
Journal of Software Engineering and Applications, 2012, 5, 7-13
http://dx.doi.org/10.4236/jsea.2012.51002 Published Online January 2012 (http://www.SciRP.org/journal/jsea)

7

Web Testing Generation: A Stream X-Machine Based
Approach

Zhongsheng Qian1,2

1School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, China; 2Strong Digital Technology
Co., Ltd., Nanchang, China.
Email: changesme@163.com

Received November 26th, 2011; revised December 31st, 2011; accepted January 1st, 2012

ABSTRACT

To ensure the quality of Web applications, Web testing is one of the effective methods. The testing is a process of re-
vealing errors that is used to give confidence that the implementation of a Web application meets its original specifica-
tion. This work proposes a Web testing framework based on Stream X-Machines (SXMs), which provides a way to de-
rive test cases for a Web application. It starts from constructing the SXM model, from which a test translator is em-
ployed to extract the test paths and then translates them into an XML-style test specification, which is the input of test
engine. The test engine generates test cases and then executes them, and finally produces test report. This testing
method is a significant contribution to informed research.

Keywords: Web Application; SXM (Stream X-Machine); FSM (Finite State Machine); Test Case; Testing Framework

1. Introduction

A wide range of important activities are supported by
Web applications. Given the importance of such activi-
ties, bad Web applications can have far-ranging conse-
quences on businesses, economies, scientific progress, health,
and so on. Web testing is an effective technique to ensure
the quality of Web applications. Traditional testing ap-
proaches are no longer adequate for Web applications.
Web applications typically undergo maintenance at a
faster rate than other software systems and this main-
tenance often consists of small incremental changes [1].
To accommodate such changes, Web testing approaches
must be automatable and test sets must be adaptable.
However, Web applications raise important and challeng-
ing test issues that cannot be solved directly by existing
test techniques for conventional programs [2,3].

The problem of test effectiveness is best addressed if
the test set can be guaranteed to find all faults of the im-
plementation. One approach is to consider two algebraic
objects (the specification and the implementation), each
of them characterized by an input/output behavior, and to
prove that, if the behaviors of these objects coincide for
any input in the test set, they will coincide for any input
in the domain. Thus, the specification and the implemen-
tation will be guaranteed to have identical behavior pro-
vided that they behave identically when supplied with the
inputs in the test set. A considerable amount of work by
this approach has been employed in the area of test ge-

neration for software modelled by Finite State Machines
(FSMs). Here, the assumption is that the control aspects
of the software can be somehow separated from the sys-
tem data and can be modelled as an FSM. However, for
non-trivial systems, it is usually impossible to describe
the system control independent of its data processing.
Furthermore, it may be very difficult, or even impossible,
to derive the control structure from a system specifica-
tion, unless appropriate specification languages are used.
For example, an FSM can be derived from a VDM speci-
fication only under certain conditions and, even in this
case, the resulting machine may be of an unmanageable
size. Therefore, a more complex specification model that
integrates these two aspects is needed. Such a model is
the X-machine, a blend of FSMs, data structures and pro-
cessing functions.

Essencially, an X-machine is like an FSM, but with
one important difference: the labels of the transitions are
(partial) functions instead of abstract symbols. Of parti-
cular practical importance are those X-machines, called
Stream X-Machines (SXMs), where these functions pro-
cess input and output symbols while changing the value
of an internal memory or data set M. M is often an array
consisting of fields such as registers, stacks, database
filestores, etc., so it is possible to model very general sy-
stems in a transparent way. SXMs are, however, best
suited for specifying interactive systems such as Web
applicatiions.

Copyright © 2012 SciRes. JSEA

Web Testing Generation: A Stream X-Machine Based Approach 8

We discuss, in this paper, the testing problems for Web
applications based on SXMs. The SXM-based testing
method does not rely on the finiteness of the memory set,
for there is no need to construct the equivalent FSM and
furthermore, it avoids the state explosion problem.

2. Stream X-Machines

SXMs are special instances of the X-machines intro-
duced in 1974 by S. Eilenberg [4]. They employ a dia-
grammatic method of modelling control flow by extend-
ing the expressive power of FSMs. Compared to an FSM,
instead of using abstract symbols, the labels of the transi-
tions in a SXM are relations (often partial functions) that
operate on a basic data set X. The set of these relations, Φ,
is called the type of the SXM and represents the elemen-
tary operations that the SXM is capable of performing. In
SXMs, all data are triples consisting of a stream of input
symbols, a stream of output symbols and an internal me-
mory value.

The basic idea is that the SXM has some internal me-
mory, M, and the stream of inputs determine, depending
on the current state of control and the current state of the
memory, the next control state, the next memory state
and the output value. SXMs [5,6] are a computational
model capable of representing both the data and the con-
trol of a system. The computation of the SXM starts in a
given initial state (control state) and a given state of the
system’s underlying data set X (the data state).

In Figure 1, for example, there are a number of paths
that can be traced out from the initial state q1 and each
edge is labelled by a relation: φ1, φ2, φ3, etc. Sequences
of relations are thus derived from each path in the state
space and these may be composed to produce a relation
that may be defined on the data state. This is then applied
to the value x (X) providing that the composed relation
is defined on x. This then gives a new value, x (if there is
more than one such x, then one will be picked in a non-
deterministic way) for the data state and a new control
state.

Definition 2.1 A Stream X-Machine (SXM) is a nonu-
ple  0, , , , , , , ,Z Q M F I T m    , Where:
  and  are finite sets called the input alphabet

and output alphabet respectively.
 Q is the finite set of states.
 M is a (possibly) infinite set called memory.
 Φ is the type, a finite set of distinct non-empty proc-

essing relations of the form : M M    ; Φ is
often a set of (partial) functions.

 F is the (partial) next state function (or state transi-
tion function), F: Q × Φ → 2Q; as for finite automata,
F is usually described by a State Transition Diagram
(STD).

 I and T are the sets of initial and terminal states re-
spectively, ,I Q T Q  .

φ12

φ1

φ11

φ5
φ4

φ7

φ8

φ2

φ10

φ9

φ3

φ6

q1

q4 q3q2

q5 q6 q7

Figure 1. The state transition diagram of a SXM.

 m0 is the initial memory value, m M . 0

Thus, SXMs are X-machines, of which each proce-
ssing relation will read an input symbol, then discard it
and produce one or more output symbols while (possibly)
changing the value of the memory.

Definition 2.2 Given a SXM Z = ( , , Q, M, Φ, F, I,
T, m0), the finite automaton FAZ = (Φ, Q, F, I, T) over the
alphabet Φ is called the associated FA of Z.



It is sometimes helpful to regard an X-machine as a fi-
nite automaton with the arcs labelled by relations from
the type Φ.

Definition 2.3 A SXM Z is called completely defined
if q Q  , m M ,   ,   such that (m, σ)
dom (φ) and (q, φ)dom (F) hold.

A completely defined SXM is one, in which there is at
least one possible transition for any triplet q Q ,
m M ,   . A SXM that is not complete is assumed
to ignore an input, which does not cause any transition,
by remaining in the same state with an unchanged me-
mory value.

In contrast to FSMs, SXMs are capable of modelling
non-trivial data structures by employing a memory at-
tached to the state machine. Moreover, transitions be-
tween states are not labelled with simple input symbols
but with processing functions. Processing functions re-
ceive input symbols and read memory values, and pro-
duce output symbols while modifying memory values.
The benefit of adding the memory construct is that the
state explosion is avoided and the number of states is re-
duced to those states which are considered critical for the
correct modelling of the system’s abstract control struc-
ture. A divide-and-conquer approach to designing allows
the model to hide some of the complexity in the transi-
tion functions, which are later exposed as simpler SXMs
at the next level.

Apart from being formal and proven to possess the
computational power of Turing machines [5], SXMs of-
fer a highly effective testing method for verifying the
conformance of a system’s implementation against a spe-
cification. SXM models can be represented in XMDL
(X-Machine Definition Language), a special-purpose mar-

Copyright © 2012 SciRes. JSEA

Web Testing Generation: A Stream X-Machine Based Approach 9

kup language introduced by E. Kapeti and P. Kefalas [7].
XMDL has served as a common language for the devel-
opment of numerous tools supporting SXMs [8].

3. Testing Generation Based-On Stream
X-Machines

A SXM-based testing method [5,9] that extends the W-
method [10], enables us to derive a complete finite set of
test cases that is proven to find all faults in the imple-
mentation. The outcome of the test generation algorithm
is a finite set of input and expected output sequences.
The inputs and expected outputs need to be mapped to
concrete executable test cases that can be processed by a
testing engine, in order to interact with the Web compo-
nent under test and provide the results. The main point
about SXM testing, the type of test generation technique
discussed here, however, is to establish, not only efficient
test sets from a specification but also to relate the test
process to a hierarchical decomposition of the implemen-
tation in order to make the management of the test pro-
cess more convenient.

In this work, it is assumed that a tester applies a test
sequence as a whole and subsequently checks an output
sequence produced by an implementation, rather than
applying an input sequence symbol-by-symbol and ob-
serving output symbols as they come out.

Definition 3.1 In a SXM Z, if q, , q Q   , and
 ,q F q  , we say that φ is an arc from q to q’ of Z

and denote as : q q 
 

.
In a SXM Z, for , if any other state is reach-

able directly from q, then q is called a to-all state; if any
other state can not be reached from q, then q is called a
to-none state; if q is reachable directly from any other
state, then q is called an all-to state; if q can not be
reached from any other state, then q is called a none-to
state; if q is a to-none state, also a none-to state, then q is
called an isolative (or starved) state. An isolative state is
not allowed in a Web testing model, for users of a Web
application can never stay in an isolative state.

q Q

Definition 3.2 In a SXM Z, if q, are such that

1 with q1 = q and so that φ1:
q1 → q2, φ2: q2 → q3, , φn: qn → qn+1, we say that we
have a (test) path p = φ1φn from q to of Z and
denote as p: . Each path p = φ1φn gives rise to
a (partial) function (or the path function) [p]:

q Q
1nq  1, , nq q  

q 

Q q


q
q

M M    
 ,m s 

 defined by
[p] if , 1 ng m, 0 n , ,   , 1,
, n  , , nm m  , 1 with m1 = m, 1 M 1nm m ,

1s , , n  g and 1, , n  so that  ,i im i 
, . The functioon corresponding to

the empty path
 1 1 i n  ,i im

 is defined by []    , ,m   ,m
. mM

The sequence of transitions (path) caused by the stream
of input symbols is called a computation. The computa-

tion halts when all input symbols are consumed. The re-
sult of a computation is the sequence of outputs produced
by this path.

Example 1. In Figure 1, there are four test paths from
q1 to q6. These test paths are φ1φ2φ7φ10, φ1φ3φ8φ10, φ1φ5φ9
and φ1φ5φ6φ8φ10. In each of these test paths, it is usual to
generate more than one test cases from q1 to q6.

Definition 3.3 Two deterministic SXMs (DSXMs [4])
Z and Z' are called weak testing compatible if they have
identical input alphabets, output alphabets, memory sets
and initial memory values.

Definition 3.4 Two weak testing compatible DSXMs
are called testing compatible if they have identical types.

The basic idea of the method is to translate test sets of
the associated FA into test sets of the DSXM specifica-
tion. SXMs are a subclass of X-machines [4] that extend
FSMs and are supported by a test generation method that
is guaranteed to reveal all faults in an implementation
under test, given that certain realistic conditions hold.
This works if the DSXM specification satisfies two con-
ditions: input-completeness (i.e., all processing functions
can be exercised from any memory value using appropri-
ate inputs) and output-distinguishability (i.e., any two
different processing functions will produce different out-
puts if applied on the same memory/input pair).

Definition 3.5 Φ is called input-complete if   ,
m M ,   such that   ,m dom   .

This condition ensures that any processing function
can be exercised from any memory value using appropri-
ate input symbols.

Definition 3.6 A SXM is output-distinguishable if

1 2,   , 21  , if and  1 1, (,m m   1)
   ,m m2 ,   2 2 1 2 then   .

The output-distinguishability condition can also be
descirbed in the following.

Definition 3.7 Φ is called output-distinguishable if

1 2,   , ( m M  ,  with
     ,1 1π , 1 2 1 2πm m       ).

This says that we must be able to distinguish between
any two different processing functions by examining out-
puts. If we cannot then we will not always be able to tell
them apart.

These two conditions (output-distinguishability and
input-completeness) are generally known as design for
test conditions [9]. The output-distinguishability condi-
tion ensures that any processing function can be identi-
fied from the machine computation by examining the
outputs produced. The input-completeness condition en-
sures that all sequences of processing functions in the
associated FA can be exercised using appropriate inputs,
so they can be tested against the implementation. With-
out the described conditions, it would be extremely diffi-
cult to test a Web application properly. For instance, if a
method generates a particular sequence of functions to

Copyright © 2012 SciRes. JSEA

Web Testing Generation: A Stream X-Machine Based Approach 10

execute and there is no corresponding sequence of inputs
to attempt this sequence, such a sequence cannot be exe-
cuted. As a result, some faults of the implementation may
go undetected.

There are often many test cases in testing a Web ap-
plication, for representing a test set in a reduced way, we
introduce the following several notations:
  1 2,tc tc , which says that either tc1 or tc2 is selected

to execute each time.
  1 2,tc tc , which says that both tc1 and tc2 are exe-

cuted in any order.
 1 2,tc tc , which says that both tc1 and tc2 are exe-

cuted and tc1 is executed before tc2.
For example, a test set may be written as

   1 2 3 4 5 6 7, , , , , ,tc tc tc tc tc tc tc  , which is the reduced re-
presentation of these four test sets 1 2 3 4 7, , , ,tc tc tc tc tc ,

1 2 4 3 7, , , ,tc tc tc tc tc , 1 2 5 7, , ,tc tc tc tc and 1 2 6 7, , ,tc tc tc tc .
The above-mentioned testing method makes it possible

to find a test input for every memory value. Instead, it
could be possible only to use a subset of inputs and
memory values for testing which could make attempting
elements of Φ easier in practice. For a relation φ, inputs
used for testing are denoted Uφ; memory values trav-
ersed during testing are assumed to be contained in

. Usage of a subset of inputs is only possible if V M
 Memory of an X-machine under test will stay within

V.
 It is possible to attempt every relation   using

a subset of inputs.
 Outputs from these relations make it possible to dis-

tinguish between them.
The above three items are formalized using the idea of

a testing context (V,U) [11]. The purpose of Uφ is to
contain inputs to attempt φ (U ).

Definition 3.8 Let (V, U) be such that and V M
U U     . The set Φ is called closed w.r.t (V,

U) if the following two conditions are satisfied,
 0m V .
   , m V , U  , if there is  , m M

such that ,  ,m m   , then m V .
Definition 3.9 Let Φ be closed w.r.t. some (V, U)

where and V M U U    

and 3.10 are more general than Definitions 3.5 and 3.6
(or 3.7).

Definition 3.11 Let be a non-empty subset of
memory values and n ≥ 1. The SXM is called n-complete
w.r.t. V if there exist 0 1 , V0 = V,
such that for any

V M

V V 1nV M  
  ,

 if 1nm V  then there exists   such that
   ,m dom  . 

 if    ,,m m   with 1im V  and  ,m  
 dom  then m Vi , 1 ≤ i ≤ n − 1.

The above condition guarantees that any path of length
at most n of the associated automaton can be exercised
by an input test sequence from the initial state and an
initial memory value in V.

4. A Feasible SXM-Based Web Testing
Framework

It is widely accepted that models constitute important
mechanism in the process of a Web application devel-
opment and help us understand the system by omitting
some details.

To test a Web application, test cases must be generated.
Our test paths produced can be easily employed to con-
struct test cases. A test case defined by our Web testing
framework (cf. Figure 2) is one test path with user input
values. So, a test path may be used to construct multiple
test cases if only the tester provides different user input
values. Our test specification is an extended version of
the one described in [12], where the specification is de-
picted using XML. The test specification is based on re-
quest specification, response specification, and predicate
definition. Request specification specifies a pattern of
HTTP requests, while response specification specifies the
assertions on the HTTP response generated from the
HTTP request in the same test step, and finally, the pre-
dicate definition specifies the assertions on the results of
testing.

The Web testing framework extends the testing appro-
ach proposed by X. Jia, et al. [12]. At the beginning, the
SXM is constructed through the commonly-used requir-
ing and analyzing methods of Web applications. The test
translator of the testing framework extracts component
relations from the SXM. It then translates the test paths
into test script frame (of test specification). This frame
defines the test set, containing test cases. Every test case
is a sequence of test steps. Each test step is for one com-
ponent to be verified. Every test step defines HTTP re-
quests, expected response and predicates with condition
definitions (such as <not>, <and>, <or>, <match>, and
<forall>). The test script frame does not contain values
for input variables, since they will be added later. Some
inputs have to be created by hand, including user ids and
passwords. Other inputs are either automatically extracted

 . Then Φ is
input-complete w.r.t (V, U) if   , m V ,

U   such that  ,m dom    .
Definition 3.10 Let Φ be closed w.r.t some (V, U)

where and V M U U      . Then Φ is
output-distinguishable w.r.t (V, U) if 1 2,  

 
 ,

, m V     1 2 2dom U dom 1U       ,
  1 2,m m 
  2 ,m  

, . if 1 1 and
, then φ1 = φ2.

V   ,m m   
, m

,

2

For V = M and a DSXM, the above two definitions
reduce to input-completeness and output-distinguisha-
bility; the set Φ of any SXM is closed w.r.t (M, ) by
definition of a SXM. For these reasons, Definitions 3.9

Copyright © 2012 SciRes. JSEA

Web Testing Generation: A Stream X-Machine Based Approach

Copyright © 2012 SciRes. JSEA

11

test engine SXM

test
spec.

test
report

Web
application

access

produce

inputtranslate

analyze

Test
generator

Test
executor

edit

Test
translator

extract

Figure 2. A SXM-based web testing framework.

from the HTML files or randomly generated. Moreover,
the test script frame does not contain hard-coded ex-
pected output, that is to say, the Web testing framework
defines frames with empty response, since they will be
filled manually by the tester.

After editing the necessary information of the test scri-
pt frame, the tester gets a formal XML-style specification,
which is the input to test engine. The specification con-
tains templates of test cases. Test engine includes a test
case generation engine (test generator) that is able to de-
termine the test paths from the test specification, and to
generate test cases from it, provided that a test criterion is
specified. Generated test cases are sequences of links
which, once executed, grant the coverage of the selected
criterion. Then the test engine executes the test cases and
validates its result against the test oracles specified as ex-
pected result. That is to say, test engine’s test executor
can now provide the link sequences of each test case to
the Web server, attaching proper inputs to each form.
After the execution, test engine produces a test report
summarizing the results of all test cases. For such evalu-
ation, the tester opens the output pages on a Web browser
and checks whether the output is correct for each given
input. By the way, the test engine behaves as a Web cli-
ent accessing the Web application.

5. Related Work

Many Web testing challenges are discussed in [2,13], and
a number of Web testing techniques for Web applications
have been already proposed [14-21], each of which has
different origins and pursues different test goals for deal-
ing with the unique characteristics of Web applications.

Andrews, et al. [15] illustrated an approach to model-
ing and testing Web applications based on FSMs after
analyzing eight kinds of connections among Web pages
and software components of Web applications. They par-
titioned a Web application into several functional clusters
and logical pages, and tried to use hierarchical constrained
FSMs to represent the logical pages and their navigations.
However, the interactions and composition of compo-

nents are not considered further.
Elbaum, et al. [17] proposed a method to use what

they called user session data to generate test cases for
Web applications. Instead of looking at the data kept in
J2EE servlet session, their user session data is the input
data collected and remembered from previous user ses-
sions. The user session data is captured from HTML
forms and includes name-value pairs. Our approach is
flexible, and the user input data can be produced by vari-
ous methods presented by existing research work.

Ricca and Tonella [18] suggested a UML model of
Web applications and proposed that all paths that satisfy
selected criteria should be tested. They also presented an
analysis model and corresponding testing strategy. Their
strategy is mainly based on static Web page analysis and
some preliminary dynamic analysis. Liu, et al. [19] ex-
tended traditional data flow testing techniques to support
Web application testing. A test model, WATM, which
consists of an object model and a structure model, is pre-
sented to capture the data flow information of Web appli-
cations. These studies [18,19] consider only the underly-
ing structure and semantics of Web applications towards
a white-box testing approach. They focus on the internal
structural aspect and involve in the details of a Web ap-
plication.

Object driven performance testing was proposed by
Subraya and Subrahmanya [20]. They illustrated a new
testing process that employs the concept of decomposing
the behavior of a Web application into testable compo-
nents.

A survey of Web application testing was given by
Lucca and Fasolino [3]. They presented the main differ-
rences between Web applications and traditional ones,
how these differences impact the testing of the former,
and some relevant contributions in the field of Web ap-
plication testing developed in recent years.

SXM-based testing has been developed in various di-
rections. Moreover, numerous case studies have been ca-
rried out to establish if the approach is actually practical.
Thus, a number of systems have been specified as SXMs

Web Testing Generation: A Stream X-Machine Based Approach 12

and the tests produced by the approach used to validate
the implementations.

Kourtesis, et al. [22] presented an approach towards
effective service discovery and selection. They employed
SXMs as a powerful modelling formalism for construct-
ing the behavioural specification of a Web service, for
performing verification through the generation of exhau-
stive test cases, and for performing validation through
animation or model checking during service selection.

Ipate and Holcombe [23] provided a new variant of the
SXM-based testing method that no longer depends on the
size of a controllable model of the IUT. In data processing-
oriented applications, the new method can drastically
reduce the size of the test suite produced at the expense
of a (possibly) more complex generation process.

Merayo, et al. [24] presented a formal testing frame-
work for systems where timeouts are critical. The model
introduced for specifying the systems is a suitable exten-
sion of the classical concept of SXM. They introduced a
notion of test that can delay the execution of the imple-
mentation and also proposed an algorithm to derive sound
and complete test sets.

Bogdanov, et al. [25] described the X-machine testing
method and its use for testing of different types of sys-
tems, both in terms of theory and practical outcomes.
They surveyed the extensions of the X-machine testing
method for testing of functions together with testing of a
transition diagram, equivalence testing of a non-deter-
ministic implementation against a non-deterministic spe-
cification, conformance testing of a deterministic imple-
mentation against a non-deterministic specification and
equivalence testing of a system of concurrently executing
and communicating X-machines, against a specification.

Ipate and Gheorghe [26] presented the complete non-
deterministic SXM (NSXM) testing method to generalize
the NSXM integration testing method. It no longer re-
quires implementations of the processing relations to be
proved correct before integration testing can take place.
Instead, the testing of processing relations is performed
along with the integration testing. The authors also showed
how a SXM model of a P system can be obtained and
how the NSXM testing approach can be applied to gene-
rate conformance test sets for the P system.

6. Conclusions and Future Work

Testing aims at finding errors in the tested object and
giving confidence in its correct behavior by executing the
tested object with selected input values. At present, there
are no systematic method and tool that are employed to
test Web applications efficiently. The improved tradition-
al methods or a new method appropriate for Web appli-
cation testing are desired urgently for all the characteris-
tics of Web applications. Since the current testing meth-
ods depend primarily on the testers’ intuition and ex-

perience, the testing of Web applications is regarded as a
time-consuming and expensive process. Therefore, a new
methodology for Web testing is required imminently to
automate the testing.

The features of Web applications make traditional co-
verage-based [27] or partition-based testing inappropriate
(or inadequate) for Web applications. The proposed
SXM model can capture information about control flow,
data flow, transaction processing and associated usage as
well as criticality information. Test cases can be produced
by following the states and state transitions in SXM to
select individual operations (states) and link them (tran-
sitions) together to form overall end-to-end operations.

There is the famous 80 - 20 rule declaring that typical
software spends 80 percent of the time executing 20 per-
cent of the code. That means different portions of soft-
ware are executed with a higher frequency than others.
Statistical usage testing, often originally referred to the
work by Adams [28], aims to identify these portions and
adjusts test suites subjecting more frequently executed
parts to more thorough testing. It is often important, how-
ever, to ensure the exercise of specific operations of the
software irrespective of their usage probabilities. Two
examples are operations of high criticality due to poten-
tial impacts of a failure and those implemented by new
software.

One of the challenging steps planed for further re-
search is to combine SXM-based testing with statistical
usage testing for Web application testing. Another criti-
cal problem of test generation is adequacy criteria. This
problem should also be considered In Web testing. How-
ever, this work doesn’t cover it. It may be discussed in
testing generation approach in the future research.

7. Acknowledgements

This work is financially supported by the National Natu-
ral Science Foundation of China (NSFC) under grant No.
61163007, the Jiangxi Provincial Natural Science Foun-
dation of China under Grant No. 2010GQS0048, the Nu-
clear High Base Special Funds under Grant No. 2010
ZX01045-001-001 and the School Foundation of Jiangxi
University of Finance & Economics of China under
Grant No. 05072015.

REFERENCES
[1] E. Kirda, M. Jazayeri and C. Kerer, et al., “Experiences in

Engineering Flexible Web Services,” IEEE MultiMedia,
Vol. 8, No. 1, 2001, pp. 58-65. doi:10.1109/93.923954

[2] E. Hieatt and R. Mee, “Going Faster: Testing the Web
Application,” IEEE Software, 2002, pp. 60-65.
doi:10.1109/52.991333

[3] G. A. D. Lucca and A. R. Fasolino, “Testing Web-Based
Applications: The State of the Art and Future Trends,”

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/93.923954
http://dx.doi.org/10.1109/52.991333

Web Testing Generation: A Stream X-Machine Based Approach

Copyright © 2012 SciRes. JSEA

13

Information and Software Technology, Vol. 48, No. 6,
2006, pp. 1172-1186. doi:10.1016/j.infsof.2006.06.006

[4] S. Eilenberg, “Automata, Languages and Machines,” Vol.
A, Academic Press, New York, 1974.

[5] M. Holcombe and F. Ipate, “Correct Systems: Building
Business Process Solutions,” Springer Verlag, Berlin,
1998.

[6] G. Laycock, “The Theory and Practice of Specifica-
tion-Based Software Testing,” Ph.D. Thesis, Sheffield
University, Sheffield, 1993.

[7] E. Kapeti and P. Kefalas, “A Design Language and Tool
for X-Machine Specification,” In: D. Fotiadis and S. Ni-
kolopoulos, Eds., Advances in Informatics, World Scien-
tific, 2000, pp. 134-145.

[8] P. Kefalas, G. Eleftherakis and A. Sotiriadou, “Develop-
ing Tools for Formal Methods,” Proceedings of the 9th
Panhellenic Conference in Informatics, 2003, pp.
625-639.

[9] F. Ipate and M. Holcombe, “An Integration Testing
Method That Is Proven to Find All Faults,” International
Journal of Computer Mathematics, Vol. 63, 1997, pp.
159-178. doi:10.1080/00207169708804559

[10] T. S. Chow, “Testing Software Design Modelled by Fi-
nite State Machines,” IEEE Transactions on Software
Engineering, Vol. 4, No. 3, 1978, pp. 178-187.
doi:10.1109/TSE.1978.231496

[11] F. Ipate and M. Holcombe, “Generating Test Sequences
from Non-Deterministic Generalized Stream X-Ma-
chines,” Formal Aspects of Computing, Vol. 12, No. 6,
2000, pp. 443-458. doi:10.1007/s001650070004

[12] X. Jia, H. Liu and L. Qin, “Formal Structured Specifica-
tion for Web Applications Testing,” 2003 Midwest Soft-
ware Engineering Conference, Chicago, 2003.

[13] G. A. Stout, “Testing a Website: Best Practices,” A
Whitepaper, 2011. http://www.reveregroup.com

[14] Z. S. Qian, “An Approach to Testing Web Applications
Based on Probable FSM,” 2009 International Forum on
Information Technology and Applications, Chengdu,
2009, pp. 519-522.

[15] A. Andrews, J. Offutt and R. Alexander, “Testing Web
Applications by Modeling with FSMs,” Software Systems
and Modeling, Vol. 4, No. 3, 2005, pp. 326-345.
doi:10.1007/s10270-004-0077-7

[16] Z. S. Qian, “Test Case Generation and Optimization for
User Session-Based Web Application Testing,” Journal
of Computers, Vol. 5, No. 11, 2010, pp. 1655-1662.
doi:10.4304/jcp.5.11.1655-1662

[17] S. Elbaum, S. Karre and G. Rothermel, “Improving Web
Application Testing with User Session Data,” The 25th
International Conference on Software Engineering, Port-
land, 2003, pp. 49-59.

[18] F. Ricca and P. Tonella, “Analysis and Testing of Web
Applications,” The 23rd International Conference on
Software Engineering, Toronto, 2001, pp. 25-34.

[19] C. H. Liu, D. C. Kung and P. Hsia, “Object-Based Data
Flow Testing of Web Applications,” The First Asia-Pa-
cific Conference on Quality Software, HongKong, 2000,
pp. 7-16.

[20] B. M. Subraya and S. V. Subrahmanya, “Object Driven
Performance Testing of Web Applications,” The First
Asia-Pacific Conference on Quality Software, HongKong,
2000, pp. 17-26.

[21] Z. S. Qian, “Towards Testing Web Applications Using
Functional Components,” Journal of Software, Vol. 6, No.
4, 2011, pp. 740-745.

[22] Kourtesis, Dimitrios, Ramollari, Ervin, Dranidis, Dimitris
and P. Iraklis, “Discovery and Selection of Certified Web
Services Through Registry-Based Testing and Verifica-
tion,” In: Pervasive Collaborative Networks, IFIP Inter-
national Federation for Information Processing, Springer,
Boston, pp. 473-482.

[23] F. Ipate and M. Holcombe, “Testing Data Processing-
Oriented Systems from Stream X-Machine Models,”
Theoretical Computer Science, Vol. 403, No. 2-3, 2008,
pp. 176-191. doi:10.1016/j.tcs.2008.02.045

[24] M. G. Merayo, R. M. Hierons and M. Nunez, “Extending
Stream X-Machines to Specify and Test Systems with
Timeouts,” The 6th IEEE International Conference on
Software Engineering and Formal Methods, 2008, pp.
210-210.

[25] K. Bogdanov, M. Holcombe, F. Ipate, L. Seed and S.
Vanak, “Testing Methods for X-Machines: A Review,”
Formal Aspects of Computing, Vol. 18, No. 1, 2006, pp.
3-30. doi:10.1007/s00165-005-0085-6

[26] F. Ipate and M. Gheorghe, “Testing Non-Deterministic
Stream X-Machine Models and P Systems,” Electronic
Notes in Theoretical Computer Science, Vol. 227, 2009,
pp. 113-126. doi:10.1016/j.entcs.2008.12.107

[27] B. Beizer, “Software Testing Techniques,” 2nd Edition,
International Thomson Computer Press, New York, 1990.

[28] E. N. Adams, “Optimizing Preventive Service of Soft-
ware Products,” IBM Journal of Research and Develop-
ment, Vol. 28, No. 1, 1984, pp. 2-14.

http://dx.doi.org/10.1080/00207169708804559
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1007/s001650070004
http://dx.doi.org/10.1007/s10270-004-0077-7
http://dx.doi.org/10.4304/jcp.5.11.1655-1662
http://dx.doi.org/10.1016/j.tcs.2008.02.045
http://dx.doi.org/10.1007/s00165-005-0085-6
http://dx.doi.org/10.1016/j.entcs.2008.12.107

