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ABSTRACT 

By a Quantum-compliant model for electrical noise based on Fluctuations and Dissipations of electrical energy in a 
Complex Admittance, we will explain the phase noise of oscillators that use feedback around L-C resonators. Under this 
new model that departs markedly from current one based on energy dissipation in Thermal Equilibrium (TE), this dis-
sipation comes from a random series of discrete Dissipations of previous Fluctuations of electrical energy, each linked 
with a charge noise of one electron in the Capacitance of the resonator. When the resonator out of TE has a voltage be-
tween terminals, a discrete Conversion of electrical energy into heat accompanies each Fluctuation to account for Joule 
effect. This paper shows these Foundations on electrical noise linked with basic skills of electronic Feedback to be used 
in a subsequent paper where the aforesaid phase noise is explained by the new Admittance-based model for electrical 
noise. 
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1. Introduction 

As it is well known, no voltage V0 set on a capacitor of 
capacitance C can remain constant with time t. The first 
reason is a self-discharge of C through its resistance R, 
because capacitors offering a pure capacitance at  
do not exist [1]. This leads to an exponential decay with 
time constant 

0T 

RC   of any 0V  set in C that ends 
with a null V0 only on average: 

0
0 0V  , because the 

thermal fluctuation 2kT  J per degree of freedom sets 
an ac voltage noise in C whose spectral density is shaped 
by R to give a mean square noise voltage kT C  V2 on 
C. This last sentence summarizes the new model for 
electrical noise used recently to explain the flicker noise 
found in vacuum devices [1] and the 1/f excess noise of 
Solid State ones [2]. This new model considers that the 
noise of resistors and capacitors is born in their capaci-
tance C between terminals and that their conductance 

1G R  shunting C only shapes the noise spectrum to 
accomplish Equipartition as it can be deduced from [3]. 
The complex Admittance this new model uses allows to 
handle Fluctuations and Dissipations of electrical energy 
in time [4], thus excelling today’s model based on Real 
Conductance that neither considers Fluctuations of this 
energy, nor distinguishes Dissipation of electrical energy 

from its Conversion into heat as we will do. 
Shunting the R-C parallel circuit of a capacitor by a fi-

nite inductance L ≠ 0, an L-C-R parallel resonator of 
resonance frequency f0 appears. The role of this L can be 
seen as a feedback current that being proportional to the 
voltage v(t) on C, has –90˚ phase lag under sinusoidal 
regime (SR). This feedback in quadrature with v(t) that 
affects f0, leads to the feedback-induced phase noise that 
we showed for oscillators based on resonant microcanti-
levers in [5]. This Technical phase noise due to a defi-
cient phase control of the feedback adds to the non tech-
nical, but Thermodynamical phase noise we will explain 
for oscillators with perfect loops where current feedback 
to the resonator is exactly in-phase with its voltage v(t) 
for Positive Feedback (PF) or exactly at 180˚ for Nega-
tive Feedback (NF). This prevents the addition of Tech-
nical phase noise to the Thermodynamical one sketched 
in [6] that we will explain, which is linked with resona-
tor’s losses represented by its R and with noise added by 
the feedback electronics, both considered by the noise 
figure F of Leeson’s pioneering work [7]. We will show 
the theory behind Leeson’s empirical formula and behind 
the Line Broadening that these oscillators show around 
their mean oscillation frequency f0 [8]. The general the-
ory on phase noise of [9,10] and the references therein 
are valuable introductions on this topic that we will de-
fine as: the impossibility to achieve a periodic Fluctua-
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   Q P  is low (e.g. at Ction of charge in L-C resonators. Q i t i t f
Although phase noise means that the energy of the os-

cillator’s output signal is spread around f0 (e.g. its spec-
trum is not a (f – f0) function or “line”), the amount of 
this spreading due to each feedback of the oscillator is 
not obvious. Hence the reason to start with a “special 
oscillator” giving a signal of frequency  whose 
phase noise can’t be defined because this signal doesn’t 
change phase in a finite time interval, but where Dissipa-
tions of electrical energy enhanced by a Clamping Feed-
back can be shown easily, as well as the Pedestal of elec-
trical noise that results when this feedback is confused by 
noise not in phase with the output signal it tracks. This 
paves the way towards actual oscillators of f0 ≠ 0 that we 
will study in a subsequent paper under the same title, 
where Fluctuations and Dissipations of energy will pro-
duce, respectively, the Line Broadening of the output 
spectrum and the Pedestal far from f0, both sketched in 
[6]. Our results will show that L-C oscillators show phase 
noise because they are Charge Controlled Oscillators for 
an unavoidable charge noise power of 4FkT C2/s [4] that 
disturbs their otherwise periodic fluctuation of charge 
expected from the exchange of energy between their op-
posed susceptances due to L and C. 

0f 

 

This paper is organized as follows. In Section 2 we 
consider Fluctuation, Dissipation and Feedback around a 
capacitor to show their basic interaction. Section 3 shows 
the difference between Dissipation of electrical power in 
Thermal Equilibrium (TE) and its Conversion into heat 
in capacitors and resistors out of TE that allows to under-
stand why electrical noise doesn’t depend noticeably on 
the power being converted into heat out of TE when the 
temperature rising is low, although this Converted power 
can be millions of times larger that the electrical power 
Dissipated in TE following to [4]. Some relevant conclu-
sions used to explain phase noise in a subsequent paper 
under the same title, are summarized the end. 

2. Fluctuation, Dissipation and Feedback 
around a Capacitor 

The circuit of Figure 1(a) shows the equivalent circuit of 
a capacitor of capacitance C or resistor of resistance R at 
low f. This circuit allowing Fluctuations of electrical en-
ergy as fast displacements currents in C, each triggering 
a subsequent Dissipation of energy by a conduction cur-
rent through R, is a physically cogent circuit for electrical 
noise [4]. At its cut-off frequency 1 2πCf RC



 the 
current iQ(t) through C and the current iP(t) through R 
have equal magnitude under SR. This fc separates the 
low-f region C f f , where the active power dissi-
pated in R surpasses the reactive power fluctuating in C, 
from the high-f region  Cf f  where the situation is 
the opposed one. This device is a good resistor when its 

ratio f

0t

) because 
it mostly dissipates electrical energy. At high f, however, 
it is a good capacitor where electrical energy mostly 
fluctuates because the ratio Q is high. Thus, the quality 
factor Q(f) sets the dissipative or reactive character of 
this device. Figure 1(b) shows the time evolution of a 
voltage V0 existing at   on C. This voltage endures 
an energy 2 2U CV

RC

0 0  J stored in C out of TE that can 
be converted into heat “in R”. This gives the exponential 
decay of v(t) with time constant    whereas the 
stored energy decays with a time constant 2RCU .  

Let’s consider an spectrum analyzer sampling v(t) 
from 0t   to endt  100t (e.g. end 

0t

) to obtain its 
Fast Fourier Transform (FFT). Because the energy con-
tent of v(t) after tend is small, this FFT analyzer having 
recorded nearly all the energy U0 of this Signal would 
give a Lorentzian spectrum SVS(f) like that of Figure 
1(c). 

This v(t) signal, viewed as a single decay born in 
  and its Fourier transform are: 

     

   

0

0

exp V

V Hz
1

C

t
v t V u t

Y f V
f

j
f




     
 

 


 

       (1) 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) Noise circuit of resistors and capacitors; (b) 
Time evolution v(t) of a voltage V0 stored in C at t = 0; (c) 
Unilateral spectrum of v(t) (see text). 
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thus giving this unilateral Lorentzian spectrum for v(t): 

 
2 2

0
2

2

1

VS

C

V
S f

f

f




 
  
 

2V s Hz  

f 

         (2) 

Integrating (2) from  to  by its 
equivalent Bandwidth 

0f 
 2 fπeqBW  C , we obtain: 

 2

t 

2M V  



0  V2  s, a value that also appears by in-
tegrating the square of the decay (1) from t = 0 to 

 (Parseval’s Theorem). Thus, M is not the elec-
trical energy UDS converted into heat by v(t) driving R 
from t = 0 to . This energy is: 

t

DS  J, 
thus suggesting that 

U M R
1G R  will contain some rate 

factor  (s–1) to cancel the time unit of (2) as well as a 
capacitive factor to convert V2 into J. This paves the way 
to see Conductance 1G  R  as a rate of discrete chances 
to exchange electrical energy [4] that makes easier the 
understanding of phase noise. Added to the Signal spec-
trum (2) there will be a small Noise spectrum due to the 
thermal charge noise of C viewed as the kT C  noise of 
this capacitor or as the Johnson noise “of its R”. This 
noise comes from a random series of Thermal Actions 
(TA) on C, each being an impulsive charge variation of 
one electron between its plates, which are the terminals 
of R [4]. Each TA sets a voltage step of q C  V in C 
that decays with time constant τ as C discharges through 
R. These decays called Device Reactions (DR) in [4] are 
sketched in Figure 1(b). Each DR endures a slower 
charge noise of one electron with opposed sign to that of 
its preceding TA. This random series of DRs with zero 
mean (e.g. the number of positive and negative DR’s is 
equal on average) keeps the native spectrum of its basic 
impulse (Carson’s Theorem). The charge noise due to 
these (TA-DR) pairs has an average power 4kT R  

2C s  that gives a noise vn(t) whose mean density is [4]: 

  2
2

V Hz  
4

1

VN

C

kTR
S f

f

f


 

  
 

         (3) 

where k is Boltzmann constant and T temperature. It’s 
worth noting that replacing C by αC in Figure 1(a) the 
amplitude of these DRs will change from q C

 
 V to 

q C  V and their time constant from τ to ατ, thus 
keeping the amplitude of (2) and (3), but shifting their 
cut-off frequency to cf  . This way, electrical noise 
obeying Equipartition keeps 2kT  J as the Thermal 
fluctuation in C [4]. This change in C will appear later as 
an effect due to a feedback acting on the circuit of Fig-
ure 1(a). 

Since the FFT analyzer considers that the Signal (2) 
repeats each end 100t 

 

 seconds (otherwise the mean 
Signal power would be null), we have to multiply (2) by 
the rate 1 100FFT 

1V

 to have some Signal power 

sustained in time to compare with the mean Noise power 
that thermal activity sustains in time. This way the unit of 
time (s) disappears in (2), which acquires the familiar 
units V2/Hz of “power density on 1 Ω”. This allows 
comparing the two Lorentzian spectra “seen” by the FFT 
analyzer: the big one of the “repetitive” Signal given by 
(2) in V2/Hz units and the small Noise spectrum of (3). 
Let’s have some figures at room T with 0   V for 

10C 1R  pF and   GΩ ( 0.01   s). From (2) and 
(3) the Signal/Noise ratio of the above spectra is higher 
than 107, thus meaning that the Lorentzian noise spec-
trum would be buried by the Signal one of equal shape, 
or buried in its “roughness” coming from mathematical 
rounding in the FFT algorithm, quantization noise, etc. 



For its utility to start oscillators, let’s use electronic 
feedback to generate a voltage V0 in the capacitor of 
Figure 1 from its own thermal noise and to sustain it in 
time as close as possible to a dc reference VRef. Figure 2 
shows a PF adding a resistance –R in parallel with C by 
feeding-back a current    FB , proportional to 
the voltage sampled by the feedback network of trans-
conductance 

i t v t R 

1 R  Y  A V

0f 

. This PF aims at com-
pensate losses of electrical energy taking place by R 
when C stores an energy that differs from its value in 
Thermal Equilibrium (TE). Thus, this PF doesn’t remove 
losses in R: it only compensates them. This βY leading to 
a loop where power lost in R and power delivered by the 
PF are equal (Gain = Losses condition) does not mean 
that this PF removes the losses of this “resonator of 

0 ”. Contrarily, this PF sustains in time resonator’s 
losses by injecting the same power it loses through R, 
thus sustaining in t a Conversion of electrical energy into 
heat in this resonator that having a non null voltage V0, is 
thus out of TE. This distinction between Dissipation of 
electrical energy [4] and Conversion of electrical energy 
into heat that occurs out of TE will be clarified later. 
 

 

Figure 2. Feedback scheme allowing to compensate losses of 
energy in R without changing the value of C. 
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With  V and  v t 10R10   MΩ, the circuit of 
Figure 2 would convert electrical energy into heat at a 
rate of 10 µJ per second (10 µW) that its PF would inject 
continuously. The transfer of this heat power to its envi-
ronment in steady state requires a temperature gradient 
with this capacitor out of TE being at temperature T* 
higher than that of its environment T. This warming ef-
fect that will be low for high-Q resonators, can be ac-
counted for inadvertently (e.g. not by a different noise 
temperature ) by using a noise figure *T T 1F 

1
 like 

that of [7] because a quiet electronics ( F 
1.3F

) around a 
capacitor at  or a noisy electronics (* 1.3 T  T  ) 
around a capacitor at T, are numerically equivalent in 
Figure 2. Only the need for  to evacuate heat 
from the resonator and the 

*T 
1

T
F 

1

 of any actual elec-
tronics suggest that the situation is a mix of the above 
two (e.g.  and * 1.3T T  T F  ). This need to 
evacuate the generated heat leads to consider the energy 
Conversion into heat out of TE, whereas in TE we will 
speak about energy Dissipation following each Fluctua-
tion of energy [4] because no heat is generated. After this 
reflection about  let’s consider the feedback loop 
of Figure 2. Using 

*T  T
1Y FBR    and its transfer func-

tion GZ, its gain      ZG j v j i j    is: 

   
 

   

1
1 Z Y

FB

FB

R
j RC

A

j C RR











FBR R

Z

Z

FB

A
v j

G j
i j

RR

R R





 


 

        (4) 

that for  (Gain = Losses condition) gives: 

   1 1
ZG s

sC
ZG j

j C



            (5) 

Therefore, the Gain = Losses condition converts the 
lossy capacitor of capacitance C into a lossless one of the 
same C because this feedback in-phase with v(t) doesn’t 
vary C [5]. Using s j   , the inverse Laplace 
transform of GZ(s) will be the time response of the sys-
tem of Figure 2 to an impulsive driving current i(t) like 
those TAs occurring in C [4]. The GZ(s) of (5) indicates 
that a current impulse of weight q (a charge q displaced 
in C in a vanishing time interval) will set a voltage step 

v q 

 

C  V in C that will remain forever. These volt-
age steps appearing randomly in time and with random 
signs have been sketched in Figure 3 to show their null 
mean value 0v t  . Thus, this PF won’t “build” a 
voltage in C like the V0 we are looking for and moreover: 
the 1 FB 1R R  condition at each instant t can not be 
met because the random drift with time of R in this ca-
pacitor can’t be compensated for by the feedback net-
work having its own, small drift with time. 

To generate a noticeable voltage in C we need to have:  

 

Figure 3. Output signal of the feedback loop of Figure 2. 
 
1 1R R R RFB  or FB  . This is the Gain > Losses 
condition meaning that (4) in s domain has a pole with 
positive real part (e.g. ps j0  0 with    ). In this 
case the steps of Figure 3 no longer are flat, but expo-
nential risings. For the particular case 2R R  (e.g FB

2 R R R), the resistance shunting C is: Eff Y   
because    2 2EffR R R R R  and we obtain:     

   1 1

1 1Z Z

RC
G j G s

j RC C sRC



   
  

    (6) 

Equation (6) means that an impulsive current of 
weight q will create a voltage q C

RC
 V in C that will rise 

exponentially with time constant  
10C

 for this par-
ticular βY. For   pF and  GΩ used previ-
ously we have: 

1R 
10  ms and a small voltage step 

16q C  nV growing in this way would reach 1 V in 
180startt   ms. For cuasi-dc signals as the aimed V0, this 

tstart seems a fast enough starting time that would be 
lower for higher βY values. Due to the random sign of the 
DRs (note that a DR is a voltage decay v(t) in Figure 4 
coming from an impulsive current i(t) of one electron) 
we have to amplify only those DRs whose polarity is that 
of the aimed V0. This is done in Figure 4 by the rectifiers 
D1 and D2, taken as ideal ones to simplify. Due to the 
blocking action of D1, a voltage step v q C    V ap-
pearing in v(t) wouldn’t feedback current to the input 
whereas a positive v q C  

  0
 would do it. 

This positive ∆v would give a v t  rising with 
time as explained. Due to the blocking action of D2, a 
voltage   Re fv t V  wouldn’t feedback current, but for 
v(t) surpassing VRef, this NF loop will feedback a current 
iALC to counterbalance the excess of PF that existed dur-
ing tstart, thus passing to sustain a voltage v(t) close to VRef, 
that the PF has “built” in C. Thus, this NF called Clamp-
ing Feedback (CF) is necessary to recover first and to 
keep continuously next, the 1 1R RFB  condition that 
during tstart was: 1 FB  This CF implicit in the 
action of Automatic Level Control (ALC) systems or 
amplitude limiters used in oscillators, works when v(t) 
surpass VRef, thus generating the error signal it needs to 
be driven, which is 

1R R

     0v t v t VRe f    . 
When v(t) surpasses VRef, this CF has to feedback 

enough current to counterbalance the excess of PF used 
to start the system. With 2R R

2T
FB , the system starts 

with loop gain start   because 2 RY  . Note that 
the sign of –2/R in the PF generator of Figure 2 disap-
pears if its arrow is reversed to follow the path allowed  
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1001R R

Figure 4. Electrical circuit with positive feedback and nega-
tive clamping feedback loops to generate first, and to sus-
tain next, a positive voltage V0 in C (see text). 
 
by D1. This βY shunting C by 2R R 

R R

FB , needs to be 
counterbalanced in some extent by the CF when v(t) ap-
proaches VRef in order to leave C shunted by Sus    
and by its own R. In this case the CF has to shunt C with 
a resistance ALC  to counterbalance the 50% of R R 

2Y R   in order to recover the Gain = Losses condi-
tion or a loop gain . This requires a current  1LT 

   ALC  coming from Rei t v t   R   fv t v t V 

 

, 
not from v(t), thus meaning that the CF has to be very 
strong because it is driven by a signal of amplitude much 
smaller than the one it keeps in time, which is the output 
amplitude driving continuously the PF loop whose excess 
of feedback has to be counterbalanced by the CF. 

Thus, any small signal as DRs (noise) appearing in v(t) 
when it is close to VRef will be strongly damped by this 
NF. If we define the Clamping Factor (CL) as: 

Re f   we have: CL V v t     Ref . 
Thus, the CF driven by vε(t) will be (CL + 1) times 
stronger than the PF driven by v(t) to feedback a similar 
current with regard the excess of PF that the CF has to 
counterbalance. This excess of PF is: 

v t v t V 

 
 

1 1 FB

FB

R R

R R




Y
FBR R

            (7) 

that for 2RFBR  gives: 1 RY 

   

. 
Since iALC(t) is generated from vε(t) that is (CL + 1) 

times lower than v(t) and it has to counterbalance a cur-
rent Y , the transconductance βALC 
thus required will be: 

v t v t R



 

  1 1 FB
ALC Y

FB

R R

R R


 


CL CL          (8) 

Taking a 0.1% excess over VRef as error signal we have: 

    0.0010 Refv t V V   RefV . In our particular case  

with 2FB , (8) gives R R 1001 RALC   A/V. Thus, 
for small departures of v(t) from its mean value 

  1.001 RefVv t  this CF will react as a resistance 

DIF   Ω shunting C. Since this reaction is 
driven by vε(t), any small voltage like noise added to its 
mean value   Re f  will feel this RDIF. For 
VRef = 1V the error signal driving the CF will be the dc 
signal 

v t V CL

  1v t   mV accompanied by the ac noise due 
to DRs being modified by the CF that dominates the cir-
cuit after tstart. Hence the reason to distinguish vε(t) from 
its average value (1 mV) that gives the conductance 

1mV 1G RALC ALC   

1 mVV V 

 

 A/V that counterbalances at 
each instant the excess of PF used during tstart. Figure 5 
shows the output voltage 0 Re f  in our case, 
together with some DRs coming from TAs taking place 
in C, which would form the i(t) of Figure 4. 

1v tThe CF is thus driven by a dc voltage    mV 
and by the ac noise of C, both feedback by βALC. The 
feedback of  v t  performs the aimed clamping func-
tion and the feedback of the noise changes its spectrum 
as shown by curve b) of Figure 6. For 1001 RALC   
A/V, the low RDIF shunting C for start  means that the 
DRs of Figure 5 won’t decay with the native τ of Figure 
1(b), but 1001 times faster. This is a known result com-
ing from the GainBandwidth product conservation in 
systems like this one where a flat NF is applied to a first- 
order, low-pass, forward gain (see Chapter 5 of [11]). 
Since the rate λ of DRs is unaffected by this NF, the 
noise spectrum found in the voltage v(t) of Figure 4 will 
be that of curve b) of Figure 6, where the native spec-
trum of (3) has been broadened in frequency by 

 and attenuated by  due to the 
quadratic dependence of (2) with τ, because the ampli-
tude 

t t

31001 10  2 61001 10

q C

 
 

 of these “accelerated DRs” won’t change 
since C is not affected by this feedback in-phase [5]. 
Thus, the noise spectrum will be: 

2
2 2

4 1
V Hz

1001
1

1001

VNP

c

kTR
S f

f

f

    
 

  
 

    (9) 

whose ≈106 lower amplitude comes from the action of 
the CF on each DR, increasing its conduction current by 
1001. Thus, this CF not only keeps the output amplitude 
close to VRef, but also damps heavily the noise it finds on 
the output amplitude in the form of DRs. A higher CL to  
 

 

Figure 5. Detail of the voltage V0 = 1.001 V kept in C by the 
feedback system of Figure 4 together with its electrical noise 
(see text). 
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Figure 6. Noise damping in the feedback system of Figure 4. 
 
clamp v(t) more closely to VRef would give a higher at-
tenuation and broader bandwidth in Figure 6(b), whence 
it can be found the reason for the name High Damping 
(HD) we will give to this effect due to the CF that under-
lies limiters and ALC systems of oscillators. This HD 
effect agrees with the action one expects for an ALC 
system that, unable to avoid the appearance of DRs in C, 
tries to remove them quickly once they have appeared. 

It’s worth noting that this NF in-phase with v(t) = V0 is 
possible because we have a “resonator of 0 ” 
whose output amplitude is a constant V0 allowing to con-
sider that its output signal v(t) is at its top or with zero- 
phase for this signal being: 

0f 

  cosV 

 02πf t

 2πf t
0f 

0f 

0 0  with 

0 . Despite its simplicity, this model gives a good 
picture about the way the CF will work in actual oscilla-
tors with f0  0 that we will study in the subsequent paper 
under this same title. To pass from this “dc approach 
with 0 ” to an ac one with f0  0, we could discuss 
about the way to clamp negative semi periods in Figure 
4 by adding a new feedback box with a third diode D3 
injecting current towards the anode of D2 to allow an 
iALC(t) of opposed sense coming from a vε(t) of opposed 
polarity, obtained from the sampling of v(t) minus a VRef 
with proper sign. The two feedback boxes containing D2 
and D3 would have to be driven by a time-varying refer-
ence signal Ref RefV t  that they would 
use to clamp the output signal v(t) close to this VRef(t). 
The problem, however, is that this VRef(t) is not available 
because it requires to have in advance, at each instant of 
time, the signal the oscillator is going to generate. An 
approach to avoid this unavailable requirement is to 
sample the peak value of v(t) each period and to compare 
it with a dc reference VRef to generate the proper βALC to 
be used next. Although it works quite well, this approach 
has a drawback however, because it converts the ALC 
system or its implicit CF into a sampled system whose 
sampling rate f0 (or 2f0 by sampling the positive and 
negative peaks of the output signal), we will consider as 
appropriate in this introductory paper to simplify. 

v t

  cosV 

What we will study more carefully is the noise due to 
this solution that locks in phase the CF and the carrier of 
frequency f0 whose amplitude V0 it keeps in time close to 
VRef. We refer to the noise generated by this locked CF 
when it is confused by the noise it samples in quadrature 
with the carrier it tracks, because its heavy attenuation 

on the noise it samples in phase is clear from Figure 6 or 
by (9). To study this collateral effect that appears when 
the carrier has a non null frequency f0  0, let’s consider 
that the NF of the ALC system or limiter is phase-locked 
to the carrier that is the big arrow (phasor) rotating at f0 
times per second in Figure 7, where the noise coming 
from random DRs is the small arrow VN(t) at its end 
whose mean square voltage is  V2. kT C

Since VN(t) points randomly respect to the carrier, we 
will consider its component along the carrier and that 
orthogonal to it. This endures a noise partition where the 
mean square voltage of noise sampled in-phase and that 
sampled in quadrature both are equal: kT/(2C) V2 and 
their sum is kT/C V2 (e.g. the sum in power of these two 
uncorrelated noises). With this partition, which acquires 
its proper meaning when phase can be defined for f0  0 
as we will see in actual oscillators, let’s redrawn Figure 
6 where all the noise of C was sampled in-phase. This is 
shown in Figure 8 where curve a) is the noise spectrum 
of the resonator without feedback and where curve b) is 
the noise spectrum coming from the 50% noise of C be-
ing feedback in phase with the carrier, thus 3 dB less 
than curve b) of Figure 6. Concerning the +90˚ or –90˚ 
phase of the 50% noise power feedback in quadrature, 
let’s recall that the zero-phase reference is the current 
injected by the PF because it follows the amplitude of the 
carrier in oscillators of f0  0. Because C stores energy as 
it builds voltage from the current it integrates in time, 
any noise current i(t) will create voltage components in 
v(t) at 0˚ (in-phase) and at –90˚ (in quadrature) respect to 
i(t) under SR. Since i(t) (Cause [4]) represents random 
TAs with any phase respect to the reference carrier, it 
will produce noise voltages (Effect [4]) both at –90˚ as 
well as at +90˚º in the error signal vε(t) driving the CF. 

A noise voltage at –90˚ in the error signal vε(t) driving 
this NF means a current at –90˚ absorbed from the reso-
nator following the arrow of iALC in Figure 4. This is 
equivalent to current at +90˚ arriving to the top node of 
the resonator that compensates current at +90˚ leaving it 
through C. Thus, DRs having in-quadrature components 
at –90˚ respect to the carrier being generated will find a 
lower capacitance than C (e.g. αC with α < 1) in the 
resonator due to this NF. This will give voltage steps of 
amplitude  q C q C   with α times faster decay than 
those in TE without feedback, thus broadening their 
 

 

Figure 7. Phasor Hz whose real part represents the output 
signal v(t) of an oscillator, disturbed by additive noise VN. 
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noise spectrum while keeping its amplitude as we wrote 
below (3). Dually, DRs with in-quadrature components at 
+90˚ respect to the carrier being generated, will find 
more capacitance than C in the resonator (e.g. αC with α 
> 1) thus giving a voltage steps of  q C q C   V 
with α times slower decay than those in TE without 
feedback. This will narrow their noise spectrum while 
keeping unaffected its amplitude because none of these 
feedbacks in quadrature modifies R [5]. Hence, the CF 
confused by noise in-quadrature will broaden the native 
noise spectrum while keeping its 2kTFR V2/Hz amplitude 
and this will give a noise Pedestal of 2kTFR V2/Hz due 
to the 50% noise power the CF finds in quadrature. 

To compare this noise with its corresponding noise 
sampled in phase, curve b) of Figure 8, let’s take a 
feedback factor of equal magnitude to the one we have 
used for curve b): 1001j R 

  1002Q f 

ALC , for j being the 
imaginary unit meaning +90˚ phase shift. Let’s take a 
resonator with 0  where the current through 
C at f0 is 1002 times higher than that through R. In this 
case, the 1001 R

0f 
0f 

ALC  A/V of the CF would com-
pensate 1001 parts of the 1002 parts of current flowing 
through C at f0. 

Although this reasoning in SR requires an f0  0, let’s 
continue as if currents in the resonator had a non null 

0  allowing the aforesaid noise partition. The ca-
pacitive current at 0  demanded by the resonator 
with this feedback would be only 1/1002 times the cur-
rent of C, while its R would be unaffected. Thus, each 
DR of q C  V amplitude and time constant τ in TE 
would pass to have amplitude 1002( q C ) V and time 
constant 1002Pdl  . The spectrum of these DRs 
sampled and feedback in quadrature would have ≈1000 
times higher bandwidth but the same amplitude 2kTFR 
V2/Hz of the 50% noise spectrum found in quadrature by 
the CF, as it is shown by curve c) in Figure 8. It would 
be: 

  2
2 2

V Hz  




4
22

1 1
1002 1002

VNQ

c c

kTR
kTR

S f
f f

f f

 
  

   
  

(10) 

where the 2 below the Johnson noise 4kTR V2/Hz recalls 
 

 

Figure 8. (a) Noise spectrum of C in TE; (b) Damped noise 
created by the CF from noise sampled in-phase; (c) Pedestal 
of noise from noise sampled in quadrature by the CF. 

the orthogonal partition of the noise in C. Following [4], 
an equivalent Noise Figure F like that of [7] means that 
the rate λ of TAs and DRs is F times higher than the av-
erage rate  22kT q R 

0f 
*T T

 of thermal TAs associated to 
R in TE at T. If the resonator of 0  we are using 
had a temperature  due to the power it is Con-
verting into heat ( 2 R

*T T

 

0V  watts in dc, see next section), 
the extra noise due to  and the noise added by 
the feedback electronics could be taken into account by 
the Noise Figure F of [7]. In this case, the noise Pedestal 
becomes: 

2
2

1
2 V Hz

1
1002

VNQ

C

S f FkTR
f

f

    
 

  
 

0f 

1

  (11) 

Given the difficulty to handle the in-quadrature term 
of a signal of 0 , we won’t go further with this 
reasoning, thus leaving (11) as a good reason to find a 
broad Pedestal of electrical noise at 2FkTR V2/Hz added 
to the carrier whose amplitude is kept in time by a CF 
that becomes synchronous with it. This Pedestal is the 
collateral effect of thermal noise sampled in-quadrature 
by the feedback electronics governing the ALC system of 
oscillators. This Pedestal shown by curve c) of Figure 8 
represents more noise power than the 50% noise power 
sampled in-quadrature because the Clamping Feedback 
reduces the noise it samples in-phase as shown by curve 
b) of Figure 8, but enhances the noise it finds with phase 
error of –90˚, because it lacks the right phase to be nega-
tively feedback. Updating (9) with F 

 
 

 and this noise 
partition we have: 

2
2 2

2 1

1001
1

1001

VNP

C

FkTR
S f V Hz

f
f

     
  
 

0f 

191.605 10q

   (12) 

Since this mix of discrete noise, electronic feedback 
and noise partition can be hard to be accepted at first 
sight, we will give added proofs by PSPICE that can be 
refined at the expenses of a higher computational cost or 
by other simulation tools. Figure 9(a) shows the Lor-
entzian noise spectrum that appears when a discrete and 
pseudo-random noise current mimicking the noise model 
of [4] drives the resonator of 0  of Figure 9(b) 
formed by a capacitor of 10 pF whose losses are repre-
sented by 10 GΩ. To have unambiguous results, TAs 
displacing  

1310q

 C each in [4], have been 
replaced by big TAs, each displacing a charge packet 

big


5%

 C by a current pulse of 10–9 A height and 0.1 
ms width, whose appearance in time is each 2.1 ms, with 
random sign to give a rough emulation of thermal noise 
in the resonator of Figure 9(b) where it is injected 
through the transconductance generator G1. Thus, we 
have a pulsed “noise current” of   duty cycle and 
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power of λ “fat TAs” per unit time taking place in C, as it 
happens with the TA-DR or Cause-Effect pairs in [4]. 
The higher power of the PRN respect to 

 

 

4kT R  avoids 
resolution problems with non ideal rectifiers (see below). 
On the other hand, the average rate  22T kT q R 

0f 
73.2 10  

0f 

 of 
true TAs in this resonator of 0  would be: 

T  s–1 whereas the PRN has a fixed rate λ that 
roughly is 7  104 times lower than λT. Thus, the ≈106 
times higher charge noise power of the PRN comes from 
the “fat electrons” (each of charge –qbig) that it uses to 
emulate electrical noise in an Admittance accordingly to 
[4]. 

(a) 

 

 

Figure 9(b) shows the PSPICE circuit used to inject 
this pulsed PRN into the R-C resonator in order to create 
the voltage noise on C that will emulate Johnson noise in 
this resonator of 0 . Considering that each qbig 
shifts the voltage VC in C by 10V q C  

0.1

C big  mV 
and that the time constant of the subsequent decay is: 
  s, we can use these values and (2) multiplied by 

476

yright © 2 ciRes.    

(b) 

Figure 9. (a) Native noise spectrum of the circuit of Figure 
9(b) driven by the charge noise described in the text. (b) 
Circuit of a capacitor of capacitance C and losses repre-
sented by R, driven by a charge noise (see text). 
 
fixed rate 310 2.1 476   s–1 (a Pseudo-Random 
Noise PRN) to emulate the thermal charge noise power 
of 4kT R  2C s 10 10R [4] in C  pF shunted by   
GΩ . 

This power or “Nyquist noise density 4kT/R A2/Hz on 
R” is: 1.7  10–30 2C s

2 249.6 10   

  s–1 to predict the spectrum of this PRN in VC. 
This way the flat region of the Lorentzian shown in Fig-
ure 9(a) would be: 2  476  10–6 V2/Hz (e.g. –30 dB), 
thus agreeing well with the FFT of the VC-time series 
given by PSPICE in the circuit of Figure 9(b). This same 
value appears by converting A2/Hz into V2/Hz through 
the square of the Resistance where the Nyquist noise (in 
A2/Hz) “is being applied”. Multiplying 9.6  10–24 A2/Hz 
by  Ω2, we have: 9.6  10–4 V2/Hz, as ex-
pected. The two asymptotes drawn in Figure 9(a) show 
the cut-off frequency C

2 2010R 

1.59f   Hz of this spectrum, as 
it must be for this τ of 0.1 s. This PRN is the charge noise 
driving continuously the resonator during the simulations 
to come. 

 (or A2/Hz) at room T, whereas 
the power of the PRN is:   132 10

2C s  (or A2/Hz), the factor 2 coming from the fact that 
each “fat TA” or fast displacement of a charge qbig in C, 
triggers a “fat DR” or slower displacement of charge 
–qbig (an opposed displacement) to Dissipate the energy 
stored by the fat TA, thus doubling the charge noise 

Figure 10 shows the PSPICE circuit that simulates the 
“oscillator of 0 ” proposed in Figure 4 to build a 
dc voltage V0 in C. Its dc reference VRef leads to build a 
VC voltage on C close to 3 V. The voltage amplifier E1 of 

0f 

 

 

Figure 10. Positive feedback and CF loops used to build and to sustain next a voltage V0 in the resonator of Figure 9(b). 
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gain 104 V/V driving the diode D, followed by the ampli-
fier E2 of inverse gain 10–4 V/V allows to rectify small 
voltage signals in VC as if the diode D (model 1N4007) 
had a turn-on voltage of 0.6 1 60V E 

10V  

102 10  

10

 μV, thus negli-
gible for the voltage steps C  mV created in C 
by each charge packet qbig of the PRN. This way, the first 
positive ∆VC on C will appear at the output of E2 with 
amplitude  mV due to the precision recti-
fier that form E1, D, R1 and E2. This ∆VCfirst will be 
positively feedback to the input through the transcon-
ductance amplifier of gain  A/V that is 2 
times the –1/R gain required to compensate resonator 
losses represented by its 

9.94CfirstV 

Gp

R   GΩ. Thus, the loop 
starts with , the same value we used to describe 
Figure 4. Since any C  mV is blocked by D, 
only positive voltage is built in C during the starting time 
tstart. When VC(t) reaches 2.9 V, switch S closes to acti-
vate the CF accomplished by the amplifier of gain 

 A/V, whose 25 times higher gain than 
Gp leads to a clamping factor:  (e.g. to coun-
terbalance the excess of PF we have in Gp driven by 

2startT 
V

90

10

25CL 

 

2.5 1Gn  

3CV   V, a signal Re f  V has to 
drive Gn in steady state). PSPICE shows that starting 
from , a voltage 

25 0.12 

3

v V

 



CV t0C V   V appears in tstart≈15 
ms and shortly after we have 3.12V C

We distinguish 
 V. 

C  from VC because the 10 mV 
peaks due to the fat TAs of the PRN driving continuously 
the circuit appear onto 

V

C  as PSPICE shows. To have 
a resolution better than 0.25 Hz, transient simulations 
lasting more than 4 seconds have been used while the 
PRN is being injected. The first 0.02 seconds corre-
sponding to tstart in the VC-time series of data given by 
PSPICE were not used to be in “steady state” (e.g. after 
tstart). The voltage on C in steady state mimics Figure 5, 
being formed by a dc value 

V

3.12V V v  C Ref   V 
plus the ac voltage noise due to the PRN, both governed 
by the CF. The error signal driving the CF is thus: 

ac  where vac represents these C  mV 
noise decays that form the noise viewed by the CF. It’s 
worth noting that in steady state, these noise decays are 
feedback with gain ≈ 1 because for 

v 10V v

3.12CV  V, a dc 
current 31200I R 

10V  

1 1D mA flows through diode D. 
With this dc bias, D converts ≈0.7 mW into heat and 
does not rectify at all the small noise decays C  
mV that are added to C . Instead, it offers a dynami-
cal resistance rd = VT/ID ≈ 25 Ω allowing their passage to 
R1 with negligible attenuation (e.g. one part per million). 
This way, the decays of noise with amplitude 10 mV in 
C are transferred with unity gain to the output of E2 and 
feedback through Gp and Gn. Due to the simplicity of 
this circuit, R1 converts into heat 32 W in steady state, 
although this is irrelevant for the results. 

V

25CL 

 2
25 1 676 

26 1.6 42f

Figure 11(a) is the spectrum of the signal that exists 
on C in Figure 10. Using  in (8) and (9), the 

native noise spectrum of Figure 9(a) would be attenu-
ated by  (e.g. 28 dB less) whereas its 
cut-off frequency would be 26 times the fC of Figure 9(a). 
Thus, the noise on C would be a Lorentzian at –58 dB 
with its cut-off at Clamp   

0f 

 

 Hz that agrees 
well with the FFT of the VC(t)-t series that PSPICE gives 
for the circuit of Figure 10. This is the spectrum under 
the dashed line drawn to guide the eye in Figure 11(a). 

Since this spectrum merges at high frequencies with 
the upper Lorentzian that repeats the asymptotic spec-
trum of Figure 9(a), we confirm that for noise being 
feedback in phase, the G × BW product is conserved, as 
predicted. 

Given the agreement between these simulations and 
our theory for the noise the CF “sees” in phase, let’s try 
to find some proof concerning noise it sees in quadrature. 
The first point to consider is that for a signal like VC(t) 
that mostly is a dc signal of , we would have to 
wait an infinite time to pass from phase 0˚ to phase –90˚, 
but this is not so for its small ac components. Although 
we could synchronize its feedbacks with a carrier of fre-
quency fx. and use a signal in quadrature with fx to build 
the feedback of noise in quadrature, this would modify 
the circuit in such a way that the results would be ob-
scured by the extra knowledge required to handle the 
electronics. Thus, we will give a partial proof (only in a 
frequency band) about the effect we expect from a CF 
seeing noise in quadrature that is: a noise Pedestal of 
density 2FkTR V2/Hz. Since we need a CF working 
around the resonator, let’s use that of Figure 10 that 
clamps perfectly the amplitude to the designed value of 
3.12 V. Hence, Figure 12 is the circuit of Figure 10 with 
an added path to feedback the ac voltage on C multiplied 
by –j. This feedback at –90˚ is done by converting the ac 

 

(a)

(b)

 

Figure 11. (a) Noise spectrum of the capacitor of Figure 9(b) 
under the feedbacks of Figure 10; (b) Noise spectrum of the 
same capacitor with the feedbacks of Figure 12 (see text). 
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Figure 12. Electrical circuit of Figure 10 with an added path in the Negative Clamping feedback to feedback noise in quad-
rature as described in the text. 
 
voltage in C into an ac current through C1 whose Fourier 
components will be at +90˚ respect to the Fourier ones of 
this ac voltage because displacement currents in C1 come 
from the time derivative of each voltage component on 
C1. This current at +90˚ respect to voltage on C is con-
verted into a new voltage by the transimpedance ampli-
fier of gain H1 whose negative sign gives the –90˚ phase 
lag we are looking for. 

As Figure 12 shows, the ac voltage on C and this new 
voltage in-quadrature are added to drive the circuit that, 
being a precision rectifier during tstart, becomes a unity 
gain circuit feeding back the resonator in steady state as 
explained. Setting H1 = 0, the circuit of Figure 12 be-
comes that of Figure 10 and the spectrum of voltage 
noise that appears in C is that of Figure 11(a). Since the 
feedback in phase of the CF has to exist continuously, 
(otherwise we wouldn’t have a CF liable to feedback 
something in quadrature) and this already generates the 
noise spectrum of Figure 11(a), this spectrum has to be 
viewed as the native spectrum of noise the feedback in 
quadrature finds when it is born by setting the gain of H1 
to a non null value. Therefore, any change in the spec-
trum of noise on C coming from the CF mislead by noise 
in quadrature, has to be referred to Figure 11(a). For 
readers worried about this double feedback through the 
adder of Figure 12 we will say that after tstart (when the 
E1, D, R1, E2 block becomes a linear, unity gain ampli-
fier) it works perfectly because the orthogonal signals it 
handles do not merge, a feature used in [5] to handle the 
phase error in the loop gain of oscillators and its induced 
(Technical) phase noise. As the gain of H1 is increased, 
the amplitude of the noise peaks on C increases while 
their decay becomes faster. For H1 = –3.5  108 V/A, 
this amplitude roughly is five times higher than for H1 = 

0 and the noise peaks decay five times faster. 
Thus, this noise viewed in quadrature by the CF would 

be finding a capacitance ≈C/5 in the resonator. The FFT 
of the VC(t)-time series PSPICE provides for the circuit 
of Figure 12 gives the spectrum of Figure 11(b), thus 
with the same amplitude but roughly 5 times larger band- 
width than the native noise of Figure 11(a). The rather 
large gain we use in H1 is to compensate the low volt-
age-current conversion gain we have previously due to 
the small value of C1. The overall value of these gains: 

  2π 11Quad f fC H  

45f

, depends on frequency because 
the +90˚ phase shifter we had to use is not the differenti-
ator we have used, where the amplitude of its output sig-
nal rises with f. With a –90˚ phase shifter of flat response 
we could do a better simulation, but this would compli-
cate more than clarify the circuit. Therefore we will say 
that Figure 11(b) shows the trend of the CF to create a 
Pedestal of electrical noise in the resonator when it is 
mislead by noise in quadrature. The gain βQuad(f) in the 
circuit of Figure 12 that is unity around   Hz, 
thus near the frequency Clamp  Hz of Figure 11(a), 
means that this feedback of noise at –90˚ and that of 
noise in-phase are of similar strength around fCclamp, 
where the native noise spectrum had dropped 3 dB in 
Figure 11(a). However, the noise spectrum recovers its 
flat or low-f value around fClamp as Figure 11(b) shows, 
thus meaning that this CF in quadrature tends to sustain 
the native noise amplitude when its magnitude is similar 
to that of the feedback in phase. This proves quite con-
vincingly the generation of a Pedestal of 2FkTR V2/Hz 
amplitude by the CF confused by a noise density of 
2FkTR V2/Hz that it will find in quadrature with the car-
rier in oscillators with f0  0. 

42f 

It is worth noting that the noise we have considered in 
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TE (V0 = 0) and out of TE with V0  0 has been the same 
despite the very different electrical power linked with R 
in TE and out of TE. We mean that the noise power Dis-
sipated by R in TE is kT/(RC) W following [4] whereas 
the power handled by R,   2V I V R  

 

0 0i  W out 
of TE, can be millions of times larger. If neither the rate 
λT of DRs nor the energy 

p t

2U q  2C  Dissipated by 
each DR [4] are changed by the feedbacks, two questions 
that are essential to understand Phase noise in oscillators 
arise: 1) what happens with the instantaneous power pi(t) 
that the feedback generators inject continuously to sus-
tain V0  0?. And 2) How does this pi(t) affect the TA-DR 
pairs of events [4] or the Fluctuation-Dissipation phe-
nomena [12] that underlie electrical noise?. Next Section 
considers these questions. 

3. Dissipation of Energy and Conversion of 
Energy into Heat 

The Signal power pi(t) W that enters the resonator in 
electrical form to sustain its V0 uses to be considered as 
power dissipated in R that heats the resonator. Since Dis-
sipation was linked to Fluctuation long time ago in a 
Quantum treatment of noise [12], we prefer to say: “the 
power pi(t) that enters the resonator in electrical form is 
equal to the power that leaves it converted into heat”. 
This unbinds pi(t) from each Dissipation of electrical 
energy started by its previous Fluctuation in the Admit-
tance where electrical noise appears [4]. This distinction 
is needed because if pi(t) was Dissipated in the same way 
each energy Fluctuation is, it would affect strongly the 
observed noise and this is not so. We refer to the noise of 
a resistor in TE with its R Dissipating  N kT RC  W 
by kT C  V2 driving its R and to the noise of this resis-
tor absorbing millions of times this power under V0  0, 
thus out of TE, that are similar when the heating effect is 
low. Using the Admittance of Figure 1(a) as a cogent 
circuit for their electrical noise [4], this noise comes from 
a random series of (TA-DR) pairs of events occurring in 
C at this average rate [4]: 

2

2
T

kT
G

Rq
  

1

2 T

q

R V
          (13) 

where T

Conductance is thus a rate of chances in time to Dissi-
pate electrical energy in TE, each involving the elemental 
charge unit q. Since C is the direct transducer converting 
kinetic or thermal energy of carriers into electrical one 
[4], let’s find the inverse transducer that converts elec-
trical energy entering the resistor into disordered energy 
observed as heat. Considering that the thermal noise of a 
resistor doesn’t vary noticeably when a dc current is al-
lowed to flow provided its heating effect is low, we can 
find that the inverse transducer also is a capacitance Cf, 

quite different from C. To have some figures, let’s con-
sider a resistor of R = 1 MΩ shunted by 

V kT q

0.4C 

 is the thermal voltage. 

 pF 
under open-circuit conditions. Integrating (3) from 

 to , the mean square voltage on R at T = 
300 K is: 

0f  f 
2 810v 
n   V2 (e.g. 100 μVrms or the well 

known kT/C noise of C). This voltage generated in C that 
is driving R means that the mean noise power Dissipated 
by R is: 8 6 1410 10 10N   

2V
2V

2V

 W in TE at 300 K. In-
jecting a dc current Idc = 1 μA to this resistor, a dc volt-
age between terminals Vdc = 1 V will appear and the 
electrical power entering this resistor out of TE will be: S 
= 1 µW. For a macroscopic resistor with dimensions in 
the mm range, this Signal power S won’t rise noticeably 
its T. Thus, the noise in TE at T with R Dissipating N 
watts and the noise out of TE with R “handling” S = 108N 
at T* ≈ T, will be quite the same as one finds measuring 
noise in resistors. This similarity in spite of the 100 mil-
lions factor of the power handled by R suggests that the 
Dissipations of energy in TE [4] and those converting pi(t) 
into the heat power that appears in the device, are differ-
ent. Thus we have to look for a way to convert pi(t) into 
heat while keeping its electrical noise for T* ≈ T. Fol-
lowing [4], this requires to conserve λT with V0  0, to 
keep the average number of electronic charges arriving at 
the terminals (or plates) of the resistor. Since pi(t) is G = 
1/R times 0 , a way to convert pi(t) into heat with this 

0  dependence is by loading each carrier arriving to a 
plate with an energy proportional to 0  as if each car-
rier giving noise had a capacitance Cf  driven by V0. 
The word loading means that each carrier has to offer a 
reactive behaviour to V0, like a capacitive Susceptance 
able to store electrical energy taken from V0. This energy 
loaded onto the carrier would be released to the terminal 
(Collector) where the aforesaid carrier was captured. 

In a device made from two plates at temperature T 
separated by a distance d in vacuum (an R-C cell studied 
in [1]), a reactive behaviour could be expected from the 
mass (inertia) of free electrons accelerated by the electric 
field 0 . This way, an electron emitted with kinetic 
energy Ui from the negative plate (cathode) would reach 
the anode with total energy 0Tot i  J. The dis-
placement current that began when it left the cathode 
would cease at its arrival to the anode and this would 
store a Fluctuation of 

V d

U U qV 

 2 2U q C 

U U U 

 J in C due to the 
charge q displaced between its plates. This is an energy 
stored by the device in its susceptance between terminals, 
thus able to drive the subsequent DR in TE that is what 
we call Dissipation in [4] to agree with the Fluctua-
tion-Dissipation of energy studied in [12]. Without other 
ways to store energy between terminal, the excess of 
energy brought by the carrier: Conv Tot , will be 
released to the Collector plate by phonons, thus as heat. 
Therefore the fast Fluctuations of energy (TAs) creating 
electrical noise in a device would be the energy packets it 
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stores in electrical form each time an elemental charge is 
displaced between its two terminals and only this energy 
is Dissipated after each Fluctuation accordingly to the 
TA-DR or Cause-Effect dynamics of [4] and the extra 
energy surpassing ∆U is Converted into heat. 

This difference between energy Dissipated and that 
Converted into heat is clear in this vacuum device, where 
the power converted into heat would be, however, pro-
portional to V0, not to 0V  (at least for 0

2 qV U

2V

2V

0t
). 

This means that kinetic energy acquired by charges like 
electrons in vacuum doesn’t give the reactive behaviour 
we are looking for, but this will be different in Solid 
State devices, whose free carriers in bulk regions be-
tween two terminals tend to bear charge neutrality by 
two opposed charges screening one to each other. The 
average number T of electrons per second reaching the 
two plates or terminals of the two-terminal device (2TD) 
like a resistor or capacitor one has to build to measure 
Johnson noise is given by (13). These 2TD can be made 
small (e.g. differential) and repeated many times if nec-
essary (e.g. connected in series or parallel) to study noise 
within a macroscopic device for example, but its 2TD 
character never is lost because the electrical noise “of a 
material” hardly will be measured. Only the noise of a 
device made from this material can be measured, but this 
device can produce its own noises like those of [1,2] that 
become puzzling when they are assigned to the material 
and not to the device that produces them. For a resistor 
made of n-type semiconductor, free carriers for electrical 
conduction are electrons in the Conduction Band (CB) 
whose name “free electrons” as opposed to trapped ones, 
does not mean “free electrons in vacuum”. 

An electron in a quantum state (QS) of the CB has a 
extended wavefunction within the device that “connects” 
its two terminals in the sense that one terminal can emit 
an electron to this QS as soon as it is left empty by the 
other terminal having captured the electron that was pre-
viously in this QS, being this a mechanism allowing the 
TAs of [4]. Since the electrical noise observed in a resis-
tor in TE and when it conducts a dc current Idc is quite 
the same provided heating effects are small, we have to 
keep T while conducting Idc. On the other hand, to con-
vert electrical energy taken from the applied V0 into heat 
as Joule effect requires, a starting point is to look for a 
way to load each carrier with energy proportional to 0  
or for a way to convert each carrier into an electrically 
reactive element sensing V0 and storing an energy pro-
portional to 0  as a Susceptance driven by V0 would do. 
This leads to consider the electrical structure of an elec-
tron in the CB as formed by a mobile cloud of charge –q 
screening its corresponding positive charge +q that 
would be a sort of fixed density of charge distributed in 
the volume of the resistor, both depending on lattice at-
oms, defects, etc. as well as on the Bloch functions that 

define the wavefunction of this electron within the solid 
matter of the device. What matters is to realize that a 
“free carrier” in the CB is not a charged particle like an 
electron in vacuum, but a neutral charge structure to keep 
charge neutrality in the bulk region we are considering 
between terminals. 

For an electron emitted to the lowest energy level or 
QS of the CB at  , the first “image” of its associated 
charge density would be one with the –q cloud of charge 
wrapping closely its corresponding +q charge array, thus 
with a good screening at each spatial point within the 
resistor. This picture would correspond to a carrier very 
“cold”, not yet in TE with its surrounding universe. It’s 
easy to realize that this carrier can store electrical energy 
or has a Degree of Freedom to do it by changing the av-
erage screening between its –q charge cloud and its +q 
charge array. Thus, it will interact thermally with its en-
vironment by energy exchanges leading it to hold an av-
erage thermal energy of kT/2 J in the form of an average, 
non-perfect screening between the aforesaid +q and –q 
charges densities, a screening fluctuating randomly in 
time due to thermal activity. Using the quantization of 
the electrical charge no matter its spatial distribution in a 
QS of the CB, each free electron in the CB reacting as a 
sort of capacitance Cf with opposed charges +q and –q 
on its plates, would be an energy carrier liable to load 
electrical energy from the electric field sustained by the 
external generator of current Idc that sets V0 ≠ 0 between 
terminals. Using Equipartition for this Degree of Free-
dom as we did for C in [4], the average capacitance Cf 
that thermal activity will set in each free electron of the 
CB will be obtained by equating the energy stored by this 
reactive Degree of Freedom:  2 2f fU q  to the 
thermal energy per degree of freedom kT/2. This gives: 

C

2 21

2 2 f
f T

q q q
kT C

C kT V
            (14) 

Equation (14) that we have obtained here in TE after 
having presented Cf, was first obtained as a way to ex-
tract the electrical power pi(t) from the resistor body 
without varying its noise, thus keeping λT. Assuming that 
the λT electrons per second reaching the contacts of the 
resistor were responsible for this extraction, the energy 
Uf that each electron had to bring was: 

2 2
0 0

2
2 2

0 0

1 1

2 2

T f f
T

f f

V V
U U

R R

q
U V C V

kT




    


     

       (15) 

an equation suggesting that this extraction was accom-
plished by electrons of charge q reaching the contacts 
thermally, but previously loaded with an energy Uf taken 
from V0 as if they were capacitances Cf sensing V0. From 
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 *T T

 

this idea, the meaning of Cf expressed by Equation (14) 
was obtained and the conversion of electrical energy 
from the external generator into heat was separated from 
the Dissipations associated to Fluctuations. 

Therefore, when a free carrier of the CB leaves this 
band to appear as a charge –q on the contact where it is 
collected, it stores an energy Fluctuation ∆U in C (cause) 
subsequently Dissipated by the DR it produces (effect) 
[4]. This produces the electrical noise observed in TE 
and out of TE provided the heating effect is low 

. Out of TE, however, any energy brought by 
the free carrier in excess of ∆U, like Uf in Solid-State 
devices or kinetic energy of electrons moving in vacuum, 
can’t be stored in C as a Fluctuation of electrical energy, 
thus being converted into heat. The noise power of a re-
sistor in TE: N kT RC  W is Dissipated accord-
ingly to the Fluctuation-Dissipation Theorem derived 
from [12], but the electrical power S = pi(t) entering the 
device out of TE is Converted into heat as explained. The 
loading of Cf with Uf or the passage of a carrier in the 
bottom of the CB to a level of higher energy, involve 
fluctuations of energy that, not being stored by the device 
(e.g. in its C) are not Fluctuations of energy liable to 
produce Dissipations in the sense of [4,12]. This distinc-
tion between Dissipation and Conversion is essential to 
understand Phase Noise in actual oscillators. 

4. Conclusions 

When a voltage v(t) coming from positive feedback of v(t) 
itself is clamped to a value close to a reference VRef, a NF 
called Clamping Feedback driven by an error signal vε 
appears. This way, the output voltage becomes: V0 = VRef 
+ vε and since Ref , this negative feedback is very 
strong for vε and its added noise. The action of this NF on 
small signals like noise added to the output amplitude is 
thus a High Damping effect aiming to remove them 
quickly. Due to this effect, the Dissipation of electrical 
energy that each DR carries out is accelerated, thus pro-
ducing attenuation and broadening of the native noise 
spectrum so as to conserve the Gain×Bandwidth product. 
This situation coming from feedbacks at 0˚ and 180˚, no 
longer holds when this NF becomes phase-locked to a 
carrier whose amplitude it has to keep in time. In this 
case, this Clamping Feedback finds 50% of noise power 
in-phase and 50% noise power in quadrature. Whereas 
the noise in phase is heavily damped as explained, the 
noise in quadrature confuses the Clamping Feedback in 
such a way that creates the Pedestal of electrical noise 
that appears in systems like Automatic Level Control and 
amplitude limiters used in electronic oscillators. Con-

cerning the electrical power (Signal power) that enters a 
resonator where a voltage V0 is sustained in time by any 
means, it is Converted into heat without affecting its 
noise provided its heating effect is low. This will be quite 
the case for High-Q resonators whose small heating ef-
fect will be accounted for easily by the effective Noise 
Figure F of the oscillator loop. 
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