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ABSTRACT 

To ensure the quality of Web applications, Web testing is one of the effective methods. The testing is a process of re-
vealing errors that is used to give confidence that the implementation of a Web application meets its original specifica-
tion. This work proposes a Web testing framework based on Stream X-Machines (SXMs), which provides a way to de-
rive test cases for a Web application. It starts from constructing the SXM model, from which a test translator is em-
ployed to extract the test paths and then translates them into an XML-style test specification, which is the input of test 
engine. The test engine generates test cases and then executes them, and finally produces test report. This testing 
method is a significant contribution to informed research. 
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1. Introduction 

A wide range of important activities are supported by 
Web applications. Given the importance of such activi- 
ties, bad Web applications can have far-ranging conse- 
quences on businesses, economies, scientific progress, health, 
and so on. Web testing is an effective technique to ensure 
the quality of Web applications. Traditional testing ap-
proaches are no longer adequate for Web applications. 
Web applications typically undergo maintenance at a 
faster rate than other software systems and this main- 
tenance often consists of small incremental changes [1]. 
To accommodate such changes, Web testing approaches 
must be automatable and test sets must be adaptable. 
However, Web applications raise important and challeng- 
ing test issues that cannot be solved directly by existing 
test techniques for conventional programs [2,3]. 

The problem of test effectiveness is best addressed if 
the test set can be guaranteed to find all faults of the im- 
plementation. One approach is to consider two algebraic 
objects (the specification and the implementation), each 
of them characterized by an input/output behavior, and to 
prove that, if the behaviors of these objects coincide for 
any input in the test set, they will coincide for any input 
in the domain. Thus, the specification and the implemen- 
tation will be guaranteed to have identical behavior pro- 
vided that they behave identically when supplied with the 
inputs in the test set. A considerable amount of work by 
this approach has been employed in the area of test ge-  

neration for software modelled by Finite State Machines 
(FSMs). Here, the assumption is that the control aspects 
of the software can be somehow separated from the sys- 
tem data and can be modelled as an FSM. However, for 
non-trivial systems, it is usually impossible to describe 
the system control independent of its data processing. 
Furthermore, it may be very difficult, or even impossible, 
to derive the control structure from a system specifica- 
tion, unless appropriate specification languages are used. 
For example, an FSM can be derived from a VDM speci- 
fication only under certain conditions and, even in this 
case, the resulting machine may be of an unmanageable 
size. Therefore, a more complex specification model that 
integrates these two aspects is needed. Such a model is 
the X-machine, a blend of FSMs, data structures and pro- 
cessing functions.  

Essencially, an X-machine is like an FSM, but with 
one important difference: the labels of the transitions are 
(partial) functions instead of abstract symbols. Of parti- 
cular practical importance are those X-machines, called 
Stream X-Machines (SXMs), where these functions pro- 
cess input and output symbols while changing the value 
of an internal memory or data set M. M is often an array 
consisting of fields such as registers, stacks, database 
filestores, etc., so it is possible to model very general sy- 
stems in a transparent way. SXMs are, however, best 
suited for specifying interactive systems such as Web 
applicatiions. 
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We discuss, in this paper, the testing problems for Web 
applications based on SXMs. The SXM-based testing 
method does not rely on the finiteness of the memory set, 
for there is no need to construct the equivalent FSM and 
furthermore, it avoids the state explosion problem. 

2. Stream X-Machines 

SXMs are special instances of the X-machines intro- 
duced in 1974 by S. Eilenberg [4]. They employ a dia- 
grammatic method of modelling control flow by extend- 
ing the expressive power of FSMs. Compared to an FSM, 
instead of using abstract symbols, the labels of the transi- 
tions in a SXM are relations (often partial functions) that 
operate on a basic data set X. The set of these relations, Φ, 
is called the type of the SXM and represents the elemen-
tary operations that the SXM is capable of performing. In 
SXMs, all data are triples consisting of a stream of input 
symbols, a stream of output symbols and an internal me- 
mory value. 

The basic idea is that the SXM has some internal me- 
mory, M, and the stream of inputs determine, depending 
on the current state of control and the current state of the 
memory, the next control state, the next memory state 
and the output value. SXMs [5,6] are a computational 
model capable of representing both the data and the con- 
trol of a system. The computation of the SXM starts in a 
given initial state (control state) and a given state of the 
system’s underlying data set X (the data state). 

In Figure 1, for example, there are a number of paths 
that can be traced out from the initial state q1 and each 
edge is labelled by a relation: φ1, φ2, φ3, etc. Sequences 
of relations are thus derived from each path in the state 
space and these may be composed to produce a relation 
that may be defined on the data state. This is then applied 
to the value x ( X ) providing that the composed relation 
is defined on x. This then gives a new value, x (if there is 
more than one such x, then one will be picked in a non- 
deterministic way) for the data state and a new control 
state. 

Definition 2.1 A Stream X-Machine (SXM) is a nonu-
ple  0, , , , , , , ,Z Q M F I T m    , Where: 
   and   are finite sets called the input alphabet 

and output alphabet respectively. 
 Q is the finite set of states. 
 M is a (possibly) infinite set called memory. 
 Φ is the type, a finite set of distinct non-empty proc-

essing relations of the form : M M    ; Φ is 
often a set of (partial) functions. 

 F is the (partial) next state function (or state transi-
tion function), F: Q × Φ → 2Q; as for finite automata, 
F is usually described by a State Transition Diagram 
(STD). 

 I and T are the sets of initial and terminal states re-
spectively, ,I Q T Q  . 
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Figure 1. The state transition diagram of a SXM. 
 

 m0 is the initial memory value, m M . 0

Thus, SXMs are X-machines, of which each proce- 
ssing relation will read an input symbol, then discard it 
and produce one or more output symbols while (possibly) 
changing the value of the memory. 

Definition 2.2 Given a SXM Z = ( , , Q, M, Φ, F, I, 
T, m0), the finite automaton FAZ = (Φ, Q, F, I, T) over the 
alphabet Φ is called the associated FA of Z. 



It is sometimes helpful to regard an X-machine as a fi-
nite automaton with the arcs labelled by relations from 
the type Φ.  

Definition 2.3 A SXM Z is called completely defined 
if q Q  , m M ,   ,    such that (m, σ) 
dom (φ) and (q, φ)dom (F) hold. 

A completely defined SXM is one, in which there is at 
least one possible transition for any triplet q Q , 
m M ,   . A SXM that is not complete is assumed 
to ignore an input, which does not cause any transition, 
by remaining in the same state with an unchanged me- 
mory value. 

In contrast to FSMs, SXMs are capable of modelling 
non-trivial data structures by employing a memory at- 
tached to the state machine. Moreover, transitions be- 
tween states are not labelled with simple input symbols 
but with processing functions. Processing functions re- 
ceive input symbols and read memory values, and pro- 
duce output symbols while modifying memory values. 
The benefit of adding the memory construct is that the 
state explosion is avoided and the number of states is re- 
duced to those states which are considered critical for the 
correct modelling of the system’s abstract control struc- 
ture. A divide-and-conquer approach to designing allows 
the model to hide some of the complexity in the transi- 
tion functions, which are later exposed as simpler SXMs 
at the next level. 

Apart from being formal and proven to possess the 
computational power of Turing machines [5], SXMs of- 
fer a highly effective testing method for verifying the 
conformance of a system’s implementation against a spe- 
cification. SXM models can be represented in XMDL 
(X-Machine Definition Language), a special-purpose mar-  
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kup language introduced by E. Kapeti and P. Kefalas [7]. 
XMDL has served as a common language for the devel-
opment of numerous tools supporting SXMs [8]. 

3. Testing Generation Based-On Stream 
X-Machines 

A SXM-based testing method [5,9] that extends the W- 
method [10], enables us to derive a complete finite set of 
test cases that is proven to find all faults in the imple- 
mentation. The outcome of the test generation algorithm 
is a finite set of input and expected output sequences. 
The inputs and expected outputs need to be mapped to 
concrete executable test cases that can be processed by a 
testing engine, in order to interact with the Web compo- 
nent under test and provide the results. The main point 
about SXM testing, the type of test generation technique 
discussed here, however, is to establish, not only efficient 
test sets from a specification but also to relate the test 
process to a hierarchical decomposition of the implemen- 
tation in order to make the management of the test pro- 
cess more convenient. 

In this work, it is assumed that a tester applies a test 
sequence as a whole and subsequently checks an output 
sequence produced by an implementation, rather than 
applying an input sequence symbol-by-symbol and ob-
serving output symbols as they come out. 

Definition 3.1 In a SXM Z, if q, , q Q   , and 
 ,q F q  , we say that φ is an arc from q to q’ of Z 

and denote as : q q 
 

. 
In a SXM Z, for , if any other state is reach-

able directly from q, then q is called a to-all state; if any 
other state can not be reached from q, then q is called a 
to-none state; if q is reachable directly from any other 
state, then q is called an all-to state; if q can not be 
reached from any other state, then q is called a none-to 
state; if q is a to-none state, also a none-to state, then q is 
called an isolative (or starved) state. An isolative state is 
not allowed in a Web testing model, for users of a Web 
application can never stay in an isolative state. 

q Q

Definition 3.2 In a SXM Z, if q,  are such that 

1  with q1 = q and  so that φ1: 
q1 → q2, φ2: q2 → q3, , φn: qn → qn+1, we say that we 
have a (test) path p = φ1φn from q to  of Z and 
denote as p: . Each path p = φ1φn gives rise to 
a (partial) function (or the path function) [p]: 

q Q
1nq  1, , nq q  

q 

Q q


q
q

M M    
 ,m s 

 defined by  
[p]  if , 1 ng m, 0 n , ,   , 1,  
, n  , , nm m  , 1  with m1 = m, 1 M 1nm m , 

1s , , n  g  and 1, , n   so that  ,i im i   
, . The functioon corresponding to 

the empty path 
 1 1 i n  ,i im

  is defined by [ ]    , ,m   ,m  
. mM

The sequence of transitions (path) caused by the stream 
of input symbols is called a computation. The computa- 

tion halts when all input symbols are consumed. The re- 
sult of a computation is the sequence of outputs produced 
by this path. 

Example 1. In Figure 1, there are four test paths from 
q1 to q6. These test paths are φ1φ2φ7φ10, φ1φ3φ8φ10, φ1φ5φ9 
and φ1φ5φ6φ8φ10. In each of these test paths, it is usual to 
generate more than one test cases from q1 to q6. 

Definition 3.3 Two deterministic SXMs (DSXMs [4]) 
Z and Z' are called weak testing compatible if they have 
identical input alphabets, output alphabets, memory sets 
and initial memory values. 

Definition 3.4 Two weak testing compatible DSXMs 
are called testing compatible if they have identical types. 

The basic idea of the method is to translate test sets of 
the associated FA into test sets of the DSXM specifica-
tion. SXMs are a subclass of X-machines [4] that extend 
FSMs and are supported by a test generation method that 
is guaranteed to reveal all faults in an implementation 
under test, given that certain realistic conditions hold. 
This works if the DSXM specification satisfies two con-
ditions: input-completeness (i.e., all processing functions 
can be exercised from any memory value using appropri-
ate inputs) and output-distinguishability (i.e., any two 
different processing functions will produce different out- 
puts if applied on the same memory/input pair). 

Definition 3.5 Φ is called input-complete if   , 
m M ,    such that   ,m dom   . 

This condition ensures that any processing function 
can be exercised from any memory value using appropri-
ate input symbols. 

Definition 3.6 A SXM is output-distinguishable if 

1 2,   , 21  , if  and  1 1, ( ,m m   1)
   ,m m2 ,   2 2 1 2 then   . 

The output-distinguishability condition can also be 
descirbed in the following. 

Definition 3.7 Φ is called output-distinguishable if 

1 2,   , (  m M  ,   with 
     ,1 1π , 1 2 1 2πm m        ). 

This says that we must be able to distinguish between 
any two different processing functions by examining out- 
puts. If we cannot then we will not always be able to tell 
them apart. 

These two conditions (output-distinguishability and 
input-completeness) are generally known as design for 
test conditions [9]. The output-distinguishability condi- 
tion ensures that any processing function can be identi- 
fied from the machine computation by examining the 
outputs produced. The input-completeness condition en- 
sures that all sequences of processing functions in the 
associated FA can be exercised using appropriate inputs, 
so they can be tested against the implementation. With- 
out the described conditions, it would be extremely diffi- 
cult to test a Web application properly. For instance, if a 
method generates a particular sequence of functions to  
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execute and there is no corresponding sequence of inputs 
to attempt this sequence, such a sequence cannot be exe- 
cuted. As a result, some faults of the implementation may 
go undetected. 

There are often many test cases in testing a Web ap-
plication, for representing a test set in a reduced way, we 
introduce the following several notations: 
  1 2,tc tc , which says that either tc1 or tc2 is selected 

to execute each time. 
  1 2,tc tc , which says that both tc1 and tc2 are exe-

cuted in any order. 
 1 2,tc tc , which says that both tc1 and tc2 are exe-

cuted and tc1 is executed before tc2. 
For example, a test set may be written as 

   1 2 3 4 5 6 7, , , , , ,tc tc tc tc tc tc tc  , which is the reduced re- 
presentation of these four test sets 1 2 3 4 7, , , ,tc tc tc tc tc , 

1 2 4 3 7, , , ,tc tc tc tc tc , 1 2 5 7, , ,tc tc tc tc  and 1 2 6 7, , ,tc tc tc tc . 
The above-mentioned testing method makes it possible 

to find a test input for every memory value. Instead, it 
could be possible only to use a subset of inputs and 
memory values for testing which could make attempting 
elements of Φ easier in practice. For a relation φ, inputs 
used for testing are denoted Uφ; memory values trav-
ersed during testing are assumed to be contained in 

. Usage of a subset of inputs is only possible if V M
 Memory of an X-machine under test will stay within 

V. 
 It is possible to attempt every relation    using 

a subset of inputs. 
 Outputs from these relations make it possible to dis-

tinguish between them. 
The above three items are formalized using the idea of 

a testing context (V,U) [11]. The purpose of Uφ is to 
contain inputs to attempt φ ( U  ). 

Definition 3.8 Let (V, U) be such that  and V M
U U     . The set Φ is called closed w.r.t (V, 

U) if the following two conditions are satisfied, 
 0m V . 
   , m V , U  , if there is  , m M  

such that ,  ,m m   , then m V . 
Definition 3.9 Let Φ be closed w.r.t. some (V, U) 

where  and V M U U    

and 3.10 are more general than Definitions 3.5 and 3.6 
(or 3.7). 

Definition 3.11 Let  be a non-empty subset of 
memory values and n ≥ 1. The SXM is called n-complete 
w.r.t. V if there exist 0 1 , V0 = V, 
such that for any 

V M

V V 1nV M  
  , 

 if 1nm V   then there exists    such that 
   ,m dom  . 

 if    ,,m m    with 1im V   and  ,m    
 dom   then  m Vi , 1 ≤ i ≤ n − 1. 

The above condition guarantees that any path of length 
at most n of the associated automaton can be exercised 
by an input test sequence from the initial state and an 
initial memory value in V. 

4. A Feasible SXM-Based Web Testing 
Framework 

It is widely accepted that models constitute important 
mechanism in the process of a Web application devel-
opment and help us understand the system by omitting 
some details. 

To test a Web application, test cases must be generated. 
Our test paths produced can be easily employed to con-
struct test cases. A test case defined by our Web testing 
framework (cf. Figure 2) is one test path with user input 
values. So, a test path may be used to construct multiple 
test cases if only the tester provides different user input 
values. Our test specification is an extended version of 
the one described in [12], where the specification is de-
picted using XML. The test specification is based on re- 
quest specification, response specification, and predicate 
definition. Request specification specifies a pattern of 
HTTP requests, while response specification specifies the 
assertions on the HTTP response generated from the 
HTTP request in the same test step, and finally, the pre- 
dicate definition specifies the assertions on the results of 
testing. 

The Web testing framework extends the testing appro- 
ach proposed by X. Jia, et al. [12]. At the beginning, the 
SXM is constructed through the commonly-used requir- 
ing and analyzing methods of Web applications. The test 
translator of the testing framework extracts component 
relations from the SXM. It then translates the test paths 
into test script frame (of test specification). This frame 
defines the test set, containing test cases. Every test case 
is a sequence of test steps. Each test step is for one com- 
ponent to be verified. Every test step defines HTTP re- 
quests, expected response and predicates with condition 
definitions (such as <not>, <and>, <or>, <match>, and 
<forall>). The test script frame does not contain values 
for input variables, since they will be added later. Some 
inputs have to be created by hand, including user ids and 
passwords. Other inputs are either automatically extracted 

 . Then Φ is 
input-complete w.r.t (V, U) if   , m V , 

U    such that  ,m dom    . 
Definition 3.10 Let Φ be closed w.r.t some (V, U) 

where  and V M U U      . Then Φ is 
output-distinguishable w.r.t (V, U) if 1 2,  

 
 , 

, m V     1 2 2dom U dom 1U       , 
  1 2,m m 
  2 ,m  

, . if 1 1 and 
, then φ1 = φ2. 

V   ,m m   
, m

,

2

For V = M and a DSXM, the above two definitions 
reduce to input-completeness and output-distinguisha- 
bility; the set Φ of any SXM is closed w.r.t (M,  ) by 
definition of a SXM. For these reasons, Definitions 3.9  
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Figure 2. A SXM-based web testing framework. 
 
from the HTML files or randomly generated. Moreover, 
the test script frame does not contain hard-coded ex- 
pected output, that is to say, the Web testing framework 
defines frames with empty response, since they will be 
filled manually by the tester. 

After editing the necessary information of the test scri- 
pt frame, the tester gets a formal XML-style specification, 
which is the input to test engine. The specification con-
tains templates of test cases. Test engine includes a test 
case generation engine (test generator) that is able to de-
termine the test paths from the test specification, and to 
generate test cases from it, provided that a test criterion is 
specified. Generated test cases are sequences of links 
which, once executed, grant the coverage of the selected 
criterion. Then the test engine executes the test cases and 
validates its result against the test oracles specified as ex- 
pected result. That is to say, test engine’s test executor 
can now provide the link sequences of each test case to 
the Web server, attaching proper inputs to each form. 
After the execution, test engine produces a test report 
summarizing the results of all test cases. For such evalu- 
ation, the tester opens the output pages on a Web browser 
and checks whether the output is correct for each given 
input. By the way, the test engine behaves as a Web cli- 
ent accessing the Web application. 

5. Related Work 

Many Web testing challenges are discussed in [2,13], and 
a number of Web testing techniques for Web applications 
have been already proposed [14-21], each of which has 
different origins and pursues different test goals for deal- 
ing with the unique characteristics of Web applications. 

Andrews, et al. [15] illustrated an approach to model- 
ing and testing Web applications based on FSMs after 
analyzing eight kinds of connections among Web pages 
and software components of Web applications. They par- 
titioned a Web application into several functional clusters 
and logical pages, and tried to use hierarchical constrained 
FSMs to represent the logical pages and their navigations. 
However, the interactions and composition of compo- 

nents are not considered further. 
Elbaum, et al. [17] proposed a method to use what 

they called user session data to generate test cases for 
Web applications. Instead of looking at the data kept in 
J2EE servlet session, their user session data is the input 
data collected and remembered from previous user ses-
sions. The user session data is captured from HTML 
forms and includes name-value pairs. Our approach is 
flexible, and the user input data can be produced by vari- 
ous methods presented by existing research work. 

Ricca and Tonella [18] suggested a UML model of 
Web applications and proposed that all paths that satisfy 
selected criteria should be tested. They also presented an 
analysis model and corresponding testing strategy. Their 
strategy is mainly based on static Web page analysis and 
some preliminary dynamic analysis. Liu, et al. [19] ex- 
tended traditional data flow testing techniques to support 
Web application testing. A test model, WATM, which 
consists of an object model and a structure model, is pre- 
sented to capture the data flow information of Web appli- 
cations. These studies [18,19] consider only the underly- 
ing structure and semantics of Web applications towards 
a white-box testing approach. They focus on the internal 
structural aspect and involve in the details of a Web ap-
plication. 

Object driven performance testing was proposed by 
Subraya and Subrahmanya [20]. They illustrated a new 
testing process that employs the concept of decomposing 
the behavior of a Web application into testable compo-
nents. 

A survey of Web application testing was given by 
Lucca and Fasolino [3]. They presented the main differ- 
rences between Web applications and traditional ones, 
how these differences impact the testing of the former, 
and some relevant contributions in the field of Web ap-
plication testing developed in recent years. 

SXM-based testing has been developed in various di-
rections. Moreover, numerous case studies have been ca- 
rried out to establish if the approach is actually practical. 
Thus, a number of systems have been specified as SXMs 
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and the tests produced by the approach used to validate 
the implementations. 

Kourtesis, et al. [22] presented an approach towards 
effective service discovery and selection. They employed 
SXMs as a powerful modelling formalism for construct-
ing the behavioural specification of a Web service, for 
performing verification through the generation of exhau- 
stive test cases, and for performing validation through 
animation or model checking during service selection. 

Ipate and Holcombe [23] provided a new variant of the 
SXM-based testing method that no longer depends on the 
size of a controllable model of the IUT. In data processing- 
oriented applications, the new method can drastically 
reduce the size of the test suite produced at the expense 
of a (possibly) more complex generation process. 

Merayo, et al. [24] presented a formal testing frame- 
work for systems where timeouts are critical. The model 
introduced for specifying the systems is a suitable exten- 
sion of the classical concept of SXM. They introduced a 
notion of test that can delay the execution of the imple- 
mentation and also proposed an algorithm to derive sound 
and complete test sets. 

Bogdanov, et al. [25] described the X-machine testing 
method and its use for testing of different types of sys- 
tems, both in terms of theory and practical outcomes. 
They surveyed the extensions of the X-machine testing 
method for testing of functions together with testing of a 
transition diagram, equivalence testing of a non-deter- 
ministic implementation against a non-deterministic spe- 
cification, conformance testing of a deterministic imple- 
mentation against a non-deterministic specification and 
equivalence testing of a system of concurrently executing 
and communicating X-machines, against a specification. 

Ipate and Gheorghe [26] presented the complete non- 
deterministic SXM (NSXM) testing method to generalize 
the NSXM integration testing method. It no longer re- 
quires implementations of the processing relations to be 
proved correct before integration testing can take place. 
Instead, the testing of processing relations is performed 
along with the integration testing. The authors also showed 
how a SXM model of a P system can be obtained and 
how the NSXM testing approach can be applied to gene- 
rate conformance test sets for the P system. 

6. Conclusions and Future Work 

Testing aims at finding errors in the tested object and 
giving confidence in its correct behavior by executing the 
tested object with selected input values. At present, there 
are no systematic method and tool that are employed to 
test Web applications efficiently. The improved tradition- 
al methods or a new method appropriate for Web appli- 
cation testing are desired urgently for all the characteris- 
tics of Web applications. Since the current testing meth- 
ods depend primarily on the testers’ intuition and ex- 

perience, the testing of Web applications is regarded as a 
time-consuming and expensive process. Therefore, a new 
methodology for Web testing is required imminently to 
automate the testing. 

The features of Web applications make traditional co- 
verage-based [27] or partition-based testing inappropriate 
(or inadequate) for Web applications. The proposed 
SXM model can capture information about control flow, 
data flow, transaction processing and associated usage as 
well as criticality information. Test cases can be produced 
by following the states and state transitions in SXM to 
select individual operations (states) and link them (tran- 
sitions) together to form overall end-to-end operations. 

There is the famous 80 - 20 rule declaring that typical 
software spends 80 percent of the time executing 20 per- 
cent of the code. That means different portions of soft- 
ware are executed with a higher frequency than others. 
Statistical usage testing, often originally referred to the 
work by Adams [28], aims to identify these portions and 
adjusts test suites subjecting more frequently executed 
parts to more thorough testing. It is often important, how- 
ever, to ensure the exercise of specific operations of the 
software irrespective of their usage probabilities. Two 
examples are operations of high criticality due to poten- 
tial impacts of a failure and those implemented by new 
software. 

One of the challenging steps planed for further re- 
search is to combine SXM-based testing with statistical 
usage testing for Web application testing. Another criti- 
cal problem of test generation is adequacy criteria. This 
problem should also be considered In Web testing. How- 
ever, this work doesn’t cover it. It may be discussed in 
testing generation approach in the future research. 
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