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ABSTRACT 

A key issue of practical importance in the two-dimensional (2-D) discrete system is stability analysis. Linear state-space 
models describing 2-D discrete systems have been proposed by several researchers. A popular model, called Forna- 
sini-Marchesini (FM) second model was proposed by Fornasini and Marchesini in 1978. The aim of this paper is to 
present a survey of the existing literature on the stability of FM second model. 
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1. Introduction 

There have been a continuously growing research inter- 
ests in two-dimensional (2-D) systems due to their ap- 
plications in various important areas such as multi-di- 
mensional digital filtering, signal processing, seismo- 
graphic data processing, thermal processes, gas absorp- 
tion, water stream heating etc. [1-4]. In a 2-D discrete 
system, information propagates in two independent di- 
rections as a result of which the system dynamics may be 
represented as a function of two independent integer va-
riables. Many researchers have made an attempt to de-
scribe the 2-D system dynamics in terms of linear 
state-space models for 2-D discrete systems [5-7]. The 
2-D models that have received considerable attention are 
Roesser model [5], Fornasini-Marchesini (FM) first 
model [6] and FM second model [7]. 

Stability analysis and stabilization are the main issues 
in the design of any control system. Stability issues of 
2-D systems have been considered by many researchers 
[8-18]. With the introduction of state-space models of 
2-D discrete systems, various Lyapunov equations have 
emerged as powerful tools for the stability analysis and 
stabilization of 2-D discrete systems. Lyapunov based 
sufficient conditions for the stability of 2-D discrete sys- 
tems have been studied in [19-26]. When the dynamics 
of practical systems are represented using state-space 
models, errors are inevitable as the actual system pa- 
rameters would be different than the estimated system 
parameters, i.e., the model parameters. These errors arise 
due to the approximations made during the process mo- 
deling, differences in presumed and actual process opera- 
ting points, change in operating conditions, system aging 

etc. Control designs based on these models, therefore, 
may not perform adequately when applied to the actual 
industrial process and may lead to instability and poor 
performances. This has motivated the study of robust 
control for the uncertain 2-D discrete systems. The aim 
of robust control is to stabilize the system under all ad- 
missible parameter uncertainties arising due to the errors 
around the nominal system. Many significant results on 
the solvability of robust control problem for the uncertain 
2-D discrete systems have been proposed in [27-33]. 

The issue in robust control design is twofold: first is to 
design a robust controller to ensure the stability of un- 
certain systems and the other is to guarantee a certain 
performance level under the presence of uncertainties. 
The latter is called as guaranteed cost control problem 
which has the advantage of providing an upper bound on 
the closed-loop cost function (performance index). Con- 
sequently, a guaranteed cost controller not only stabilizes 
the uncertain system but also guarantees that the value of 
closed-loop cost function is not more than the specified 
upper bound for all admissible parameter uncertainties. 
Based on this idea, many significant results have been 
obtained for the uncertain 2-D discrete systems [34-39]. 

Study and analysis of 2-D discrete systems under the 
presence of noise is another research area of great inter- 
est where it is usually necessary to estimate the state 
variables from the system measurement data. One of the 
celebrated approaches is Kalman filtering [40] which is 
based on two fundamental assumptions that the system 
under consideration is exactly known and a priori infor- 
mation on the external noises (like white noise, etc.). 
However, in many practical situations, these assumptions 
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may be invalid. This has motivated the 2-D signal esti- 
mation using H  filtering technique. The advantage of 
H  filtering is that the noise sources can be arbitrary 
signals with bounded energy, or bounded average power 
instead of being Gaussian. Hence, H  filtering tends to 
be more robust when there exist additional parameter 
disturbances in models and it is very appropriate in a 
number of practical situations [41]. The 2-D filtering 
approach with H  performance measure has been de- 
veloped in [41-47]. 

The linear matrix inequalities (LMIs) have been evolved 
as a powerful technique to formulate various control de- 
signs [48]. The advantage of LMI technique is that the 
problem of testing the stability of a system can be for- 
mulated in terms of existence of a certain LMI (e.g., see 
[49]). Since solving LMIs is a convex optimization 
problem, such formulations offer an efficient numerical 
method to deal with the problems that lack an analytical 
solution. These LMIs can be solved efficiently by Matlab 
LMI tool box [50]. 

In this paper, our main focus is on the FM second 
model which is one of the most investigated models for 
the study and analysis of 2-D discrete systems. A brief 
survey of the existing literature on the stability of the 2-D 
discrete systems described by FM second model has been 
presented in this paper. The paper is organized as follows: 
Section 2 presents the description of 2-D system de- 
scribed by FM second model. A brief survey and main 
results on the stability of FM second model has been 
discussed in Section 3. Finally, some concluding remarks 
are given in Section 4. 

Throughout the paper the following notations are used: 
The Closed unit disc is represented by U , U  repre- 
sents the unit circle, 2U

nR
n mR

 denotes the closed unit bidisc. 
The superscript T stands for matrix transposition,  
denotes real vector space of dimension n,   is the 
set of n  m real matrices, 0 denotes null matrix or null 
vector of appropriate dimension, n  is the nI n  iden- 
tity matrix, diag (…) stands for a block diagonal matrix, 
G > 0 stands for the matrix G is positive definite, 

 denotes determinant of a matrix, det (.) .  denotes in- 
duced matrix norm,  .  stands for spectral radius of a 
matrix,  .  stands for spectrum of a matrix, for a matrix 
pair ,  ,A B  , A B

 
 denote the set of all its generalized 

eigenvalues i.e.    0 A B, : : detA B   , 
where  is the set of complex numbers. Further, 
B stands for the matrix i jb  A B, and  represents 

Kronecker product of the matrices A  and . B

2. Description of FM Second Model 

Consider the following 2-D discrete system represented 
by FM second model [7]: 

,     (1a) 

     , , ,z i j i j i j Cx D u

0, 0i j 

,            (1b) 

                          (1c) 

 ,i jx 1n is an 1
n nR   state vector, where A

2
n nR

, 
 ,i ju 1m is 1

n mR A ,   input vector, B

2
n mR

, 
B z 1 nR  is a scalar output, C

1 mR
 and 

D

1r 2

. It is understood that the above system has a 
finite set of initial conditions [2] i.e., there exist two 
positive integers  and r  such that 

   1 2, 0 , ,  0, ,  i i r j j r   0 0x x       (1d) 

The equilibrium , 0i j x  of system (1) is said to 
be globally asymptotically stable [2] if  
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The transfer function of system (1) is given as 

       (3) 

If we define, 

  1 2 1 1 2 2, det nN z z z z  I A A

   

,      (4a) 

then the state-space model (1) is asymptotically stable [7] 
if and only if  

2
1 2 1 2, 0 for all , UN z z z z        (4b) 

 where 2
1 2 1 2U , : 1, 1z z z z  

n n

. 

3. A Brief Survey 

The problem of asymptotic stability of system (1) has 
been studied by many researchers [51-59]. Lyapunov 
based sufficient condition for the stability of system (1) 
has been investigated in [51] and it is proposed that the 
system (1) is asymptotically stable if there exist an   
symmetric matrix  such that  0P

   1 2 1 2

T


 
  

 

0
0

0

P
A A P A A

P

0, 0, 1

,     (5a) 

provided  

      

 

           (5b) 

Reference [52] presents a stability test for system (1) 
which states that 

2

1 2 1 2, 0 in U if 1N z z  A A ,       (6) 

where ,N z z1 2  is defined in (4a). Further, based on 
the 2-D Lyapunov equation approach, the problem of 
stability margin has also been studied in [52]. 

Studies in [53] has illustrated that there are a large 
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number of systems that are stable but their stability can- 
not be assured by (5). That is, no values of   and   
can be found to satisfy (5) for a large number of systems 
to confirm their stability. The result proposed in [51] is 
made into more generalized form in [53] and it has been 
proposed that the system (1) is asymptotically stable if 
there exist  symmetric matrices , , 

,  such that 
n n  0 1  0W

 0  0R
P

2W

   

2

2
1 2 ,

 
 
 

 0A A

 1 2   0R W W

2 1 2
1

2 1
2

2 1
1 2

T

T

T T

0

0

P W P

P W P

A A P R P

    (7a) 

and 

.            (7b) 

As noted in [53], (5) can be recovered as a special case 
of (7). It is also mentioned in [53], that without loss of 
generality R  can be assigned to n  and an equivalent 
condition of stability can be given as: The system (1) is 
asymptotically stable if there exist  symmetric 
matrices ,  and W  such that 

I

n n
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         (8a) 

and 

n .           (8b) 

In [54], sufficient conditions to guarantee the asymp- 
totic stability of system (1) are presented. The first crite- 
rion states that for system (1) to be asymptotically stable 
it is sufficient that 

1)       ,        (9a) det n  I A

and  
2) there exist an  symmetric matrix  

such that  
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provided 
0,       . 

Here 1  and 2  are the horizontal and vertical ra- 
dian frequencies, respectively. 

The second criterion states that the system (1) is as- 
ymptotically stable if there exist  symmetric ma- 
trices ,  and  such that 
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   0I W W
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At this point, readers are advice to observe the differ- 
ences between (8) and (10). Furthermore, the relationship 
between 2-D Lyapunov approach and stability margin 
has also been investigated in [54]. 

Another 2-D Lyapunov equation, which is in a more 
general form, for asymptotic stability of system (1) has 
been presented in [55]. According to [55], the system (1) 
is asymptotically stable provided there exist   
symmetric matrices ,  such that 1  0R 2  0R

    1
1 2 1 2 1 2

2

T 
   

 

0
0

0

R
A A R R A A

R
.  (11) 

Further, it has been shown that the Lyapunov matrix 
Inequality (11) can be expressed in a succinct form using 
parallel addition of positive definite matrices and an 
equivalent condition of stability can be given as: The 
system (1) is asymptotically stable if there exist a pair of 
n n 1P 2P

1 2 1 1 1 2 2 2:  T T

 positive definite matrices ,  such that  

   0P P A P A A P A

   
1 11 1

1 2 1 2 1 1 2 2:
     P P P P P P P P 1 1

,      (12) 

where , 1P R
1

2

,  

2
P R :P P

P P
T

 and 1 2  is known as parallel addition of 

1  and 2 . It is interesting to note that as a rough ap- 
proximation, the terms 1 1 1P A T and 2 2 2A A P A

:P P

n

 makes 
out the next time energy along the one-dimensional dy- 
namics; it then follows that the sum of total next time 
energy should be less than the modified present energy 
represented by 1 2  for the 2-D system (1) to be as- 
ymptotically stable. It has been further illustrated that in 
spite of its outward beauty, the Inequality (12) is rather 
complicated even for smaller values of . 

In [56], the estimation of stability robustness for the 
FM second model has been studied and it is mentioned 
that the use of the stability bounds through the 2-D 
Lyapunov approach is limited in application. Studies in 
[57] explore numerically efficient stability test methods 
for 2-D discrete systems based on matrix pencil approach. 
The necessary and sufficient conditions for the stability 
2-D system have been formulated as a problem of solv- 
ing the generalized eigenvalues of a constant matrix 
pair. As stated in [57], the system (1) is stable if and 
only if 

 1,0N z  is stable              (13a) 

and  

 1 2, 0N z z  for all 1 2z U, z U 

 ,0N z

     (13b) 

Here the stability of 1  is equivalent to 
 1 1 A

0 1 2
T 

. If we define the matrices 

K A A ,              (14a) 
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1 1 1  2 2
T T

n  K A A A A I

2 2 1
T 

,          (14b) 

K A A

  1 A

 1 2zA A

,                 (14c) 

then, the necessary and sufficient condition for the stabil- 
ity is as follows: The 2-D system (1) is stable if and only 
if 1  and additionally one of the following con- 
ditions holds: 

1) , for all 2 1 2 U

 1 1je  A A 

z .      (15a) 

2) , for all 2 0,2π  .   (15b) 

3)  1 2 2 Uz  A A , for all 2z U

 1 2 1  A A

 1 2 1 A A

 

 

and 

.                     (15c) 

4)   

and 

, U  U V

0 1

n 
   

0 I

,          (15d) 

where 

:U
K K

2

: n 
  
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0

0

I

, 

and 

V
K

. 

Further, the authors in [57] have also claimed that the 
above stability tests tend to provide high computational 
accuracy.  

An LMI based necessary and sufficient condition for the 
positive FM second model has been presented in [58]. If 
all the elements of system matrices 1  and 2  are posi-
tive then the system (1) will be asymptotically stable if and 
only if one of the following equivalent conditions holds:  

A A

 
2

,T
k k

    
0PA P

1) The LMI 

1

2
k

block diag


 P A P ,    (16a) 

is feasible with respect to the diagonal matrix P . 
2) The LMI 

 
2 2

,T
k l

    
0PA P

P

n n

1 1k l

block diag
 
P A ,      (16b) 

is feasible with respect to the diagonal matrix . 
The Lyapunov based sufficient condition for the sta- 

bility of system (1) under shift delays has been discussed 
in [59]. It has been proposed that system (1) under shift 
delays is asymptotically stable if there exist   
symmetric matrices , , ,  
such that 

 0P  0Q  0 2 0Q

   1 1 2 2 1 1 2 2

1 2

1

2

,

T

d k d k

   
 
  
 
 
 

0 0 0

0 0 0
0

0 0 0

0 0 0

A A A A P A A A A

P Q Q Q

Q

Q

Q

n nR

1Q 

  (17) 

where 1d A n nR A and 2k  are delay matrices. 
Based on condition (17), the problem of robust stability 
and stabilization of 2-D discrete shift-delayed system 
described by the FM second model has also been ad- 
dressed. 

In [60], the problem of robust guaranteed cost control 
for 2-D discrete system under shift delays has been con- 
sidered and sufficient condition for the existence of ro- 
bust guaranteed cost controller via static-state feedback 
has been derived. 

In [61], some technical errors that have occurred in the 
main results of [60] are pointed out and corrected. 

4. Concluding Remarks 

A review on the stability of 2-D discrete systems de- 
scribed by FM second model has been presented in this 
paper. The Lyapunov based approach has emerged as a 
popular approach to study the stability properties of such 
systems. The 2-D Lyapunov based stability conditions 
discussed so far in literature are only sufficient condi- 
tions. The Lyapunov based necessary and sufficient con- 
dition for the stability of 2-D discrete systems remains an 
open and challenging problem. 
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