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ABSTRACT

Through the real representations of quaternion matrices and matrix rank method, we give the expression of the real ma-
trices in least-squares g-inverse and minimum norm g-inverse. From these formulas, we derive the extreme ranks of the
real matrices. As applications, we establish necessary and sufficient conditions for some special least-squares g-inverse

and minimum norm g-inverse.
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1. Introduction

Throughout this paper, R stands for the real number
field, H™" stands for the set of all mxn matrices
over the quaternion algebra

H={ 8 +ai+a,j+akfi’ = j* =k* =ijk = -1,
a,,8,,8,,8, €R }.

I, AT, A" and A" stand for the identity matrix’ the
transpose’ the conjugate transpose and the Moore-Pen-
rose inverse of a quaternion matrix A. In [1], for a qua-
ternion matrix A, dimR(A)=dimA (A). dimR(A)
is called the rank of a quaternion matrix A and denoted
by r(A).

The well known Moore-Penrose inverse A' of
AeH™" is defined to be the unique matrix X e H™"
satisfying the following four Penrose equations

1) AXA=A

2) XAX =X,

3) (AX) = AKX,

4) (XA) = XA

A matrix X is called a least-squares g-inverse of A if it
satisfies both 1) and 3) in the Penrose equations, and de-
noted by A a matrix X is called a minimum norm
g-inverse of A if it satisfies both 1) and 4) in the Penrose
equations, and denoted by A™*. The general expres-
sionof A" and A®™ can be written as

AR = AT LY, 1)

ALY = AT LWR, )
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where L, =1-A'A, R, =1-AA", the two matrices V
and W is a arbitrary; see [[2], pp. 44-46].
For convenience of representation, we suppose
A=A +AI+A [+ AK @)
and
A =B +Bi+B,]+Byk,

A =Cy+Cli+C,j+Chk

where A, A, A, A eR™",
C0|C11C21C3 ERnxm,
For an arbitrary quaternion matrix
M =M, +M,i+M;j+Mk,
M, M, M, M,
_ -M;, M, M, -M,
MZ Ml _M4 —M3
M, -M, M, -M,

(4)

B,,B,,B,,B, e R™",

By (5), it is easy to verify that ¢(-) satisfies the follow-
ing properties:

3 M=Nog(M)=¢(N).
b) #(M+N)=¢(M)+¢(N), (MN)=4(M)g(N),
#(kM)=kg(M),k e R.
c) #(M)=-T,"¢(M)T, =-R'$(M)R,
=S, '9(M)S,,

where
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0o -1, 0 O 00 -1, O
Il 0 0 O 0 0 0 -I

Tt: !Rt: 1
0 0 0 I Il 0 0 O
0 0 -1, 0 01, 0 O
0 0 0 -l
0 0 1, O

S, = ,t=m,n.
0O -1, 0 0
i 0 0 O

d) r[¢(M)]=4r(Mm).

The least-squares g-inverse and minimum norm
g-inverse have a very wide range of applications in nu-
merical analysis and mathematical statistics and have
been examined by many authors(see, e.g., [3-6]). Haruo
[3] developed some equivalent conditions on least-squares
general inverse in 1990. Tian [4] presented the maximal
and minimal ranks of the Schur complement to least-squares
g-inverse and minimum norm g-inverse in 2004. Tian [5]
establish necessary and sufficient conditions for a matrix
to be the least-squares g-inverse and minimum norm
g-inverse from rank formulas in 2005. Guo, Wei and
Wang [6] derived structures of least squares g-inverses
and minimum norm g-inverse of a bordered matrix in
2006.

Quaternion matrices play an important role in me-
chanics, computer science, quantum physics, signal and
color image processing and so on. More and more inter-
ests of quaternion matrices have been witnessed recently
(e.g. [7-14]).

Noticing that the properties of the real matrices in
least-squares general inverse A and minimum norm
g-inverse A®? (4) have not been considered so far in
the literature. We in this paper use the real representa-
tions of quaternion matrices and matrix rank method to
investigate (4) over H. In Section 2, we first give the
expression of the real matrices B, and C,(i=0,1,2,3)
in (4), then determine the maximal and minimal ranks of
the real matrices B, and C,(i=0,1,2,3) in (4). As
applications, we establish necessary and sufficient condi-
tions for a quaternion matrix has a pure real or pure
imaginary A*® and A“*. The necessary and suffi-
cient conditions for all A®? and A™* are pure real or
pure imaginary of a quaternion matrix are also presented.

2. Main Results

We begin with the following lemmas which proof just
like those over the complex field.

Lemma 2.1 (see [15]) Let A, B and C be
mxn, mxKk, I xn matrices over H . Then

a) r[AB]=r(A)+r(R,B)=r(B)+r(RyA),
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D) 1| o |=r(A)r(eL)=r(E) e (AL
0 {é ';}r(s)ﬂ(c)”(RBALC).

Lemma 2.2 (see [16]) Let Ae H™",
C e H*" be given. Then
a) The maximal rank of A—BXC with respect to X is

. All
mxaxr(A—BXC)— mln{r[A B],{C}}, (6)
b) The minimal rank of A—BXC with respect to X is
. A A B
minr(A-BXC)=r[A BJ]+r| |-r .
X C C o0

O

Theorem 2.3 Suppose| X; lM(i,j =1,2,3,4)is a least-

squares g-inverse of ¢(A), where X; e R™™, A and

A™ are defined as (3) and (4). Then B, (i=0,1,2,3)
in (4) can be written as

BeH™P,

1
B, :Z(X11+X22—X33—X44),
_1
B, _Z(Xlz_X21+X43_X34)1
L ®)
B, :Z(X13+X31_X24_X42)v
_1
Bs _Z(X41+x14 + X32 +)(23)-

Written in an explicit form, B, (i=0,1,2,3) in (4)
are

B, =5 P (A Q.+ 1 P(A'),

~2Pg(A)Q-Pe(A ), ©
Vl
VZ
[Py Pl Py Peli | vl
Vy
B =1 Ro(A) Q-5 P(A)Q
+3PI(A)Q, 7 Pa(A ), (10)
VZ
_Vl
[Py Pelyiny Pilyn By | v |
-V,
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1
B,=2PR ¢(A*)Q3——P¢(A*)Q4
1
+ZP3¢(A*)Q1—ZP4¢(A*)QZ (11)
V3
Vl
+[P1L¢(A),P3L¢(A),—P2L¢(A),—P4L¢(AJ vl
4
_V2
_1 f 1 t
B, = Ro(A")Q + Po(A)Q,
1 1
+3Po(AT)Q, + 3 Pg(A)Q, (12)
V,
1 V,
+z[ﬂ%mwaLﬂMJ%%MV%meJvi*
V3
where
:[ ,0,0,0],R, =[0,1,,0,0],
=[0,0,1,,0],P, =[0,0,0,1,],

Q =[1,,,0,0,0",Q, =[0.1,,0,0]",
Q,=[0,0,1,,0],Q, =[0,0,0,1, ],

and Vy, V,, V3 and V, are arbitrary real matrices with
compatible sizes.
Proof. Suppose | X; ] i,j=1,2,3,4) is a least-

squares g-inverse of ¢(A), where X; €R™™, ie.
A)I:Xij:|4x4¢(A):¢(A)’
(¢(A)|:Xij :|4><4)* = A)[Xij :|4x4'

Then applying property (c) of #(-) above to them
yields

T# (AT [ X, ], T
(Tn§l¢(A)Tn[xij]4x4) =TLH(AT X ],
R.'4(A)R, [ X U]44R;¢(A)R = -R,'$(A)R,
(R SR [X,],,) = REB(AR[X, ],

n[”L4m A)S, =S '9(A)S,
(s;1¢(A)Sn[xi,-]44) =S,'(A)S.[ X ], ,-

Hence

AT, = -T.'9(A)T,

¢(A)

[x&444%

AT [ %], Ta'd(A

(¢<A>Tn[xd4 ) =0

Copyright © 2011 SciRes.

S(AR,[X; ], , Rad(A)= ¢(A),
(#(A [XU44R1) = g(A

(A)Sn[xulxﬁnﬁ¢(A)=¢(A),
(o(m)8.[%;],., 8] =¢(A)Sn[XJ44S;ﬁ

which implies that T,[ X, ] T."R,[X;] R
SH[XU—L4 S, are also least-squares g-inverses of
#(A) . Thus,

RN L
w5, [ .. 57)

is also a least-squares g-inverse of ¢(A), where
|:Xij:|4x4 _T”[X'J:|4x4 m —R [X :| 4x4 Rf;l

n|: 11]44 m _[ szx

ij :|4><4 m >

Ro[ Xy ], R

and

X1 = Xyy + X — Xag — X

X12 = Xpp = Xy + Xy = Xa,
X1a = Xy + Xy — Xy — X
X1 = X+ X+ Xg + Xy,
X o1 = Xy — Xpp + Xy = X g
X2 = Xyy + Xy = Xgg = X
X3 = Xy + Xg + Xgp + X,
X 24 = Xy + Xy = Xyp = Xoy,
X1 = Xyp + Xag — X4 — X
X2 = Xy + Xy + Xy + X,
X33 = Xy + X gy — Xy = X
Xas = Xy — Xpp + Xy — X
X41 X+ X+ Xgp + Xy,
Xaz = Xy + Xy = Xyp = Xoy,
Xz = Xy — Xy + X g = X,

S(\““ = Xgg+ Xgy = Xy = Xpp.
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According to Lemma 2 and Theorem 2, we can get the
following extreme ranks formulas for the real matrices in
the least-squares g-inverses.

Theorem 2.4 Suppose that A and A" are defined
as (3) and (4). Then

a) maxr(B,)=min{r[A A]-4r(A)+n,mf;
minr(B,)=r[ A A]-r(A).

b) maxr(B,)=min{r[A A]-4r(A)+nm};
minr(B,)=r[ A A]-r(A).

¢) maxr(B,)=min{r[A. A]-4r(A)+nm};

minr(B,)= r[xz AJ—r(K).

d) maxr(B,)= min{r[Zs z\]—4r(A)+n,m};

Copyright © 2011 SciRes.
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Let minr(B,) r[z\s K]—r(A)
s 1
X :Z(X11+X22_X33_X44) where
1 : -A -A -A A
+Z(X12_X21+X43_X34)| ,\O AAl ,\2 ,\3
— =A== A= |-A|= |A
1 ] A= . A= AO 2= ’ 3= ,\0
+Z(X13+X31_X24_X42)J Az —Az As Au
X Ao A A &
+Z(x41+xl4+x32+x23)k, N
Ao 0O O O — _ _
Then, by (5), 0 A 0 0 A A A
~\ 1 A= Ao = A A A
— -1 ~ ! !
¢(x)_2(|:xij:|4x4 _T"[xij:|4x4Tm 0 A 0 A A A
0 0 A A A A
-1 -1
R[X ] Ret S %], 57, .
is a least-squares g-inverse of ¢(A). Hence, by the ) )
property (a) o ) we know that a least-squares - - -
f k hat X al A A A, A
g-inverse of A. The above discussion shows that the ~ A~ A~ A - -A,
. AO = ,Al = A, = ,A3 =
least-squares g-inverse of ¢( ) and the least-squares A, A, A, A
g-inverse of A are equivalent. Observe that X, i, j = A A, A A
1,2,3,4 in (8) can be written as -
X; = RXQ;. A A A A A A
From (1), the least-squares g-inverse of ¢(A) can be A= A A A A= A A A ,
written as A A A A A A
Y — T -
X = g(A)+LyV A A A A A A
where V =(V,,V,,V,.V,) and V,,V,,V,,V, e R** are A A A
arbitrary. % = AA A
Substituting them into (8) yields the four real matrices ’ A -A A
By, By, B> and B; in (9)-(12) A3 Az Ai

Proof. Applying (6) and (7) to By in (9), we get the
following

maxr(Bo):min{r[ﬁ ﬁ]{ﬂ};

minr (By) = r| P ﬂ”[ﬂ_{r j

where

s_1 1
P :ZP1¢(AT)Q1+ZP2¢(AT)Q2
1 1
_ZP3¢<AT)Q3 _ZP4¢(AT)Q4’

P =[ PLya: PoLya) Py Pebyi |

A’ T 274(A) T3TH(A) TATH(A)

By Lemma 1, it is not difficult to find that
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P R B B PB]
0 ¢(A) 0 0 0
=rf0 0 ¢(A) 0 0 |-4r[4(A)]
0 0 0 ¢(A) o
0 0 0 (A
0 B PR B P
A 4(A) 0 0
=r|A 0 4(A) 0 0 |-4r[¢(A)]
A 0 0 g(A) O
A 0 0 0 ¢(A)

= r[zo ﬂ—4r(A)+n

where Ao, A1 Az,/Aa and A are defined as above. By
the same manner, we can get extreme ranks of By, B, and
Bs.

As one of important applications of the maximal and
minimal ranks to real matrices, Theorem 2 can help to
get the necessary and sufficient conditions for the exis-
tence of some special least-squares g-inverses. We show
them in the following.

Corollary 2.5 Suppose A= A, + Ai+ A, j+ Ak.

Then
a) A quaternion matrix A has a real least-squares

g-inverse if and only if
([A A]=r[A A]=r[A A]=r(A).
b) All least-squares g-inverses of quaternion matrix A
are real matrices if and only if
r[ﬂl ~A] = r[ﬂz A] = r[ﬂg K] = 4r(A)-

where Ai, Az, A; and A are defined as Theorem 2.
Corollary 2.6 Suppose A= Aj+ Ai+ A, j+ Ak. Then
a) A quaternion matrix A has a pure imaginary least-
squares g-inverse if and only if

I’|:Zo K] = I’(A)
b) All least-squares g-inverses of quaternion matrix A
are pure imaginary matrices if and only if
r[Ko ~A] =4r(A)-

where Ao and A are defined as Theorem 2.

The following several theorems of minimum norm
g-inverse can be shown by a similar approach, and their
proofs are omitted here.

Theorem 2.7 Suppose [Y J i,j=1,2,3, 4) is a

minimum norm g-inverse of #(A), where Y, e R™",

]

Copyright © 2011 SciRes.

Aand A™) are defined as (3) and (4) Then C, (i =
in (4) can be written as

C 4 (Yll +Y22 Y44 !

-l>||—\4>||a

Y3 +Yqy =Y, ),

)
(Y s Ya )
( )
(Y41 +Y, + Y5 +Y. 3)
Written in an explicit form, C, (i
Co =3 Po(A)Qu+ (A ),
~2Pg(A)Q - Po(N ),

R:p(A)Ql

Ry Q

1 $(A) X2
+Z[wl,wz,—w3,—w4] .

o Qe

Ry Qi
_1 ; 1 ;

C, = Po(A)Q - Pg(A)Q,

1 e Lo
+ZP4¢(A )Q3_2P3¢(A )Q4
Ron Q2
R¢(A)Ql

¢( A) Q3
Ry(a) Qs

1
o W =W, W, W

C, = PH(A)Q -7 P(A ),
+2PH(A)Q -1 Po(A)Q,
R¢(A)Q3
RiaQ
R¢(A)Q2
R¢(A)Q4

1
+Z[W1,W3,—W2,—W4]

Cs :%P1¢(AT)Q4 +%Pz¢(AT)Q3

3P (A)Q+ 1 RA(A)Q
R¢(A)Q4

1
2 T W W

0,1,2,3)

=0,1,2,3) in (4) are
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where
R

[1,,0,0,0],R, =[0,1,,0,0],
R, =[0,0,1,,0],P, =[0,0,0,1,],

Q =[!,,0,0,0]",Q, =[0,1,,0,0]",

Q,=[0,01,,0]',Q, =[0,0,0,1,] ,

and W, W,, W3 and W, are arbitrary real matrices with
compatible sizes.

According to Lemma 2 and Theorem 3, we can get the
following extreme ranks formulas for the real matrices in
minimum norm g-inverse.

Theorem 2.8 Suppose that A and A“* are defined
as (3) and (4). Then

a) maxr(Cy)=min<r| ~ [—4r(A)+m,4n¢;
A
minr(C,) = [fl (A)
b) maxr(C1)=min{r El —4r(A)+m,4n};
A
i =r Z —r(A).
minr(C,) = < (A)

c) maxr(C,)= min{r[%}4r(A)+m,4n};

A
minr(C,)= [i} (A)
d) maxr(C3):min{ F‘;}M(Aﬁm,m};
A
minr(C;) = [z] (A)

where B
A=[A A -A -A]
A=[A A A -A]
:=[A -A A A
A=[A A A Al

p

Copyright © 2011 SciRes.

A O 0 0
s_[0 A 3 0|
0 0 A O
0 0 0 A
A A A A
A= A A -A -Aj
A A A A
A A A A
A=A A A A
A -A A A
(A A A A
A=-A A A -Al
LA A A -A
(A A A A
A=-A A A -A|
LA A A A

As one of important applications of the maximal and
minimal ranks to real matrices, Theorem 4 can help to
get the necessary and sufficient conditions for the exis-
tence of some special minimum norm g-inverse. We
show them in the following.

Corollary 2.9 Suppose A= A, + Ai+ A, j+ Ak. Then

a) A quaternion matrix A has a real minimum norm

g-inverse if and only if
Ao =R
A A

b) All minimum norm g-inverse of quaternion matrix A
are real matrices if and only if

%}: r[%]:M(A)—m,
A A

where A, A2,As and A are defined as Theorem 4.
Corollary 2.10 Suppose A= A, + Ai+ A, j+ Ak. Then
a) A quaternion matrix A has a pure imaginary mini-
mum norm g-inverse if and only if

m(A)

b) All minimum norm g-inverse of quaternion matrix A
are pure imaginary matrices if and only if

er} =4r(A)-m,

A

A

r =r

A

A

r =r

A
where f\o and X are defined as Theorem 4.
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