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ABSTRACT 

In this paper, we examine the problem of designing power system stabilizer (PSS). A new technique is developed using 
particle swarm optimization (PSO) combined with linear matrix inequality (LMI). The main feature of PSO, not stick- 
ing into a local minimum, is used to eliminate the conservativeness of designing a static output feedback (SOF) stabi- 
lizer within an iterative solution of LMIs. The technique is further extended to guarantee robustness against uncertain- 
ties wherein power systems operation is changing continuously due to load changes. Numerical simulation ahs illus- 
trated the utility of the developed technique. 
 
Keywords: Dynamic Stability; Power System Stabilizer; Static Output Feedback; Particle Swarm Optimization; Linear  
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1. Introduction 

Dynamic system stability is a fundamental property of 
power systems that describes its ability to remain in a 
state of equilibrium under normal operating conditions 
and to regain an acceptable state of equilibrium in face of 
an external disturbance. It is generally observed that po- 
wer system stability margins generally decrease, mainly 
due to Kundur [1]: 

1) The restructuring of the electric power industry. 
Such a process decreases the stability margins due to the 
fact that power systems are not operated in a cooperative 
way anymore. 

2) The inhibition of further transmission or generation 
constructions by economical and environmental restrict- 
tions. Consequently, power systems must be operated 
with smaller security margins.  

3) The multiplication of pathological characteristics 
when power system complexity increases. These include: 
large scale oscillations originating from nonlinear phe- 
nomena, frequency differences between weakly tied 
power system areas, interactions with saturated devices, 
and interactions among power system controls. 

Beyond a certain level, the decrease of power system 
stability margins can lead to unacceptable operating con- 
ditions and/or to frequent power system instability. One 
way to avoid this phenomenon and to increase power 
system stability margins is to control power systems 

more efficiently.   
Synchronous generators are normally equipped with 

power system stabilizers (PSS) which provide supple- 
mentary feedback stabilizing signals through the excita- 
tion system. The stability limit of power systems can be 
extended by PSS, which enhances system damping at 
low frequency oscillations associated with electrome- 
chanical modes [2,3]. The problem of PSS design has 
been addressed in the literature using many techniques 
including, but not limited to, root locus and sensitivity 
analysis, adaptive control, robust control, pole placement, 
H∞ design, and variable structure control [4-8]. The po-
werful optimization tool of linear matrix inequalities is 
also used to enhance PSS robustness through state and 
output feedback [9-11]. The availability of phasor meas- 
urement units was recently exploited in [12] for the de- 
sign of an improved stabilizing control based on decen- 
tralized and/or hierarchical approach. Furthermore, the 
application of multi-agent systems to the development of 
a new defense system which enabled assessing power 
system vulnerability, monitoring hidden failures of pro- 
tection devices, and providing adaptive control actions to 
prevent catastrophic failures and cascading sequences of 
events, was proposed in [13]. Attempts to enhance power 
system stabilization in case of controllers' failure are 
given in [14-16].  

The conventional PSS commonly used in practice is a 
dynamic output feedback, a lead controller type, with a 
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single or double stage and uses the speed deviation ∆ω as 
a feedback signal. In the present work, we propose a 
static output feedback (SOF) controller that uses two 
feedback signals ∆δ, and ∆ω. The problem of SOF is 
treated in [17], where a quadratic matrix inequality (QMI) 
necessary and sufficient condition is provided. This con- 
dition is later transformed into a linear matrix inequality 
(LMI) sufficient condition that can be solved in an itera- 
tive fashion using an additional variable. It turns out that 
the results are generally conservativeness. Improvements 
to [17] can be found in [18].  

Based thereon, this paper builds upon [17,18] and ex- 
tends them further. It combines the particle swarm opti- 
mization (PSO) with LMI to solve the necessary and suf- 
ficient condition in a direct way without any additional 
variable, thus eliminating the conservativeness. Essen- 
tially PSO, as a powerful probabilistic search technique 
[19,20] is used to minimize a design variable at the upper 
level, whereas the LMIs resulting from the constraints of 
output feedback structure are solved via optimization 
routines provided with MATLAB’s LMI control toolbox 
[21]. The coordination between PSO and LMI, developed 
in this paper, is needed because the formulated control 
design is in terms of non-convex optimization problem 
cannot be solved by using LMI techniques alone.  

The manuscript is organized as follows: Section 2 de- 
scribes the problem addressed in this paper. A dynamic 
model of a single machine infinite bus is presented in 
Section 3. Next, the technical background including ro- 
bust control design by LMI approach and PSO is given in 
Section 4. Afterwards, result validation is given in Sec- 
tion 5. Finally the paper is concluded in Section 6. 

Notation and Facts 

In this paper, W', W–1, and W



 will denote respectively 
the transpose, the inverse, and the induced norm of any 
square matrix W. W > 0 (W < 0) will denote a symmetric 
positive (negative)-definite matrix W, and I will denote 
the identity matrix of appropriate dimension. The symbol 

 is as an ellipsis for terms in matrix expressions that 
are induced by symmetry, 

Fact 1: Any congruence transformation z'Wz does not 
change the definiteness of W. 

Fact 2: [22]: For any real matrices W1, W2 and ∆(t) 
with appropriate dimensions and ∆'∆ ≤ I, ↔ 1 

W W 
, it 

follows that , ε > 0 1W W 1 2 2 1 1 1 2 2

where ∆(t) represents system bounded norm uncer- tain-
ty. 

W W W W    

2. Power System Model 

The system under study consists of a single machine 
connected to an infinite bus through a tie-line as shown 
in the block diagram of Figure 1. It should be empha-  

 

Figure 1. Power system model. 
 
sized that the infinite bus could be representing the Thé- 
venin equivalent of a large interconnected power system. 
The machine is equipped with a static exciter. The non- 
linear model of the system is given through the following 
differential equations [1]: 
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Typical data for the system under consideration, which 
are used in the present work, are given as follows: 
 Synchronous machine parameters: 

     

0 02π 50 sec,  6 sec.drad T    

50, 0.05secE EK T

 

 Exciter amplifier parameters: 

  

0.4e

 Transmission line reactance: 

x pu . 

For PSS design purposes, the linearized forth order 
state space model around an equilibrium point is usually 
employed [1]. The parameters of the model have to be 
computed at each operating point since they are load de- 
pendent. Analytical expressions for the parameters (k1 
through k6) are listed in the Appendix 1 as derived in 
[14-16]. The parameters are functions of the loading 
condition, real and reactive powers, P and Q respectively. 
The operating points considered vary over the intervals 
(0.4, 1.0), and (0.1, 0.5), respectively. 

The n-dimensional linear state equation of the system 
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under study is given by,  

,       x Ax B  u y Cx              (2) 

where 
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In the above equation the C matrix is so selected be- 
cause ∆δ, ∆ω, can be easily calculated/measured. 

System model (2) is assumed to be stabilizable via 
static output feedback. The static output feedback stabi- 
lization problem is to find a static output feedback u = Fy, 
such that the closed-loop system given by 

x A BFC x 

  0BFC P 

                (4) 

is stable, that is, with poles in the open left-half-plane. 
As we all know, the closed-loop system (3) is stable if 

and only if there exists a P = P' > 0 such that 

 P A BFC A         (5) 

Condition (5) is a bilinear matrix inequality (BMI) 
which is not a convex optimal problem. An ILMI method 
was proposed in [17], where a new variable X was intro- 
duced such that the stability condition becomes a suffi- 
cient one when X P

0P P  

. The algorithm presented in [17], 
tried to find some X close to P by using an iterative me-
thod and the iterative procedure carries between P and X. 

As mentioned in [17], if 

   P A BFC A BFC         (6) 

holds, the closed-loop system matrix A + BFC has its 
eigenvalues in the strict left-hand side of the line α/2 in 
the complex s-plane. If an α < 0 satisfying (5) can be 
found, the SOF stabilization problem is solved. 

Note that (6) a nonlinear matrix inequality, difficult to 
solve being non convex. In [17], Inequality (6) is simpli- 
fied into LMIs using an additional variable, and α is mi-
nimized iteratively till it becomes negative. Note that all 
eigenvalues of the closed loop matrix A + BFC are 
shifted progressively towards the left-half-plane through 
the reduction of α. A feasible solution, feedback matrix F, 

is thus obtained. However; it results in an only sufficient 
condition, causing conservativeness. 

Now to represent system dynamics at different loads, 
system (2) can be cast in the following norm-bounded 
form 

 ox A A x Bu   

  

             (7) 

where Ao is the state matrix at the nominal load , the un-
certainty in A is  

A M t N                  (8) 

The matrices M and N being known constant real ma- 
trices, and ∆(t) the uncertain parameter matrix. The ma- 
trix ∆A has bounded nom given by 1 

 Minimize    z

, Appendix 2. 
It is worth mentioning that Δ(t) can represent power sys- 
tem uncertainties, unmodelled dynamics, and/or nonlin- 
earities. 

Table 1 gives the extreme operating range of interest, 
heavy and light loads, as well as the nominal load. The 
corresponding system matrices are given in Appendix B. 

Our objective now is to study two main problems: 
How to eliminate the conservativeness of [17]? 
How to robustify F in face of system uncertainties due 

to load variations? 

3. Problem Solution 

This section gives a brief overview of control design 
when formulated in terms of PSO and LMI. 

3.1. Particle Swarm Optimization (PSO) 

For unconstrained nonlinear optimization, we have the 
following problem 

J f z             (9) 

The existence of a solution is verified numerically by 
minimizing J. Such problem is solved using particle 
swarm optimization (PSO). Like any other optimizer, the 
PSO converges to a solution, if exists. Most of the tradi- 
tional deterministic optimization methods have the cal- 
culation burden of gradients or Hessians. In other words, 
they are based on the unrealistic assumptions, e.g., uni- 
modal, differentiable, and continuous objective function. 
In non-gradient conventional optimization techniques, 
the gradient is numerically estimated. Deterministic me-  
 

Table 1. Loading conditions. 

Loading P (p.u) Q (p.u) 

Heavy 1 0.5 

Nominal 0.7 0.3 

Light 0.4 0.1 

thods can potentially converge to a local minimum instead 
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of the global minimum. There is no criterion to decide 
whether a local solution is also the global solution. 

Therefore, the conventional optimization methods are, 
in general, not able to locate or identify the global opti- 
mum. Recently, many researchers are investigating proba- 
bilistic (stochastic) global optimizers, which seem to be a 
promising alternative to the traditional gradient- based 
approaches. Several stochastic search techniques have 
appeared, most notably, simulated annealing, tabu search, 
and evolutionary routines. Upon comparing evolutionary 
methods, the genetic algorithm (GA) has a big computa- 
tional complexity unlike PSO, which is another stochas- 
tic global optimization technique. PSO has been found 
robust in solving continuous nonlinear optimization pro- 
blems. In addition, PSO can generate a high-quality solu- 
tion with less calculation time and more stable conver- 
gence characteristic than other stochastic methods. Due 
to its distinct advantages as a global optimizer, PSO has 
been selected to tune the reliable controllers presented in 
this paper.  

Particle swarm optimization is an evolutionary opti- 
mization technique. Such approach is biologically in- 
spired by the natural evolution of populations to Dar- 
win’s principle of natural selection “Survival of the fit- 
test”. The promising optimization algorithm of PSO, 
Parsopoulos and Vrahatis (2004), is a multi agent search 
technique that traces its evaluation to the emergent mo- 
tion of a flock of birds searching for food. Each bird tra-
verses to the search space looking for the global mini-
mum (or maximum). PSO is a computationally sim- ple 
technique since it does not involve gradient calcula- tions. 
Moreover, the function to be optimized does not have to 
be convex. PSO is a stochastic optimization technique 
with large number of agents having the advan- tage of 
being unlikely trapped at local minima. 

While the agents in the PSO algorithm are searching 
the space, each agent remembers two positions. The first 
is the position of the best point the agent has found (self- 
best), while the second is the position of the best point 
found among all agents (group-best). The motion of each 
agent is governed through the following equation: 

 
 

 

0,1

0,1

new old

new

group

ar

br


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 
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 
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S S

S S
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        (10) 

where S  is a position vector of a single particle, 
 v
 ,a b
 

 is the velocity of this particle, 
 are two scalar parameters of the algorithm, 

  is an inertia weight, 
r(0, 1) is a uniform random number between 0 and 1, 
It should be noted that group-best is the best solution 

of all particles and self-best is the best solution observed 

by the current particle. A maximum velocity (vmax) that 
cannot be exceeded may also be imposed. 

3.2. Control Design 

System (2) is stabilizable if and only if there is a solution, 
P > 0, F, α < 0, for the following nonlinear matrix In- 
equality (6). 

If P is given, Inequality (6) becomes linear in F, and 
the minimized α = α* can be easily solved by LMI con- 
trol toolbox. 

The idea proposed in this manuscript is to minimize α* 
by P generated by PSO in an outer loop of iteration as 
shown below. 

3.3. PSO-Based Static Output Feedback Design  

Step 0: Initialize the PSO by selecting randomly a vector 
2nz R . 

Step 1: Cast z into its matrix equivalent Z. Form P = 
ZZ'. In this way P = P' > 0 is generated. Set i = 1 and Pi 
= P 

Step 2: Solve the following optimization problem for F 
and αi. 

Minimize αi subject to the following LMI constraints 

    0i i i iP A BFC A BFC P P    
*

     (11) 

Denote i  as the minimized value of αi. 
Step 3: If i

* 0  , F is a stabilizing static output 
feedback gain. Stop. 

If no i
* 0   is found, the system cannot be stabi- 

lized by a SOF. 
Step 4: Use PSO to solve the following optimization 

problem  

 *Minimizez iJ z           (12) 

Set i > i + 1, then go to Step 1. 
The above algorithm is applied to example 1 of [17]. 

The proposed algorithm is better than that of [18] as it 
stabilizes the system with less control gain, see Appendix 
C. This is expected as the proposed algorithm solves a 
necessary and sufficient condition, rather than an only 
sufficient of [17]. 

3.4. Robust Design 

Since power systems undergo load changes that result in 
uncertainty in the state model, the SOF that robustly sta- 
bilizes the system is given by the following sufficient 
condition: 

Theorem 1: The uncertain system (7) can be robustly 
stabilized if there exist P = P' > 0, F, α < 0 such that the 
following nonlinear matrix inequality 
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has a feasible solution. 
Proof: By replacing A by Ao + ∆A in (6), it yields 


 

o o

t

PA PBFC A P

P P A A

 

    
        (14) 

Using Fact 2, Inequality (14) is satisfied if the follow- 
ing equation is satisfied 


 1

o oPA PBFC A P

P PM PM  

 

 
         (15) 

By the Schur complements [22], we can put (15) in the 
form (13) as desired. This completes the proof. 

An algorithm for robust SOF design can be cons- 
tructed similar to the previous algorithm with replacing 
(11) by (13). 

4. Design Validation Based on Nonlinear 
Model 

4.1. SOF-PSS 

Applying the proposed algorithm, Sec 3.3, to the lin- 
earized power system model at heavy load, Appendix B, 
and the results are summarized as: 
 Controller matrix F = [–0.2013 – 4.3512] 
 α* = –0.2689 
 Closed-loop eigenvalues = {–0.42814 ± i 6.2841, 
 –13.019, –6.5878}  

The minimization of α* via PSO is shown in Figure 2. 
Since power system operators generally welcome the 
damping of transient oscillations following small distur-  
 

 

Figure 2. α* vs. iterations. 

bances within a settling time of 10 - 15 sec [23], or equi- 
valently the closed loop eigenvalues should lie to the left 
of the vertical line –0.3; the proposed algorithm is run till 
this objective is satisfied. 

The proposed controller tested is on the nonlinear mo- 
del (1), at the heavy load. It is assumed that the mecha- 
nical torque input undergoes a step change increase of 
0.1 pu. The system is subject to a large disturbance at t = 
3 s, a three-phase to ground fault occurs for 100 ms. The 
system without a PSS is unstable at this point, see Figure 
3(a). On the other hand, the proposed stabilizer success- 
fully suppresses and damps the oscillations in almost 7 s, 
see Figure 3(b). 
  The success of the proposed PSS, which is designed 
based on a linearized model, to stabilize the original non- 
linear system follows from the Lyapunov indirect theo-
rem. According to that theorem, the behavior of the ori-
ginnal nonlinear system is similar to its linearized approxi- 

 

 
(a) 

 
(b) 

Figure 3. Time response of the nonlinear model of SMIB 
with and without PSS. (a) Without PSS; (b) With PSS. 
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mation provided that none of the eigenvalues lies on the 
imaginary axis. 

4.2. Robust SOF-PSS 

The algorithm described in Subsection 3.3 is applied find 
a robust SOF_PSS against the variation of power system 
operation;  0.4,1p , and 0.1,0.5Q  respectively. 
The results are: F = [–0.1797 –6.1133], and α* = –0.4231. 
The minimization of α* vs. iterations are shown in Fig- 
ure 4.  

Out of the aforementioned power system operating 
range, the point P = 0.8 p.u, and Q = 0.3 p.u is selected to 
show the effectiveness of the proposed design. For 0.1 
p.u. step increase in mechanical power, simulation results 
of' a large disturbance are shown in Figure 5. At t = 3 s, 
a three-phase to ground fault occurs for 100ms. The pro- 
posed stabilizer succeeds to damp the disturbance within 
5 sec.  
 

 

Figure 4. α* vs. iterations, robust SOF-PSS. 
 

 

Figure 5. Performance of proposed robust stabilizer for 0.1 
step increase in mech. power and the system undergoes a 
3-phase to ground fault at infinite bus for 100 ms. 

5. Conclusion 

In this paper, a new algorithm is presented to solve a 
necessary and sufficient condition to stabilize linear time- 
invariant systems via static output feedback. The iterative 
algorithm combines the PSO and LMI. The algorithm is 
effective and convergent. The numerical procedure may 
be useful to solve this kind of bilinear matrix inequality 
problem. In this respect, the crucial part is to obtain an 
iterative condition. The proposed PSO-ILMI algorithm 
has low dimension because no additional variable is im- 
posed. The algorithm can be applied to PID, decentral- 
ized stabilizers as well. A numerical example shows that 
the proposed algorithm produces better result than the 
existing one. A sufficient condition for the design of ro- 
bust static output feedback using PSO with iterative LMI 
has been proposed. The method obtains the PSS for the 
linearized model of a single machine infinite bus system. 
Simulation results based on a nonlinear model of the 
power system confirm the ability of the proposed com- 
pensator to stabiles the system over a wide range of op- 
erating points. 
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Appendix 

A. Model Parameters 
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B. State Model 

 Algorithm of [17] Proposed algorithm 

α –0.0377 –0.0021 

F –0.7369 –0.0747 

The numerical values of state space model for the 
three operating conditions are given as follows: 

Nominal load: 
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Neglecting small deviations in A, the uncertainty in A 
over the different loads can be approximated by a 
norm-bound structure M∆(t)N, M = [0, 0, 0, 6.63]', N = 
[6.63, 0, –2.08, 0].  

C. Comparison 

Example 1 of [17] gives  

 

Applying the proposed algorithm, the reduction in α* 
vs. iteration is shown in Figure 4 and the comparison 
between the results of [17] and the proposed algorithm is 
shown below. 

It is clear the superiority of the proposed algorithm 
over that of [17] as it stabilizes the system with less 
controller gain. 
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