primary user, it would be regarded as exists. 
In the algorithm of “AND”, only if all sensing nodes de- 
tect primary user, can it be regarded as exists. 

As in Figures 3 and 4, the SNR is set up as 1dB and 
there are 3 and 6 sensing users respectively, two tech- 
nical indexes including probability of false alarm and 
probability of missdetection are utilized. From the com- 
parison with two classical algorithms, the algorithm in 
the article is with better performance and from two pic- 
tures lower probability of missdetections can all be gai- 

ned under the same probability of false-alarm. When the 
number of CR users raises from 3 to 6, the three algo- 
rithms’ curves all move downwards but the capabilities 
of this algorithm increase more obviously. 

Taken the complex physical background into conside- 
ration, every CR user might be in an environment with 
distinct SNR. In Figure 5, assuming there are five nodes, 
the SNR are –3, –1, 0, 1 and 3 dB respectively. It is eas- 
ily seen that due to the existence of nodes with high SNR, 
the algorithm of “OR” is better than “AND”, but in com- 
parison, the algorithm in the article is still able to achieve 
better performance. 

Figure 6 plays the role to investigate safety coefficient, 
in which ten users are involved and comparisons are 
made with 0 ~ 5 selfish nodes. The same local thresholds 
are used and the probability of missdetection turns to be 
less than 10%. The results demonstrate that when the 
number of selfish nodes surpasses two, the safety coeffi- 
cient still guarantees the probability of false alarm to  
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Figure 3. Complementary ROC curves (CR = 3, SNR = 1 dB). 
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Figure 4. Complementary ROC curves (CR = 6, SNR = 1 dB). 
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Figure 5. Complementary ROC curves (CR = 5, SNR = –3 ~ 3 dB). 
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Figure 6. Performance of sensing with selfish nodes. 
 
remain at the quite low level. 

5. Conclusion 

We have proposed a secure spectrum sensing method 
based on functions of distance between two bodies of 
evidence. The simulation results have shown that the pro- 
posed sensing technique achieves good performance on 
condition that no excessive communication flow is added. 
With the growth of CR users, the probability of detection 
will also be enhanced. When all CR users are with dis- 
parate SNR, primary user can still be precisely detected. 
The proposition of safety coefficient also gives the sy- 
stem the capability to deal with the assault of several sel- 
fish nodes to improve the reliability. However, the study 
also indicates that when there are not so many nodes and 
SNR is relatively low, probability of false alarm will not 
be very high. We will discuss this issue in the future. 
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