
Int. J. Communications, Network and System Sciences, 2012, 5, 50-65
http://dx.doi.org/10.4236/ijcns.2012.51007 Published Online January 2012 (http://www.SciRP.org/journal/ijcns)

A Generic Service Architecture for Secure Ubiquitous
Computing Systems

Shudong Chen, Johan Lukkien, Richard Verhoeven
Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands

Email: {shudong.chen, j.j.lukkien, p.h.f.m.verhoeven}@tue.nl

Received May 26, 2011; revised July 15, 2011; accepted August 1, 2011

ABSTRACT

The development of ubiquitous computing systems benefits tremendously from the service-oriented computing concept
in seamless interoperation of heterogeneous devices. However, architectures, services interfaces and network imple-
mentation of the existing service-oriented systems differ case by case. Furthermore, many systems lack the capability of
being applied to resource constrained devices, for example, sensors. Therefore, we propose a standardized approach to
present a service to the network and to access a networked service, which can be adopted by arbitrary types of devices.
In this approach, services are specified and exposed through a set of standardized interfaces. Moreover, a virtual com-
munity concept is introduced to determine a secure boundary within which services can be freely discovered, accessed
and composed into applications; a hierarchical management scheme is presented which enables the third party man-
agement of services and their underlying resources. In this way, application control logic goes into the network and en-
vironment context is dealt with intelligently by the system. A prototype system is developed to validate our ideas. Re-
sults show the feasibility of this open distributed system software architecture.

Keywords: Generic Programming; Service Orientation; Ubiquitous Computing; Virtual Community; Context-Aware

Resource Management

1. Introduction

Applications based on the concept of Ubiquitous Com-
puting [1] rely on the seamless interoperation of hetero-
geneous devices including not only powerful computer
equipment, but also resource constrained devices, like
Personal Digital Assistants (PDA), Consumer Electronic
(CE) equipment and small sensors. A successful ubiqui-
tous computing system should enable users to focus on
their requirements rather than on computing devices and
technical issues. The development of ubiquitous comput-
ing systems is tremendously benefiting from the concept
of service-oriented computing [2,3]. In service-oriented
computing, capabilities of devices are exposed as net-
worked services; applications are achieved through the
composition of these services without further depen-
dence on machine architecture, Operating System or lan-
guage. Typical examples of service oriented applications
include media streaming and data sharing and synchro-
nization, but new applications are proposed continuously.
Standards like Universal Plug and Play (UPnP) [4] and
WSDL [5] are built around the service oriented concepts.
The Cloud Computing [6] and Smart Planet [7], and, to a
lesser extent, Grid technology [8], address a similar idea
at a higher abstraction level and with different focuses.

Lots of research has been done spread over different
applied areas of ubiquitous computing systems; no stan-
dard approach has resulted however. The architecture,
the interfaces of services and the network implementa-
tion of these systems are different. Each system uses its
own format to describe services and its own communica-
tion mechanisms. Additionally, application logic is typi-
cally encapsulated in the services and this makes the re-
usability of these systems rather difficult. Furthermore,
many systems totally lack the capability of being applied
to resource constrained devices like, for example, sen-
sors.

We believe that a standardized approach to present a
service to the network and to access a networked service,
which can be adopted by arbitrary types of devices, is of
high importance to provide a better interoperability and
collaboration of heterogeneous devices and services. Se-
curity and privacy issues should be equally important as
genericity and flexibility in this approach, since service
providers do not want to share their services with just
anybody. Secure service discovery and access must
therefore be guaranteed. In addition, communication needs
protection from being overheard. Moreover, application
control logic should not be in the services but in the net-
work. Environment context, like heterogeneity of net-

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL. 51

works, capabilities of devices, error-prone wireless chan-
nels and device mobility, should be dealt with intelli-
gently by the system rather than by the users. In our re-
search we have found the following to be the ground-
work of the system architecture of ubiquitous computing
systems.
 Control is separated from service functionality through

third party binding. Services are passive and do not
know their composition context.

 Services are specified and exposed in a generic way
through a set of standardized interfaces, with parts for
regular service functionality, external binding and ex-
ternal control.

 This interface definition should be more abstract than
the standards (like UPnP and WSDL). We designed
such an interface and separate (automated) mappings to
UPnP and WSDL.

 A grouping and scoping concept is needed to limit ser-
vice discovery and access. For this, we introduce the
concept of virtual community. In this context a virtual
community represents a security boundary that deter-
mines a secure service discovery, access and collabora-
tion environment: within this environment, services
can be freely discovered, accessed and composed into
applications.

 Services and resources must be managed to allow ro-
bust applications and to adapt service quality. We de-
signed a hierarchical management scheme that admits
third party management. This management admits ap-
plication oriented end-to-end QoS (Quality of Service)
optimization through context-awareness.

In this paper, we propose an open distributed system
software architecture which meets these mentioned re-
quirements. The corresponding prototype system is called
VICSDA (VIrtual Community-based Secure service Dis-
covery and Access). In VICSDA, services hosted by de-
vices are exposed in a generic way to enable the collab-
oration over a heterogeneous networking environment.
Following component technology [9,10], capabilities of a
service are expressed as provided interfaces; capabilities
a service needs for its work are specified as required in-
terfaces. Service compositions are created by connecting
(binding) these required and provided interfaces. Special
interfaces are used to program the extra-functional as-
pects including security, management and discovery, but
also the mentioned binding. Separate orchestrators are
capable of searching services and connecting them to
form applications; the orchestrators can also expose
themselves again as services. In this way, applications
can be achieved by service collaboration [2,3] and appli-
cation control logic goes to the network.

In order to protect services privacy, services can be
organized into virtual communities (VCs) and become
community services by implementing security-related

interfaces. Consequently, only authenticated users can
access community services. Service discovery, access,
and collaboration all happen in the scope of a VC and are
managed through a set of community services. Aiming at
context-aware ubiquitous computing systems, manage-
ment-related services and interfaces are implemented,
based on a hierarchical resource management schema.

We present the approach in the following way. Section
2 presents the generic way of exposing a service to the
network. How the prototype system VICSDA provides a
reliable, flexible and scalable service collaboration envi-
ronment through external orchestration is detailed in Sec-
tion 3. Section 4 describes a 3D video streaming proto-
type to validate the feasibility of VICSDA. Finally, we
discuss some related work and draw conclusions in Sec-
tions 5 and 6, respectively.

2. A Generic Approach to Program a Service

2.1. Lifecycle of a Ubiquitous Computing
Application

With respect to the mentioned 5 points in Section 1, the
lifecycle of a ubiquitous computing application, depicted
in Figure 1, consists of the following phases:

2.1.1. Service Development and Deployment
A service provider exposes a set of functions in the form
of a generic service to the network.

2.1.2. Service Advertisement
When a service enters the network, it makes its presence
known to other services on the network. This can be done
using two mechanisms: mediated or immediate. If there
is a repository service appears, it sends out the adver-
tisement through e.g. broadcast or multicast. Services
who are interested in this repository record this informa-
tion and register themselves at this repository next. If
there is no repository available, services broadcast them-
selves.

2.1.3. Realize an Application
When there is a requirement of an application, an or-
chestrator is going to achieve it through service combi-
nation following the below steps. Security is an impor-
tant concern in this step although not shown in the figure.

1) Service discovery: based on the situation whether
there is a repository service, the orchestrator discovers
required services through mediated or immediate way. It
sends out service queries and then receives a list of avai-
lable services with required functionalities.

2) Service binding: the orchestrator informs specific
services to bind with each other in an order according to
the application logic. During this process, the orchestra-

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL.

Copyright © 2012 SciRes. IJCNS

52

Figure 1. Lifecycle of a ubiquitous computing application.

tor checks the match between services, e.g., the inter-
faces and the communication protocols.

3) Service invocation: this is the stage where a service
is connected and invoked after the application starts. A
service is called directly by another service. Although
control is still done by the orchestrator, as shown in step
4, the orchestrator is no longer involved in service func-
tion invocation.

4) Run time service management: during the applica-
tion execution, in order to guarantee the overall perfor-
mance, e.g., the throughput of a service and robustness of
the whole system, services are monitored and managed
with respect to their availability and resource usage.

2.1.4. Service Unbind
After the application finishes, the orchestrator orders
services to disconnect from their bound services, clean
up whatever state needs to be removed and relinquish the
control which is implicitly transferred upon binding; this
could also include to remove events subscriptions of ser-
vices that were created for the purpose of the application.

2.2. V_ITF: Generic Service Interfacing

As stated in the lifecycle of a ubiquitous computing ap-
plication, the first step is to expose a service to the net-
work. In order to cope with the heterogeneous network-
ing environment of ubiquitous computing systems, we
propose a generic approach to present a service to the

network to allow more easily collaboration between ser-
vices and devices. In this approach, a service, no matter
what type of its host device would be, is composed of a
set of interfaces, namely V_ITF, shown in Figure 2
(left).

Different from the existing Web Services [5] and
UPnP specifications, where services only contain inter-
faces which express services capabilities, this generic
approach defines that interfaces of a service can be di-
vided into two types: provided interface and required in-
terface.

A provided interface shares the same concept with an
interface of a Web Service or an UPnP service which is
that a provided interface expresses the capabilities of a
service and can be accessed via an access point. An ex-
ample here is a “display” function interface of a multi-
media service. Through calling the ‘display’ interface at
its access point, this multimedia service can render a spe-
cified multimedia stream.

A required interface describes functionality that a ser-
vice needs to perform; it must be provided at a so-called
port. Before a service can deliver capabilities described
in its provided interfaces, its required interfaces (ports)
must be connected to provided interfaces (access points)
of other services which provide matching functionality.
This is done through a binding procedure.

Inspired by the “port” concept defined in WSDL, in
V_ITF, a required interface is composed of a portName

S. D. CHEN ET AL. 53

Figure 2. Static view of V_ITF (left) and example function interface of a mouse service (right).

and a portType. The portName describes what type of
functionality is required. The portType describes abstract
information of the potential functionalities of a service
with a set of abstract methods and abstract messages in-
volved. For example, the multimedia service has a re-
quired interface “control”. The portType of this required
interface is “mouse” and the portType lists a set of meth-
ods should be provided by a provided interface of an
other service including left-click, right-click, etc. A re-
quired interface can only be bound to a provided inter-
face with a matching type through the specified PortType.
Assume that this multimedia service needs to provide a
“control” functionality which enables the multimedia
content to be controlled by remote mouse-click events, it
can bind to a mouse service which provides a matching
“mouse” interface with required click functionalities. A
required interface cannot be invoked in the same way as
invoking a provided interface because it doesn’t associate
with any access point. A required interface is only able to
deliver functionalities, specified by portName, after it has
been instantiated. This instantiation is done through the
binding mechanism. Through binding, a required inter-
face will be assigned an individual access point (see Fig-
ure 3).

2.2.1. Binding Interface
The purpose of the binding interface is to bind a required
interface of a service to another service that provides that
matching function interface. Using the example mouse
controllable video streaming scenario, the binding me-
chanism is shown in Figure 3. An orchestrator is used to
execute the binding. It firstly queries required interfaces
of the multimedia service. When that required interface,

control, is not bound to any service, it tries to search a
mouse service on the network, for example, by querying
a repository service. Once it knows the access point of an
available mouse service, mouse, it instructs the multime-
dia service to bind to the mouse service through sub-
scribing to left-click and right-click mouse events. After
being bound to a mouse service, the multimedia service
is configured to respond to the generated mouse-click
events. Subsequently, the multimedia service can provide
the video content being controlled by remote mouse
events. When the binding is no longer needed, the or-
chestrator can instruct the multimedia service to unbind.

2.2.2. Function Interface
The function interface is created based on the functional-
ity provided by a service. All published methods of a
service are added to the function interface. In addition,
the function interface allows other services to query the
description of a service, which contains the methods that
can be invoked on the service, as well as the parameters
and return types of these methods. An example func-
tional interface of a mouse service is shown in Figure 2
(right) where other V_ITF interfaces are omitted.

2.2.3. Advertisement Interface
V_ITF is designed to support two service advertisement
mechanisms: the mediated way which is achieved through
a repository and the immediate way when there is no
repository available on the network.

In an immediate discovery protocol, a service broad-
casts advertisements and queries while it listens to mes-
sages of broadcasted advertisements and queries. In case
a service requires some interfaces from other services, it

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL. 54

Figure 3. Binding mechanism between a required interface
and a provided interface.

keeps a list of these services when it receives the adver-
tisement messages from them. An example here is that a
Repository starts periodically sending advertisement me-
ssages to all services in the network when it enters the
network. Services who receive this advertisement will
add it to their lists. Services’ startAdvertisement method
will be called internally to negotiate an advertisement
period for service periodic registration at the Repository.
With the knowledge of the access point of this Reposi-
tory, services can un/register themselves to the Reposi-
tory and can query the Repository for other services pro-
viding specific interfaces. This Repository service will be
detailed in Section III. The service advertisement pro-
tocol is depicted in Figure 4. V_ITF will support the
transition between these two service advertisement me-
chanisms.

2.2.4. Event Interface: Event Generator and Event
Listener

Furthermore, in order to be aware of the context change
of the environment, a service can subscribe or unsub-
scribe to the events generated by another service. This
functionality is provided by the EventGenerator and
EventListener interfaces. EventGenerator interface and
EventListener interface interact with each other to achi-
eve eventing. The EventGenerator provides methods to
register and unregister event listeners, as well as a me-

Figure 4. Service advertisement protocol.

thod to inform all registered event listeners of the occur-
rence of an event. The EventListener interface provides a
callback method that can be called by an event generator
once subscribed events occur.

From service developers’ perspective, this generic V_
ITF approach offers the following advantages.
 V_ITF is an abstract specification that allows mapping

to concrete deployment platforms. For example, access
points of services are composed of protocol, host, port,
and service name, e.g., protocol: HTTP; host:
131.155.68.172; port: 1107; service name: display.
From this generic access point description, deployment
platform specific access points can be created.

 V_ITF is an architecture concept to generalize service
expressiveness to the network. Interface implementa-
tion of a specific service may or may not align with the
boundary of its host device. For example, a service
provided by a laptop is capable to implement all V_ITF
interfaces. However, a service hosted by a resource
constrained sensor can only implement the function in-
terfaces, leaving the storage of its service description to
other powerful node on the network. On the other hand,
extensions to the V_ITF functionalities shown in Fig-
ure 2 are possible. As foreseen, if a service wants to
have access control functionalities security related in-
terfaces can be implemented and integrated.

 V_ITF provides a required interface definition which
allows late binding through using advertisement, dis-
covery, and run-time binding. This enables to use ex-
ternal orchestrators to implement applications. They
determine at run-time what services are available, how
to compose them and what kind of protocols should be
used during the communication, in order to make cer-
tain functionality available. Therefore the application
logic goes to the network through these required inter-

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL. 55

faces and the behavior of services and the underlying
resources can be managed via the network.

2.3. V_MAP: Service Deployment Tool

V_ITF is designed deployment platform independent. It
is possible to wrap a V_ITF service into a deployment
platform specific service without requiring any platform
specifics. We provide this wrap tooling support by de-
signing the V_MAP, which is a tool that wraps a de-
ployment platform independent V_ITF service into a de-
ployment platform specific service. UPnP and Web Ser-
vice are two supported deployment platforms currently.
However, more deployment platforms can be supported
by extending V_MAP. The structure of V_MAP is de-
picted in Figure 5.

On a high level, V_MAP takes a mapping description
(i.e. an XML file containing a description of a V_ITF
service) as input and it can produce UPnP and Web Ser-
vice services as output. These services provide the func-
tionality that is described in the mapping description, as
well as the functionalities defined in V_ITF. The wrap-
ping is done by the Deployer. Because this wrapping is
inherently deployment platform (and stack) specific, each
deployment platform needs its own Deployer. As a con-
sequence, two Deployers have been created, one for
UPnP and one for WebService. Each Deployer reads a
V_ITF service and modifies the source code in order to
transform it into a deployable service. If new deployment
platform support is needed, a new Deployer will be cre-
ated.

From service developers’ point of view, V_MAP tool
is simple to use. Given an existing application and a
mapping description file that describes what functionality
of the application should be exposed to the network,
V_MAP automatically generates deployable services.
Compared to the way making application functionality
available on the network manually, V_MAP can drama-
tically save developers’ time.

3. VICSDA: The Prototyping System of
V_ITF

Next to genericity and flexibility of V_ITF, security and
maintaining control of shared services and resources over

Figure 5. V_MAP overview.

the network should be of high importance in ubiquitous
computing applications. From a service user’s perspec-
tive, how can he locate and access a service securely?
During the application execution, how to prevent the
logic chain from being interrupted? From a service pro-
vider’s perspective, how to protect his ownership and
privacy of his services? For instance, in a video stream-
ing scenario, it is needed to assure that an orchestrator
only binds a video source service to trusted video sink
services instead of to malicious ones.

For the sake of security and controllability, we present
VICSDA [12,13], the prototyping system of V_ITF with
security and management extensions. VICSDA forms a
service-oriented virtual community (VC) overlay where
services are wrapped as community services, service
activities are done based on community membership, and
behaviors of all the community members and services are
monitored and managed. In this section the design of
VICSDA including how to form and maintain a VC, and
how to achieve applications with guaranteed QoS using
external orchestration will be presented.

3.1. Virtual Community Extensions to V_ITF

A VC is a dynamic contract-based aggregation whose
members have commonalities and interact via shared ser-
vices by means of a digital network like the Internet. It
has rules that each member has to follow. It provides
services to members and it has the potential to develop
applications through external service orchestration. It
monitors the environment of a running application and
aims at providing optimized QoS to users. In the rest of
this paper, when we discuss VCs we are not referring to
any aggregation of people, but to the communication
among them which is done through the collaboration of
services hosted by digital devices.

A user can apply to join a VC and become a member.
Members should obey the contracted management policy
of that VC, for instance, they should trust each other and
provide promised QoS. Their behavior associated to their
reputation is monitored to guarantee a contracted QoS
provision. In case of misbehavior, they pay some form of
penalty. Each member is autonomous which means he
has the right to determine what services that he owns can
be shared and which member can access his shared ser-
vices. And he is free to decide to deregister from a VC at
anytime.

If a service provider becomes a VC member, he can
publish his services into this VC. Plain services, which
implement the V_ITF specifications, will consequently
become VC services and be shared among members.
This VC service registration is preceded by adding VC
related functionalities to the plain services. Figure 6
shows these extended VC related interfaces added to the
original V_ITF design in order to achieve service access

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL. 56

Figure 6. V_ITF with virtual community related functional-
ities.

control and management functionalities.

3.1.1. Security Interface
The security interface is used for checking the identifica-
tion and capability of a service user, which can be fet-
ched from a ticket, to access a VC service. All activities
including advertisement, discovery, access and collabo-
ration are executed within the scope of a VC. Only au-
thenticated users can access a VC service and communi-
cation messages are encrypted. Due to the fact that ser-
vices are autonomous, VC service providers can define
their services’ local access control policy through defin-
ing capabilities of different member roles and blocking
malicious service users by editing a black list.

3.1.2. Resource Management Interface
The resource management interface is designed to deal
with the dynamic virtual community environment, where
availability of a service, processing capability of a ser-
vice host device, and network bandwidth can change
anytime. This interface provides methods for checking
the load of a service and monitoring the real time re-
source usage of a service, like memory, CPU, or battery
power. With this information, VICSDA can be aware of
the change of an application’s running environment and
execute dynamic resource management.

3.1.3. Credit Management Interface
In order to govern VC members’ behavior and facilitate
the maintenance of a VC, for example maintain the
member list, the service list and a better QoS guarantee
for service cooperation, each VC service is evaluated
with a credit value. This value will be periodically che-
cked by the special services that make up the VC. When
a service’s credit is below a predefined threshold value,
that service will be deregistered from this VC compul-
sively.

To summarize, a VC can be envisaged as an overlay
network for the existing services. In this overlay, a ser-
vice has enhanced functionalities:

 It can filter access requests using its access control
policy and all the exchanged messages are encrypted.

 Service activities including advertisement, discovery,
access and collaboration are executed based on VC
membership.

 It also supports the use of fine-grained VC control
policies while leaving ultimate control of the local ac-
cess to services at service providers.

 Meanwhile, a community service still has the proper-
ties of a plain service: all network interfaces still use
the Service Oriented Architecture (SOA) [2,3,14] ser-
vice interface; SOA standards such as Simple Object
Access Protocol (SOAP) [15] and Hypertext Transfer
Protocol (HTTP) [16] protocols are still suitable for
service collaboration.

3.2. Virtual Community Based Secure Service
Discovery and Access Control

Basic functionalities of a VC, for example, member de/
registration, service de/registration, authentication and
encryption, service collaboration and fault recovery are
provided by specialized services depicted in Figure 7.

A VC is composed of several fundamental services: a
VCEntry service with a JoinPolicy and a vcBlackList; a
CertificateMan service with a RoleInfo listing designed
roles of this VC; a Repository service which is assigned
as this VC’s repository; an Orchestrator service to dis-
cover and compose services; a DevMan service running
on each device with storing a device’s services in a ser-
viceList and monitoring underlying resource usage using
a soft-stateTable; a ResourceMan service serving as a
resource scheduling and decision making engine; and a
FaultRec service designed for the robustness of a VC.
VCEntry and CertificateMan are accessible to any parties
including requesters on the network and internal VC
members, while the other services are only available for
VC members. For example, Repository, DevMan and
ResourceMan can only be invoked by authenticated us-
ers.

3.2.1. Member Registration
A service provider needs to become a member before it
registers services into a Repository. When a new VC is
formed, a VCEntry service is created which is an entry
service for users on the network to access this VC. The
first action is the member registration. With the know-
ledge of this new VCEntry service’s access point (for
example, obtained from broadcast messages over the
network), users who intend to join this VC can access
this service to become a member. JoinPolicy is a descrip-
tion of the agreed community joining policy. An example
for a joining policy is that only those who supply per-
sonal information including IP address and e-mail ad-

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL.

Copyright © 2012 SciRes. IJCNS

57

Figure 7. Logical architecture of VICSDA.

dress can be approved to register as a member. When one
meets the community joining policy, one will be author-
ized to be a community member.

A member is granted with specific roles and a certifi-
cate (ticket) signed by a CertificateMan. The new mem-
ber could be a service user to access other services, or a
service provider to register/deregister a service, or a
combination of these example roles. A member can exe-
cute actions corresponding to his role while carrying a
valid ticket. Figure 8 depicts this member registration
process.

3.2.2. Service Registration
In VICSDA, we use a Repository service to cache ser-
vice registrations, receive service discovery queries, and
perform matching between queries and registrations.
Figure 9 illustrates the service registration design.

As a member, a service provider can register services
into the Repository. His ticket to access the Repository
will first be checked. With a valid ticket, services can be
added to the Repository. When a service becomes inac-
tive, its registration should be accordingly changed. Soft
state registration is used to keep the consistency between
a service and its registration at the Repository. Registra-
tions have a specific validity period after which they
need to be renewed [17,18,38]. This period is negotiated
by a service and the Repository based on what they are
capable of handling. When registering, a service speci-

fies the minimum period, serviceAdPeriod, it is willing
to handle and the Repository responds with the actual
period, adPeriod, to be used. This allows a trade-off to
be made between registrations freshness versus renewal
overhead. Typically both services and Repository will
increase the period when under heavy load and decrease
the period when there are enough spare resources. The
registration update process is triggered by a timer with
adPeriod as the period. A service sends the renewal
message to the Repository and the Repository updates it
registrations.

Services are autonomous. They are free to define their
own access control policy. With respect to this feature,
VICSDA is designed to support the use of fine-grained
VC control policies while leaving ultimate control of the
local access to services at service providers. A commu-
nity service is added an ACList and a BlackList as com-
munity properties. Service providers can specify each
service’s local access control policy by defining capabili-
ties of different roles and blocking malicious service us-
ers by editing the BlackList.

3.2.3. Secure Service Access
Access to a community service is restricted to authorized
members. Different access actions are granted to differ-
rent members according to their registered roles. A ser-
vice user is required to provide a valid ticket to call func-
tions at a service. This ticket shows which VC this user

S. D. CHEN ET AL. 58

Figure 8. VC member registration.

Figure 9. VC service registration.

belongs to and what kind of roles he can play there. A
service first validates this ticket and then grants capabili-
ties according to that user’s roles. Using the authentica-
tion and authorization of a VC, un-trusted or malicious
access requests to services can be filtered. Figure 10
shows the design of this access control approach, which
applies to all community activities.

One of the main goals of forming a VC is securing the
interactions and keeping privacy of service providers.
We design that all exchanged messages in a VC are en-
crypted and transferred in a secure channel set up be-
tween senders and receivers. Message receivers have to
decrypt received messages before they can use them.
Asymmetric cryptography [19] is used for communica-
tion secrecy. The cryptographic key pair for encryption
and decryption is distributed by the CertificateMan.

3.2.4. External Orchestration
In VICSDA, service combination is done by external
orchestration, an Orchestrator, which binds required ser-
vices at runtime. The focus of forming a VC is to enlarge
the notion of external orchestration with a secure en-
riched service collaboration and composition. The cur-
rent VICSDA platform can provide the ability to com-
pose services into applications within virtual community
boundaries.

Figure 10. Secure service access in VICSDA.

3.3. Context-Aware Resource Management

Based on Hierarchical Monitoring

We have accomplished building applications through ex-
ternal service orchestration with open source code avail-
able at [20]. Most of these examples are multimedia ap-
plications, for instance video streaming over heteroge-
neous networks where the environment is inherently dy-
namic. The availability of required services, resources of
underlying devices, or the network bandwidth can change
at any time. Without proper management the QoS of this
type of application is unacceptable. This requires VIC-
SDA to provide adaptive resource management func-
tionality, which can adapt the application QoS to the ac-
tual state of the environment. Aiming at this, VICSDA
takes sophisticated QoS monitoring and prediction ac-
tions and provides dynamic adaptation in order to satisfy
the expected end-to-end QoS specified by end-users.
Additionally, VICSDA can dynamically redistribute re-
served resources within application activities to meet
applications’ requirements when unexpected perturba-
tions lead to resource scarcity.

3.3.1. Obtaining Resources Controllability
In principle, in order to execute resource management a
manner to manage services and resources which belong
to different providers is required. Therefore, a device
management service, DevMan, is implemented [21] on
each device. It can activate and deactivate services hosted
by that device, register these services into VCs, and ma-
nage the amount of resources used by that service in its
registered VC. Only with this enabled full control of ser-
vices and underlying resources, can the QoS of distri-
buted services be precisely estimated. Also, via the Dev-
Man, service performance adaptations can be executed.

Two components, a serviceList and a soft-stateTable
are designed to maintain the service information of a de-
vice, where static information of all active and inactive
services are kept in the serviceList while the softstate
Table caches the dynamic resources usage by services

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL. 59

invocations coming from VCs in order to deal with simu-
ltaneous invocations. The structure of the service- List is
shown below.
 [{serviceName, serviceType, serviceID,
 vcs[{vcName, serviceAccessPoint,
 processID, adPeriod,
 resources[{resourceID,maxAmount}]}]}]

A service can be registered into multiple VCs by the
DevMan service of its hosting device. Using this ser-
viceList, DevMan has the knowledge about which VC a
service has registered (vcName), which process is run-
ning as a service instance for a VC (processID), how
much resources can be used maximally by that process.
If a service is not deployed or is deactivated, values of
the vcs entry will be set to null. Details about the update
mechanism will be addressed later in this section.

The structure of the soft-stateTable is represented as
below.
 [{resourceID, vcs[{vcName, maxAmount}],
 tasks [{taskID, taskType, serviceID,
 vcName, currAmount, flag}]}]
resourceID represents different types of resources, e.g.
CPU, physical memory, virtual memory; vcs describes
the maximum amount of resources a device can use for
each VC. Each tasks entry expresses that a type of re-
source is allocated to which task (taskID), the type of this
task (taskType), serving for which service (serviceID) in
which VC (vcName) and current usage amount (currA-
mount). Tasks, viz. processes in multitasking operating
systems, for service invocations, are independent and
compete for resources. Possible status of a task can be
running, ready, blocked, completed, failed and cancelled.
Correspondingly, the resources they are competing for
have different status (represented by flag) including al-
located, reserved, released.

With the information of dynamic resources utilization
by service in VCs logged in the soft-stateTable, DevMan
can manage the resource reservation, scheduling, and
even dynamic reallocation. For instance, when a device
is heavily loaded, the DevMan can suspend a task which
is handling a resource consuming service to release some
amount of resources, or deactivate a service to withdraw
all reserved resources when resources are excessively
used by it. This helps the DevMan to prevent excessive
resource use by one service which would result in a low
overall performance of a device. Also important is that
DevMan is a service can thus be accessed from outside
the device, admitting a global management schema.

Service registrations and resource usage amount are
soft-state data and have limited validity periods. In order
to acquire a high accuracy of the observation and man-
agement, these data should be kept as fresh as possible.
In VICSDA, the update process is triggered by a timer
with adPeriod, which is used for service registration, as

the period. Upon update, the DevMan observes the proc-
ess where a VC service instance is running and then up-
dates the registrations of the serviceList and that of the
soft-stateTable. Besides the periodic update, the soft-
stateTable can also be updated by events, for in stance,
when the DevMan updates a tasks entry’s flag based on a
scheduling decision, the entire soft-stateTable will be
updated as well.

3.3.2. Hierarchical Monitoring Architecture
When we are discussing resource management, we as-
sume that the Orchestrator has discovered all required
services from the Repository and it needs to know the
best composition and collaboration between services in
order to provide a high application QoS.

In service oriented applications, the end-to-end QoS
delivery from the service provider to the service user
may span over different types of networks and can be
therefore divided into the node level, network level and
application level. Devices that host services belong to the
node level. At the network level, the capability of the
delivery channel is one of the crucial factors which affect
the applications performance. End users specify their
application-oriented QoS requirements at the application
level.

With respect to meeting the expected end-to-end QoS,
VICSDA takes hierarchical monitoring and prediction
actions [39] as depicted in Figure 11. This monitoring
is achieved by two distinct services, the ResourceMan
and the DevMan. They function at the node level and the
network level respectively. There is one central Resour-
ceMan service running while each device runs its indi-
vidual DevMan service.

At the node level, devices are monitored to manage
their local resources for handling invocations to services,
which in turn can provide expected QoS. The DevMan
monitors each hosted service by retrieving statistics from
the serviceList and the soft-stateTable. With the current
resource utilization information, the DevMan can man-
age the resource allocation to services in order to provide
a high overall performance of the device. For instance, it
can deactivate some services which are not serving any
applications to release resources for another resource
consuming service invocation.

Network capacity is crucial to service oriented appli-
cations. Especially in time-sensitive multimedia applica-
tions, packet loss and jitter will severely impact the video
arrival rate at the destination service and the perceived
QoS by end users. Therefore, at the network level, the
capacity of the underlying networks is probed as another
input parameter provided to the ResourceMan service to
make resource management decisions and adaptations.
We use existing work on network performance probing
[22,23] to measure the bandwidth of the delivery channel

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL. 60

Figure 11. Cross-layer QoS monitoring architecture.

and anticipate network latency.

The functionality of the ResourceMan service at the
application level is to process the gathered statistics from
lower levels and to make service coordination decisions
according to the required application QoS specified by
end users. Additionally, it would be useful when service
users report the delivered QoS, such that the service co-
ordination decisions can be more efficient. Therefore, the
ResourceMan is designed to also be able to receive feed-
back information at the application level. The mapping
between the application-oriented QoS requirements into
the performance-oriented resource metrics is provided by
VICSDA [24].

The decision making engine of the ResourceMan ser-
vice will make service coordination decisions which in-
clude the compatibility of a pair of services and the ca-
pability of a service to execute a specific task. Service
compatibility means the matching between supported
protocols of different services. Using the video streaming
application as an example, the ResourceMan needs to
check the compatibility between the encoding protocol of
a video streaming service and the decoding protocol of a
video display service. These protocols are part of the
service properties and can be fetched from the service
description by the ResourceMan. We have defined the
schema of a VC service description to store this static
information of a service [25], such as, required memory
to run this service, its supported protocols, etc.

With the estimated network condition and observed
resource usage of the required services through the hier-
archical monitoring architecture, the ResourceMan can
then perform a schedulability test to estimate the capabil-
ity of a device to execute a specific task of a service, for
example, in the video streaming application, whether a
display service can decode received bit streams within a
given time constraint. In order to avoid the high kernel
load caused by launching this video decoding task to that
display service, the test is executed at a soft state level
instead of directly at an operating system kernel. For this,
the ResourceMan uses the current scheduling algorithm

of the underlying node to test the schedulability of a task.
For example, the host node of the display service is using
the Earliest-Deadline-First (EDF) [26] as the scheduling
algorithm to manage the principle resource CPU. With
the knowledge of the frame rate of a video, the CPU re-
quirement to decode it, and the current CPU usage, the
ResourceMan can perform the schedulability test of the
display service. Operating system interrupts are ignored
in the test.

Moreover, in order to make the ResourceMan be aw-
are of changes within the running environment of an ap-
plication and to make adaptations accordingly, the pub-
lish/subscribe scheme of V_ITF is used [27]. Services
publish specific events according to the requirements of
different applications. Other services can subscribe to
their interested events. For instance, a video display ser-
vice publishes a resource scarcity event which will be
generated when it cannot process arrived video within a
given time constraint. The ResourceMan can subscribe to
this event and be subsequently asynchronously notified
when this event occurs. Subsequently, the service coor-
dination adaptation will be triggered.

4. Prototype

We developed a prototyping system VICSDA and on top
of it we built an interactive free view point 3D video
streaming demo to address the feasibility of VICSDA.
This application demonstrates within a VC, a 3D video
that is interpolated between four cameras and rendered
either on a high performance PC or a PDA. During the
rendering an end user can select an arbitrary view point
by moving or clicking the mouse which controls the dis-
play. The displayed content will automatically adjust to
that view point. Moreover, users’ intention to change the
display is tracked. The video can be redirected to another
display when that display’s controlling mouse is double
clicked. The mouse-s, video streaming and display ser-
vices are available as services and connected by an or-
chestrator. The encoding and delivery protocol of the
video is adaptive to the capacity of the delivery channel
and of the display device. For instance, when the video is
redirected from the PC to the PDA, the resolution of the
video will be decreased from 800 × 600 pixels to 320 ×
240 pixels. The video streams will be truncated from a
3D video format to a 2D video format to assure the re-
source-constrained PDA can decode all received frames
in time and provide the end user a desired perceived
QoS.

Using this demo, ideas of V_ITF and VICSDA have
been examined including: 1) services are developed using
the generic service interfacing V_ITF; 2) services can be
deployed using different standards on different platforms;
3) control is done separately by a third party; 4) service

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL.

 IJCNS

61

discovery and access is limited within the scope of a VC
for ownership protection; and 5) context-aware resource
management is achieved through hierarchical monitor-
ing.

Figure 12 is a snapshot of the virtual community
monitoring tool. A video showing the prototype and the
3D video streaming demo is available from
http://www.win.tue.nl/san/amosa/download.php.

For the realization, a 3D video streaming software [28],
which encodes and compresses the 3D video, has been
wrapped as a 3D video streaming service and is regis-
tered at the Repository. First, the Orchestrator discovers
the required services from the Repository: the 3D video
streaming service, the display services, and the control-
ling mouse services. Next, it binds them together based
on the service coordination decision made by the Re-
sourceMan. The ResourceMan checks the availability of
required services (active states, capability of a service
user), the compatibility between them, and provided per-
formance (capability to render the 3D video). Later, dur-
ing the streaming, the ResourceMan monitors the capa-
bility of the display service and the delivery channel and
makes service coordination adaptations if necessary.
Consequently, the 3D video streaming service will adapt
its encoding and delivery protocol for the next frame.

Figure 12. Snapshot of the virtual community monitoring
tool.

with several universal service programming methods,
which spread over Web Services and UPnP specifica-
tions for service oriented applications, and OSAS de-
signed for sensor networks.

Web Services are application programming interfaces
(API) that can be accessed over the Internet via the
HTTP protocol, and executed on a remote system hosting
the requested services. Web Service is designed to sup-
port interoperable machine-to-machine interaction over a
network. However, it is sometimes criticized for not be-
ing loosely coupled, because it is often implemented by
mapping services directly to language-specific functions
and by coupling application logic into services them-
selves. Many system developers feel this decreases the
reusability of services. Different from Web Services,
V_ITF separates services binding from service function-
ality much more explicitly. Moreover, Web Service im-
plementation is commonly heavy-weight. In contrast,
V_ITF is capable to be adopted by arbitrary types of de-
vices including resource constrained sensors.

The following digital devices are used: four cameras
(to shoot a 5 minutes long video from different view po-
int), two intermediate PCs (to generate the 3D video, and
to host the 3D video streaming service), a PC (host of
one display service), a PDA (host of another display ser-
vice), and two control devices (one PC mouse and one
PDA touch screen). The physical deployment and the
system deployment of this application are given in Fig-
ures 13 and 14 respectively.

With the satisfactory video rendering as a concrete re-
sult which were shown as that only an authenticated user
can access VC services and the encoding and delivery
protocol of the video can adapt to the capacities of ser-
vices, we conclude that the V_ITF design is feasible, the
concept of VC and corresponding prototyping system
VICSDA is efficient, and the hierarchical monitoring
architecture is doable.

UPnP is an emerging standard for consumer electron-
ics promoted by the UPnP Forum. It is technology for
dynamically attaching devices directly to a computer.
UPnP devices are “plug-and-play” in that when con-
nected to a network they automatically announce their
network address and supported device and services types,
enabling clients that recognize those types to immedi-
ately begin using the device. Unfortunately, many UPnP
device implementations lack authentication mechanisms
while the available security protocols are complex,

5. Related Work

We compare our generic service programming approach

Figure 13. Physical deployment of the 3D video streaming prototype.

Copyright © 2012 SciRes.

S. D. CHEN ET AL. 62

Figure 14. Physical deployment of the 3D video streaming prototype.

and by default assume local systems and their users are
completely trustworthy. From this point of view, V_ITF
provides services with better security characteristics by
defining their lightweight access control policies.

Another distinct aspect between V_ITF and the above
mentioned service oriented specifications is the third
party binding. In most existing specifications, extra-
functional aspects of an application, like service avail-
ability, performance and security, are tangled with func-
tionalities of required services. Although web service
orchestration and choreography [29] allows the reusabi-
lity of services, the dynamic service discovery and the
real time adaption are still a puzzle. V_ITF enables this
separation through external orchestration which takes
care of the service discovery, service binding and secu-
rity concerns. Through the generic resource management
interface, the dynamic adaption is solved. Moreover, an
orchestrator can be represented as a service, just like a
workflow service.

OSAS (Open Service Architecture for Sensors) [11]
addresses a similar idea as V_ITF however focusing at
sensor networks. It is an event-based programming sys-
tem. The OSAS system provides the notion of services
(consisting of actions and events) and subscription (that
bind events to actions). Basic services provided by the
OSAS subsystem include an bytecode interpreter, flood-
ing and code upload. All subsequent functionality is built
from these primitives. We can regard OSAS as a special
version of V_ITF in the sensor networks domain. OSAS
services only implement part of the interfaces defined in
V_ITF, such as function and advertisement interfaces.
Other functionality, e.g., service description could be
built on top of these.

In the field of collaborative computing, there have al-
ready been some virtual community research activities.

The virtual community concept in peer-to-peer (P2P)
systems, for example BitTorrent [31] and Tribler [32]
focus on the P2P overlay network. Users with similar
interests will be grouped into a virtual community auto-
matically to speedup the download and solve the network
bandwidth restriction problem. Members in the same
virtual community will share resources and files. Here,
resources include CPU, memory, hard disk storage, and
network bandwidth. The objective of BitTorrent is that
through virtual community formation the performance of
the whole community is improved. Tribler, based on so-
cial phenomena such as friendship and trust, can help to
automatically build a robust semantic and social overlay
on top of BitTorrent and can yield good cooperative
downloading performance with respect to existing solu-
tions. However, the anonymity in this P2P community
formation limits the scope of applications. Although a
potential use of P2P networks is to share video streams in
real time [33], the main purpose of P2P networks is
still off-line file sharing. Moreover, secure resource shar-
ing is always an issue in P2P systems.

A Personal Network (PN) [34,35] aims to achieve sea-
mless communication between electronic devices in an
ad-hoc fashion. A PN enables a user remote access to any
of his personal services and content as if they were
physically present in his vicinity. A PN supports applica-
tions based on sharing resources and takes context and
location information into account. Architectures of PNs,
resource discovery, self-organization, routing, and secu-
rity are addressed. However, PNs mainly address the
connectivity issue while the architecture of application
building and the particular way of service sharing is not
within scope. Also functionalities like context awareness,
service discovery and resource management need to be
realized.

Copyright © 2012 SciRes. IJCNS

S. D. CHEN ET AL. 63

VICSDA provides secure service sharing within a VC
and the denial of access to community services from out-
side a VC. This relates to the concept of Authorized Do-
mains, as proposed by the Marlin [36] and Coral [37]
Digital Rights Management (DRM) based platforms.
These platforms are built for sharing multimedia content
across multiple devices in an in-home network. Multi-
media content is protected using a governance rule speci-
fied by users. Protected content issued for a specific do-
main can be consumed on any device that has joined this
domain. These are, in fact, VC related works applied in
different fields but without the service orientation con-
cept and leaving the membership withdrawal issue open.

6. Conclusions

This paper presents a service interfacing approach V_ITF,
which provides a generic way to expose a service to the
network and to access a networked service. In the V_ITF
specification, a service is composed of a set of standard
interfaces besides the specific functions it can perform.
Its interfaces can be divided into provided interfaces and
required interfaces. The required interface definitions
allow the availability of new functionalities through ser-
vice binding. The specifically designed binding interface
deals with the binding between two types of interfaces.
Interface implementation of a specific service may not
align with the boundary of its host device. Therefore,
V_ITF can be adopted implemented on arbitrary types of
devices including resource constrained sensors. V_ITF
allows mapping to concrete deployment platforms. A
mapping tool, V_MAP, is described, which currently can
support wrapping a deployment platform independent
V_ITF service into UPnP and Web Service deployment
platforms.

In order to maintain access control to shared services
over the network, we introduced virtual community con-
cept to services. A VC defines a secure boundary for
service activities. Within this boundary, service disco-
very, access and collaboration are done freely, while ser-
vices are monitored and managed. To build such a virtual
community overlay the flexible V_ITF is extended with
security, resource management and credit management
interfaces. Regarding the autonomous nature of a service
the VC design supports the use of fine-grained VC con-
trol policies while allowing service providers defining
their local access policy to services. Methods of how to
form a VC, how to register as a member and later share
services with other community members are introduced
subsequently. Services are registered at the Repository
through the DevMan service which also performs moni-
toring and management. Each device has one DevMan
service which tracks the dynamic resource usage of
hosted services on that device. With the performance
statistics of services and of the network gathered by the

ResourceMan service, performance of required services
can be predicted. The publish/subscribe scheme is used
to be aware of changes in the environment. In this way,
inherent dynamics of the ubiquitous computing systems
can be handled and application-oriented QoS can be
guaranteed.

The corresponding prototype system VICSDA is de-
veloped and a 3D video streaming application is imple-
mented. Concrete outcome proves the feasibility of the
generic service programming and access approach. Se-
cure service discovery and access control have been
achieved. The application shows the successful separa-
tion of service control from service functionality through
the external orchestration. The optimized the displayed
video quality over adapting the 3D video’s encoding and
delivery protocol based on the capacity of the delivery
channel and of the display devices showed the effective-
ness of the hierarchical monitoring design.

Applying V_ITF into the low capability device domain,
such as sensor networks is our current research focus
while some of the described functionalities still need
implementation (like the immediate service disco- very
protocol). In addition we combine V_ITF with a compo-
nent framework in order to move to a system that allows
dynamic software updates while remaining pre- dictable
and secure. Strengthened authorization and au- thentica-
tion mechanism will be researched in order to provide the
secure access to services hosted by sensor nodes. Fault
detection and recovery of the system will also be ad-
dressed in the future to facilitate enhanced reliability and
robustness of VICSDA.

7. Acknowledgements

This work is supported by the research project of Free-
band I-Share: Intelligent Middleware for Sharing Re-
sources for Storage, Communication and Processing of
Multimedia Data, supported by the Dutch government.

We would like to thank our anonymous reviewers.
Their invaluable feedback helped substantially in im-
proving the quality of the paper. Our thanks are also to
Remi Bosman, Melissa Tjiong, Goran Petrovic, Peter de
Width, Jurjen Middendorp, and Pim Vullers for their
technical feedback at the implementation stage of this
work.

REFERENCES
[1] M. Weiser, “Some Computer Science Problems in Ubiq-

uitous Computing,” Communications of the ACM, Vol. 36,
No. 7, 1993 pp: 75-84. doi:10.1145/159544.159617

[2] B. Srivastava and J. Koehler, “Web Service Composition
—Current Solutions and Open Problems,” Online docu-
ment. http://www.zurich.ibm.com/pdf/ebizz/icaps-ws.pdf

[3] W. Zhang, F. Liu, S. Chen and F. Ma, “Automatic Ser-

Copyright © 2012 SciRes. IJCNS

http://dx.doi.org/10.1145/159544.159617

S. D. CHEN ET AL. 64

vices Composition in the Grid Environments,” Proceed-
ings of 6th International Conference on Computational
Science, Reading, 28-31 May 2006, pp. 1004-1007.

[4] UPnP Forum, “UPnP Device Architecture. Version 1.0,”
2000.

[5] E. Cerami, “Web Services Essentials: Distributed Appli-
cations with XML-RPC, SOAP, UDDI & WSDL,” O'Reil-
ly Media, Sebastopol, 2002.

[6] P. Watson, P. Lord, F. Gibson, et al. “Cloud Computing
for E-Science with CARMEN,” Proceedings of the 2nd
Iberian Grid Infrastructure (IBERGRID), Porto, 12-14
May 2008.

[7] IBM, “Smarter Planet”.
http://www.ibm.com/smarterplanet/

[8] S. Chen, W. Zhang and F. Ma, “A Cooperative Comput-
ing Platform for Drug Discovery and Design,” Proceed-
ings of the IEEE International Conference on Computa-
tional Science, Shanghai, 15-18 September 2004, pp. 523-
526.

[9] Microsoft COM website.
http://www.microsoft.com/com/default.mspx

[10] S. Vinoski, “CORBA: Integrating Diverse Applications
within Distributed Heterogeneous Environments,” IEEE
Communications Magazine, Vol. 14, No. 2, 1997, pp. 46-
55.

[11] R. Bosman, J. J. Lukkien and R. Verhoeven, “An Integral
Approach to Programming Sensor Networks,” Proceed-
ings of the 6th Annual IEEE Consumer Communications
& Networking Conference, Las Vegas, 10-13 January 2009,
pp. 1-5.

[12] S. Chen, J. J. Lukkien and I. Radovanovic, “Freeband
I-Share Deliverable 1.5. Service Discovery, Access and
Cooperation in Virtual Communities,” 2007.
http://www.win.tue.nl/san/projects/ishare/D1.5.pdf

[13] S. Chen, J. J. Lukkien, I. Radovanovic, M. Tjiong, R. Bos-
man and R. Verhoeven, “VICSDA: Using Virtual Com-
munities to Secure Service Discovery and Access,” Pro-
ceedings of the Fourth International Conference on Het-
erogeneous Networking for Quality, Reliability, Security
and Robustness, Vancouver, August 2007, pp. 7-13.

[14] SOA. http://www.service-architecture.com/index.html

[15] W3C, “SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition),” W3C Recommendation, 27 April 2007.
http://www.w3.org/TR/soap12-part1/

[16] R. Fielding, J. Gettys, et al., “Hypertext Transfer Protocol
—HTTP/1.1.” http://www.ietf.org/rfc/rfc2616.txt

[17] X. Zhang, M. A. Hiltunen, K. Marzullo and R. D. Schli-
chting, “Customizable Service State Durability for Ser-
vice Oriented Architectures,” Sixth European Dependable
Computing Conference, Coimbra, 18-20 October 2006, pp.
119-128. doi:10.1109/EDCC.2006.8

[18] B. C. Ling, E. Kiciman and A. Fox, “Session State: Be-
yond Soft State,” Proceedings of the Symposium on Net-
worked Systems Design and Implementation, San Fran-
cisco, 29-31 March 2004, pp. 22-22.

[19] R. Housley, W. Ford, W. Polk and D. Solo, “Internet
X.509 Public Key Infrastructure: Certificate and CRL

Profile.” http://www.ietf.org/rfc/rfc3280.txt

[20] “IShare: Sharing Resources in Virtual Communities for
Storage, Communications and Processing of Multimedia
Data,” 2008.
http://www.win.tue.nl/san/amosa/ishare/intro.php

[21] S. Chen and J. J. Lukkien, “Obtaining Resource Control-
lability in Service Cooperation Environments,” Proceed-
ings of the 7th International ACM Conference on Mobile
and Ubiquitous Multimedia, Umea, 3-5 December 2008.

[22] D. Q. Liu and J. Baker, “Streaming Multimedia over
Wireless Mesh Networks,” International Journal of Com-
munications, Network and System Sciences, Vol. 1, No. 2,
2008, pp. 105-206.

[23] C. F. van Antwerpen, “Interface Selection Layer Improv-
ing QoS Using Interface Pair Selection,” Master’s Thesis,
Eindhoven University of Technology, Eindhoven, 2005.

[24] S. Chen, J. J. Lukkien, R. Verhoeven, P. Vullers and G.
Petrovic, “Context-aware Resource Management for End-
to-End QoS Provision in Service Oriented Applications,”
Proceedings of Workshop on Service Discovery and Com-
position in Ubiquitous and Pervasive Environments, New
Orleans, 30 November-4 December 2008, pp. 1-6.

[25] S. Chen, J. J. Lukkien, R. Verhoeven, R. Bosman and M.
Tjiong, “I-Share—VICSDA System Design and Proto-
type. Deliverable 1.16,” December 2007.
http://www.win.tue.nl/san/projects/ishare/D1.16.pdf

[26] J. A. Stankovic, M. Spuri, K. Ramamritham and G. C.
Buttazzo, “Deadline Scheduling for Real-Time Systems:
EDF and Related Algorithms,” The Springer International
Series in Engineering and Computer Science, Vol. 460,
1998. doi:10.1007/978-1-4615-5535-3

[27] P. Eugster, P. Felber, et al., “The Many Faces of Publish/
Subscribe,” ACM Computing Surveys, Vol. 35, No. 2, 2003,
pp. 114-131. doi:10.1145/857076.857078

[28] G. Petrovic and P. H. N. de With, “Near-Future Stream-
ing Framework for 3D-TV Applications,” Proceedings of
the IEEE International Conference on Multimedia & Expo,
Toronto, 9-12 July 2006, pp. 1881-1884

[29] C. Peltz, “Web Services Orchestration and Choreogra-
phy,” Computer, Vol. 36, No. 10, 2003, pp. 46-52.
doi:10.1109/MC.2003.1236471

[30] OSGi Alliance, “OSGi Service Platform Core Specifica-
tion,” Release 4, Version 4.1, April 2007.

[31] B. Cohen, “Incentives to Build Robustness in BitTor-
rent,” Proceedings of the 1st Workshop on Economics of
Peer-to-Peer Systems, Berkeley, 2003, pp. 68-72.

[32] J. A. Pouwelse, P. Garbacki, et al., “Tribler: A Social-
Based Peer-to-Peer System,” Proceedings of the 5th In-
ternational Workshop on Peer-to-Peer Systems, Santa Bar-
bara, February 2006, pp. 127-128.

[33] J. D. Mol, D. H. P. Epema and H. J. Sips, “The Orchard
Algorithm: Building Multicast Trees for P2P Video Mul-
ticasting without Free-Riding,” IEEE Transactions on
Multimedia, Vol. 9, No. 8, 2007, pp. 1593-1604.
doi:10.1109/TMM.2007.907450

[34] I. G. Niemegeers and S. M. Heemstra de Groot, “From
Personal Area Networks to Personal Networks: A User
Oriented Approach,” Wireless Personal Communications,

Copyright © 2012 SciRes. IJCNS

http://dx.doi.org/10.1109/EDCC.2006.8
http://dx.doi.org/10.1007/978-1-4615-5535-3
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1109/MC.2003.1236471
http://dx.doi.org/10.1109/TMM.2007.907450

S. D. CHEN ET AL.

Copyright © 2012 SciRes. IJCNS

65

Vol. 22, No. 2, 2002, pp. 175-186.
doi:10.1023/A:1019912421877

[35] F. T. H. den Hartog, M. A. Blom, C. R. Lageweg, et al.,
“First Experiences with Personal Networks as an Ena-
bling Platform for Service Providers,” Proceedings of the
Second International Workshop on Personalized Networks,
Philadelphia, 6-10 August 2007, pp. 1-8.

[36] “Marlin Developer Community”.
http://www.marlin-community.com/

[37] “Coral Consortium Cooperation”.

http://www.coral-interop.org/

[38] M. Tjiong and J. J. Lukkien, “An Investigation into Soft-
State Protocol Parameters,” Proceedings of the 2008 Con-
ference on Parallel and Distributed Processing Techni-
ques and Applications, Las Vegas, 14-17 July 2008.

[39] A. Korostelev, J. Lukkien, J. Nesvadba and Y. Qian, “QoS
Management in Distributed Service Oriented Systems,”
Proceedings of 25th International Multi-Conference Par-
allel and Distributed Computing and Networks, Innsbruck,
13-15 February 2007.

