
Circuits and Systems, 2012, 3, 10-16
http://dx.doi.org/10.4236/cs.2012.31002 Published Online January 2012 (http://www.SciRP.org/journal/cs)

A C-Based Variable Length and Vector Pipeline
Architecture Design Methodology and Its Application

Takashi Kambe1, Nobuyuki Araki2
1Department of Electrical and Electronic Engineering, Kinki University, Higashi-Osaka, Japan

2Graduate School of Science and Technology, Kinki University, Higashi-Osaka, Japan
Email: tkambe@ele.kindai.ac.jp

Received November 5, 2011; revised December 9, 2011; accepted December 18, 2011

ABSTRACT

The size and performance of a System LSI depend heavily on the architecture which is chosen. As a result, the archi-
tecture design phase is one of the most important steps in the System LSI development process and is critical to the
commercial success of a device. In this paper, we propose a C-based variable length and vector pipeline (VVP) archi-
tecture design methodology and apply it to the design of the output probability computation circuit for a speech recog-
nition system. VVP processing accelerated by loop optimization, memory access methods, and application-specific cir-
cuit design was implemented to calculate the Hidden Markov Model (HMM) output probability at high speed and its
performance is evaluated. It is shown that designers can explore a wide range of design choices and generate complex
circuits in a short time by using a C-based pipeline architecture design method.

Keywords: Variable Length and Vector Pipeline Architecture; C-Based Design; System LSI; Speech Recognition

1. Introduction

The size and performance of a System LSI depend hea-
vily on the architecture which is chosen. As a result, the
architecture design phase is one of the most important
steps in the System LSI development process and is crit-
ical to the commercial success of a device. Architec-
tural design means determining an assignment of the
circuit functions to resources and their interconnection,
as well as the timing of their execution. The macroscopic
figures of merit of the implementation, such as circuit
area and performance, depend heavily on this step [1].
Recently, three types of architecture design style are used
for System LSI design.

The first is processor based architecture design. This is
based on specific computing architectures such as DSP
[2], ASIP [3], heterogeneous systems on chip [4], MPSoC
[5], network on chip [6], and so on. Such a method is
suitable for large scale designs, but suffers the drawback
that it is difficult to choose and/or change the type of
processor to implement each application.

The second is architecture design based on specific
architecture description languages such as LISA [7],
EXPRESSION [8], and so on. Various architectures can
be generated automatically using these languages, but
they are restricted to pre-prepared architecture templates
and limited by the language semantics.

The third is C-based architecture design. A C-based

architecture design methodology offers the following
advantages:

1) A C-based language with untimed semantics is
suitable for large-scale architecture design.

2) A C level simulator handles bit-accurate operations
and is 10 - 100 times faster than HDL simulators.

3) A High level synthesizer can compile a program
(written in C) describing the untimed behavior of hard-
ware into RTL VHDL. It can also automatically generate
interface circuits for inter-process data transfer.

In this paper, we use the Bach system [9-12] for C-
based architecture design. Bach’s input language, Bach C,
is based on standard ANSI C with extensions to support
explicit parallelism, communication between parallel pro-
cesses, and the bit-width specification of data types and
arithmetic operation. Circuits synthesized using Bach
consist of a hierarchy of sequential threads, all running in
parallel and communicating via synchronized channels
and shared variables. Using the Bach system, designers
can develop parallel algorithms, explore the architecture
design space and generate complex circuits in a much
shorter time than using conventional HDL based design
methodologies.

In our investigation, we focused on C-based pipelining
architecture design because compared to data oriented
parallel processing, a pipelining architecture can achieve
higher speed without increasing the circuit size. Espe-
cially we propose a C-based variable length and vector

Copyright © 2012 SciRes. CS

T. KAMBE ET AL. 11

pipelining (VVP) architecture design methodology and
show how the performance can be improved by the use
of loop optimizations, speeding up memory access and
by creating application-specific arithmetic circuits.

The rest of this paper is organized as follows. Section
2 describes the C-based VVP architecture design method-
ology. In Section 3, the speech recognition algorithm is
briefly explained. Section 4 describes the VVP architect-
ture design to accelerate the output probability computa-
tion. Section 5 compares and evaluates the performance
of each architecture design. Finally, Section 6 summa-
rizes the work.

2. C-Based VVP Architecture Design
Methodology

In this section, the VVP architecture design methodology
and its acceleration by memory access method and ap-
plication-specific arithmetic circuit design are described.
And its design flow is also proposed.

2.1. Variable Length Pipelining

In Bach C-based design, parallelization can be applied at
both the functional level and the loop structure level. The
functional level pipeline processing is controlled only by
the control signals among the functional modules. When
the processing of one pipeline stage is complete, a signal
is sent to the next stage. The next stage starts when this
signal is received. Using this method, C-based functional
level pipeline design permits different processing times
for each stage, while conventional pipeline processing
needs to maintain the same processing time for each stage.
Therefore, variable length processes such as memory
access conflict handling and recursion based calculations
can be included in the pipeline.

Two kinds of pragma are used in the Bach system to
accelerate loop calculations. The unroll pragma expands
the specified for loop with fixed iteration number and
computes as much of each step in parallel as possible.
The throughput pragma automatically generates a loop
pipelining structure with the specified throughput.

2.2. Memory Access Optimization

For many applications, memory access is often the major
bottleneck. The simplest way to access large amounts of
data at high speed is to store all the data in on-chip me-
mory, but this increases chip size and is expensive. The
following optimizations are applied depending on the
type of data access.

1) When accessing large data multiple-times, small on-
chip SRAM or registers are used to hold the most fre-
quently accessed data and reduce the number of off-chip
memory accesses.

2) When data is accessed sequentially, pipelining of
the memory accesses and arithmetic calculations is ef-
fective. During internal data processing, the next data can
be read into the on-chip memory. Thus only the data re-
quired for each calculation is placed in on-chip memory.

3) When accessing large off-chip memory, the me-
mory is divided into separate banks to avoid access con-
flicts.

4) When accessing several small off-chip memories,
related data can be merged to reduce the number of me-
mory accesses.

2.3. Application-Specific Arithmetic Circuit
Design

In many cases, the processing overhead which occurs
when arithmetic calculations are performed multiple times
is another bottleneck in the system. The circuit size and
processing time for multiplication, division and other
basic functions are often especially large. In C-based de-
sign, the application-specific arithmetic hardware circuit
is designed using the following procedure.

1) Select the target arithmetic block to be accelerated
from the software.

2) Modify the software algorithm to facilitate imple-
mentation in hardware. For example, convert time-con-
suming operations, such as division, into simple and
equivalent calculations.

3) Use a hardware algorithm which matches the re-
quired calculation. For example, a high order polynomial
can be calculated using various shifter and adder ap-
proximations.

4) Use the preserve pragma of Bach C to ensure that
the resource is not shared by other circuits.

A software implementation often uses floating-point
arithmetic. However, because implementing floating-point
arithmetic in hardware has a large area overhead, fixed-
point arithmetic is most suitable. In addition, when mini-
mizing the bit length of each fixed-point variable, the
overflow and underflow for each calculation have to be
considered. The Bach system’s bit-accurate C level simu-
lator enables the results of these calculations to be verify-
ed using real data with the specified bit lengths.

2.4. The C-Based VVP Architecture Design Flow

The C-based VVP architecture design flow, including
memory access optimization and application-specific
arithmetic circuit design, consists of the following steps.

1) The target specification such as clock frequency,
processing time, and gate size of the circuit are specified.

2) The Bach compiler calculates the cycle number of
the processing for every function in the hardware portion
described by Bach C.

3) If (the cycle number of the dominant stage) <

Copyright © 2012 SciRes. CS

T. KAMBE ET AL. 12

(target cycle number), the function based variable pipeline
architecture is adopted. The dominant stage means that
its cycle number is maximum among all pipeline stages

4) Otherwise, the following four methods are applied
repeatedly until achieving the target specification. The
methods of which the cycle number of the dominant stage
is reduced maximally and its circuit size is increased
minimally are chosen.

(a) Vector pipeline architecture [13] is applied to the
dominant stage using the plural pipelines. The
number of the pipeline is given by the following
equation.

NoP Cd Tcn   (1)

where NoP denotes the number of the pipeline, Cd de-
notes the cycle number of the dominant stage, and Tcn
denotes the target cycle number.

(b) The unroll and throughput pragmas are applied
to the for loop structure.

(c) The memory access optimization of Subsection
2.2 is applied.

(d) The application-specific arithmetic circuit design
of Subsection 2.3 is applied.

The cycle number of each stage is estimated using the
high-level synthesized result. In many cases, two or more
methods are mixed to accelerate the architecture effec-
tively.

3. Speech Recognition Application

We applied this C-based VVP architecture design metho-
dology to large vocabulary continuous speech recognition
using the open-source software Julius [14]. The most po-
pular acoustic model for speech recognition is a Hidden
Markov Model (HMM), where speech signals are mode-
led as time-sequential automata that compute output pro-
babilities for the given speech segment (frame) and also
have a probabilistic transition.

The spectrum of a fixed width speech frame is analy-
zed and its acoustic features are extracted. Julius extracts
25 ms frames at 10 ms intervals. The output probability
is computed using the HMM algorithm and the acoustic
features are extracted from the input speech frame. The
acoustic features of each frame are expressed by a p-di-
mensional vector. The output probability of HMM is ex-
pressed as a Gaussian mixture distribution. Gaussian dis-
tribution calculation for state i and mixture m is given by
the following expression.

   2

2
1

1 1
log

2

p

im t i tp imp
p imp

b o o 


    (2)

where tp denotes the p-dimensional input vector for
frame t, i

o
 denotes the mixture weight coefficient,

imp denotes the average vector and 2
imp denotes the

variance vector. The output probability i of M Gaus-
sian mixture distributions is given by the following ex-
pression.

b

 mb  
1

log log exp
M

i t
m

b o


  (3)

Some researchers [15-18] have adopted a Simultane-
ous Multi-threading or Symmetric Multiprocessing ar-
chitecture using a 32 bit RISC processor with some kind
of co-processor to realize real-time and low-power large
vocabulary speech recognition. Another researcher [19]
has developed a hardware accelerator architecture for the
Gaussian mixture distribution calculation to achieve real-
time processing. Nevertheless, it still required a 32 bit
RISC processor to implement the remaining functions.
Therefore, the size of these systems is very large.

4. Pipeline Architecture Design of Output
Probability Computation

This section discusses the architecture of the output pro-
bability computation circuit as an example of C-based
VVP architecture design. There is a trade-off between
speed and cost. In this paper, the goal of the output pro-
bability computation circuit design is to minimize the to-
tal gate count while maintaining the required perfor-
mance.

4.1. VVP Architecture for the Output
Probability Computation

Although the output probability can be computed in pa-
rallel for mixtures, memory access, Gaussian distribution,
exponential and logarithmic (EL) calculations have to be
processed sequentially. To accelerate the output proba-
bility computation, we applied the VVP architecture for
memory access, Gaussian distribution, exponential and
logarithmic calculations. Our phoneme-HMM model has
1012 states and four mixtures to recognize large voca-
bulary continuous speech.

Because the processing time of Gaussian mixture
distribution calculation for one state and one mixture is
5731 ns from Table 1 and the target processing time of
the output probability calculation is under 10 ms, the
calculation result of the Equation (1) is as follows.

 5731ns 1012 4 10ms 3    　 (4)

The number of pipeline is four from this result and the
number of mixture in this case.

4.2. The Arithmetic Circuit Design for Output
Probability Computation

By experimenting with various numbers of bits in Table 2,
the minimum number of integer and decimal bits which
have no overflow and underflow in the output probability

Copyright © 2012 SciRes. CS

T. KAMBE ET AL. 13

Table 1. The processing time(ns) of each stage in the pi-
pelining.

No. buffering Gaussian EL cal.

(A) *5731 290

(B) *5333 228

(C) 3391 *4835 214

(D) 1070 *4820 228

(E) *4851 228

(F) *3357 1344 290

(G) *1135 228

(H) 1070 *1115 228

*: the dominant stage.

Table 2. The number of bits of fixed-point arithmetic.

No. of
integer bits

Recognition
rate (%)

No. of
decimal bits

Recognition
rate (%)

floating point 94.72 floating point 94.72

11 0.55 15 4.36

12 0.55 16 13.54

13 13.42 17 18.51

14 94.72 18 94.72

15 94.72 19 94.72

20 decim
al bits

16 94.72

14 integer bits

20 94.72

calculation were selected. It was found that when 14 in-
teger bits and 18 decimal bits are used, the recognition
rate is similar to that of the floating point arithmetic im-
plementation in Julius system. In this experiment, five
kinds of acoustic samples which have high recognition
rate by Julius software[14] were used.

Two EL calculation circuits based on the continued
fraction and on the Faster Shift and Add (FSA) algorithm
[20] were also designed and their performances com-
pared. Though the continued fraction has many divisions,
FSA algorithm has simple calculation such as shift and
addition. The processing time of the circuit for Continued
fraction and FSA algorithm are 21.864 ms and 20.241 ms,
respectively. The circuit area are 62,812 and 48,386
gates. The FSA algorithm is about 14% faster than the
continued fraction algorithm for output probability com-
putation.

4.3. Memory Access Optimization Methods and
Loop Unrolling

To improve the memory access speed, we propose two
kinds of memory access optimizations. One is to use two
buffers to access the HMM parameters for each mixture.

The size of each buffer is 208 bytes. HMM parameters
for the next Gaussian distribution calculation is read into
buffer 2(1) while the Gaussian distribution calculation
circuit is accessing buffer 1(2). The other is HMM me-
mory separation. In the pipelining, the data access to
HMM RAM by Gaussian distribution calculation circuits
often has conflicts. By separating HMM RAM, each Gaus-
sian distribution calculation circuit can access HMM
RAM at the same time (memory separation).

The 25 dimensional Gaussian distribution calculation
is accelerated by utilizing Bach system’s unroll com-
mand.

5. Design Results and Its Productivity

In this section, the design results for each architecture are
compared (Table 3). All architectures in this section
adopt the EL calculation based on the FSA algorithm. To
evaluate the performance of the pipeline architecture, we
also implemented sequential processing. Table 3 shows
the processing time of each pipeline stage in each ar-
chitecture. These numbers are the average of process-
sing time of four mixtures. In this investigation the gate
level circuits are synthesized from RT level HDL using
Design Compiler provided by VDEC and mapped to Hi-
tachi 0.18 micron CMOS library cells and the clock fre-
quency of all circuits is 100 MHz.

The following equation calculates the processing time
of each architecture from that of the dominant stage.

Mix Pipe St TD TT   (5)

where Mix denotes the number of mixtures, Pipe denotes
the number of pipeline stages, St denotes the number of
states, TD denotes the processing time of the dominant
stage in Table 1 and TT denotes the processing time of
the architecture in Table 3. For example of the archi-

Table 3. The comparison of each architecture.

arch.
mem.
separ.

buffer unroll
area

(gates)
time
(ms)

soft 55,300

Seq. no no no 48,385 20.341

(A) no no no 171,968 5.826

(B) yes no no 170,813 5.396

(C) no yes no 294,579 4.906

(D) yes yes no 293,706 4.891

(E) no no yes 316,725 5.127

(F) no yes yes 547,231 4.345

(G) yes no yes 439,783 1.226

(H) yes yes yes 546,080 1.127

Copyright © 2012 SciRes. CS

T. KAMBE ET AL.

Copyright © 2012 SciRes. CS

14

These results also show that VVP processing permits
different processing time of each stage such as memory
access conflict and the convergence variation of EL cal-
culation.

tecture (C), the result of the equation (4893 ms) is almost
equal to 4906 ms in Table 3.

4 4 1012 4835 4893 ms   (6)

The error of Equation (6) is small and it is because
there are variations of the acoustic data and the conver-
gence of EL calculation.

For real-time processing one frame must be handled in
less than 10ms and these architectures are able to achieve
real-time processing of the output probability compu-
tation and the architecture (F), (G), and (H) can use
lower clock frequency to reduce their power consump-
tion.

The vector pipelining circuit (A) is about four times
faster than the sequential circuit. The processing time of
the Gaussian distribution calculation in this architecture
includes the memory access resolving time. The architecture (H) in Figure 1 has the following

behaviors. For each mixture, the Gaussian distribution
calculation circuit reads the acoustic features from re-
gisters and HMM parameters from data buffers, and
computes a 25 dimensional Gaussian distribution. The
result is sent to EL calculation circuit. The EL calculation
circuit receives the results of EL calculations and Gaus-
sian distributions from the previous mixtures and adds to
the output probability of the current mixture. The result
of the EL calculation at the final mixture is the output
probability. The Bach C description of this architecture is
shown briefly in Figure 2. This architecture is described
by four functions and the communication among them
using primitives such as send() and receive() to control
the VVP process.

The results for architecture (B), (C), and (D) show the
following points. The data buffering and the HMM RAM
separation reduce the memory access time from the pro-
cessing time of the dominant stage, but the data buffering
requires additional gates for the buffers. The HMM RAM
separation with data buffer implementation is best for
speeding-up memory access, but the improvement is
16% or less. Because the data buffering in (C) and (F)
has memory access conflicts, these processing times are
larger than ones in (D) and (H).

The architectures with loop unrolling such as (F), (G),
and (H) are faster than the ones without it. However,
because there are memory access conflicts, architecture
(E) is slower than the others. Resolving access conflicts
by using the memory access methods, the architecture (H)
achieves the highest performance.

Table 4 shows the number of lines used in the Bach C
description and the design time to change the architecture

Figure 1. Block diagram of the architecture (H).

T. KAMBE ET AL. 15

Figure 2. The Bach C description of Figure 1.

from the previous one.

6. Concluding Remarks

In this paper, we proposed a C-based VVP architecture
design methodology and VVP architectures accelerated
by application-specific circuit design, memory access me-

Table 4. The number of the descriptions and the design
time.

arch. Bach C (lines) Design time (days)

(S) 143 10

(A) 283 8

(B) 306 4

(C) 481 4

(D) 505 4

(E) 283 4

(F) 481 4

(G) 306 4

(H) 503 5

thod, and loop unrolling were implemented to calculate
the Hidden Markov Model (HMM) output probability at
high speed and the implementation performances were
evaluated. It was demonstrated that designers can explore
a wide range of design choices and generate complex cir-
cuits in a short time by using a C-based architecture
design methodology.

7. Acknowledgements

The authors would like to thank the Bach system develop-
ment group in SHARP Corporation Electronic Compo-
nents and Devices Development Group, for their help in
hardware design using the Bach system. This work is
supported by the VLSI Design and Education Center
(VDEC), the University of Tokyo in collaboration with
Synopsys Corporation.

REFERENCES

[1] G. D. Micheli, “Sythesis and Optimization of Digital
circuits,” McGraw-Hill, New York, 1994.

[2] F. Catthoor and H. J. De Man, “Application-Specific
Architectural Methodologies for High-Throughput Digital
Signal and Image Processing,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. 38, No. 2,
1990, pp. 339-349. doi:10.1109/29.103069

[3] S. Kobayashi, K. Mita, Y. Takeuchi and M. Imai, “De-
sign Space Exploration for DSP Applications Using the
ASIP Development System PEAS-III,” Proceedings of
the Acoustics, Speech, and Signal Processing, Vol. 3,
13-17 May 2002, pp. 3168-3171.

[4] H. Blume, H. Hubert, H. T. Feldkamper and T. G. Noll.
“Model-Based Exploration of the Design Space for Het-
erogeneous Systems on Chip,” Journal of VLSI Signal
Processing Systems, Vol. 40, No. 1, 2005, pp.19-34.

[5] S. Pasricha and N. Dutt, “COSMECA: Application Spe-
cific Co-Synthesis of Memory and Communication Ar-

Copyright © 2012 SciRes. CS

http://dx.doi.org/10.1109/29.103069

T. KAMBE ET AL. 16

chitectures for MPSoC,” Proceedings of the Conference
on Design, Automation and Test in Europe, 6-10 March
2006, pp. 700-705.

[6] M. P. Vestias and H. C. Neto, “Co-Synthesis of a Con-
figurable SoC Platform Based on a Network on Chip Ar-
chitecture,” Asia and South Pacific Conference on Design
Automation, Yokohama, 24-27 January 2006, pp. 48-53.
doi:10.1109/ASPDAC.2006.1594644

[7] O. Schliebusch, A. Hoffmann, A. Nohl, G. Braun and H.
Meyr, “Architecture Implementation Using the Machine
Description Language LISA,” Proceeding of the Asia and
South Pacific Design Automation, Bangalore, 7-11 Janu-
ary 2002, pp. 239-244.
doi:10.1109/ASPDAC.2002.994928

[8] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt and
A. Nicolau, “Expression: A Language for Architec- ture
Exploration through Compiler/Simulator Retarge- tabil-
ity,” The Proceeding of Design, Automation and Test in
Europe Conference and Exhibition, 9-12 March 1999, pp.
485-490. doi:10.1145/307418.307549

[9] K. Okada, A. Yamada and T. Kambe: “Hardware Algo-
rithm Optimization Using Bach C,” IEICE Transactions
on Fundamentals, Vol. E85-A, No. 4, 2002, pp. 835-841.

[10] T. Kambe, A. Yamada, K. Okada, M. Ohnishi, A. Kay, P.
Boca, V. Zammit and T. Nomura, “A C-Based Synthesis
System, Bach, and Its Application,” Proceeding of the
Asia and South Pacific Design Automation, 30 January-
02 February 2001, pp. 151-155.
doi:10.1145/370155.370309

[11] T. Kambe, H. Matsuno, Y. Miyazaki and A. Yamada,
“C-Based Design of a Real Time Speech Recognition
System,” Proceeding of IEEE International Symposium
on Circuits and Systems, Island of Kos, 21-24 May 2006,
pp. 1751-1755. doi:10.1109/ISCAS.2006.1692944

[12] K. Jyoko, T. Ohguchi, H. Uetsu, K. Sakai, T. Ohkura and
T. Kambe, “C-Based Design of a Particle Tracking Sys-

tem,” Proceeding of the 13th Workshop on Synthesis and
System Integration of Mixed Information Technologies,
2006, pp. 92-96.

[13] H. Cheng, “Vector Pipeling, Chaining and Speed on the
IBM 3090 and Cray X-MP,” IEEE Computer, Vol. 22,
No. 9, September 1989, pp. 31-42, 44, 46.

[14] K. Shikano, K. Itoh, T. Kawahara, K. Takeda and M.
Yamamoto, “IT TEXT Speech Recognition System,”
Ohomu Co., May 2001 (in Japanese).

[15] T. Anantharaman and B. Bisiani, “A Hardware Accelera-
tor for Speech Recognition Algorithms,” Proceedings of
the 13th Annual International Symposium on Computer
Architecture, Vol. 14, No. 2, 1986, pp. 216-223.

[16] S. Chatterjee and P. Agrawal, “Connected Speech Recog-
nition on a Multiple Processor Pipeline,” Proceedings of
International Conference on Acoustics, Speech, and Sig-
nal Processing, Vol. 2, 23-26 May 1989, pp. 774-777.
doi:10.1109/ICASSP.1989.266542

[17] H. Hon, “A Survey of Hardware Architectures Designed
for Speech Recognition,” Technical Report CMU-CS-91-
169, August 1991.

[18] S. Kaxiras, G. Narlikar, A. Berenbaum and Z. Hu,
“Comparing Power Consumption of an SMT and a CMP
DSP for Mobile Phone Workloads,” Proceedings of the
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, November 2001, pp.
211-220. doi:10.1145/502217.502254

[19] B. Mathew, A. Davis and Z. Fang, “A Low-Power Accel-
erator for the SPHINX 3 Speech Recognition System,”
Proceedings of International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, 2003,
pp. 210-219. doi:10.1145/951710.951739

[20] J. M. Muller, “Elementary Functions,” Birkhauser, Bos-
ton, 1997.

Copyright © 2012 SciRes. CS

http://dx.doi.org/10.1109/ASPDAC.2006.1594644
http://dx.doi.org/10.1109/ASPDAC.2002.994928
http://dx.doi.org/10.1145/307418.307549
http://dx.doi.org/10.1145/370155.370309
http://dx.doi.org/10.1109/ISCAS.2006.1692944
http://dx.doi.org/10.1109/ICASSP.1989.266542
http://dx.doi.org/10.1145/502217.502254
http://dx.doi.org/10.1145/951710.951739

