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Abstract 
 
Virtual screening of compound databases is a promising approach to identify inhibitors of DNA methyl-
transferases and other epigenetic targets. An important first step before conducting virtual screening is to 
characterize the structural diversity and chemical space coverage of the screening collections. Herein, we 
report a comprehensive chemoinformatic characterization of novel screening libraries, including a focused 
collection directed to inhibitors of DNA methyltransferases (DNMTs), and two natural product databases. 
The compound databases were assessed in terms of physicochemical properties, molecular scaffolds, and 
fingerprints. As part of the scaffold diversity analysis, a recently developed method, based on Shannon En- 
tropy, was used. The overall approach enabled the analysis of property space coverage, degree of overlap 
between collections, scaffold and structural diversity. Overall, the analysis of the distribution of physico- 
chemical properties indicates that the DNMT focused library and the two natural products collections have 
molecules with properties similar to approved drugs. Moreover, the natural products databases analyzed in 
this work have different chemical structures from approved drugs and synthetic databases and therefore are 
attractive for virtual screening for DNMT inhibitors. The scaffold analysis revealed that the focused library 
has, overall, the largest scaffold diversity and that the most frequent scaffolds are not identified in the other 
analyzed collections. Therefore, the focused library is also attractive to perform virtual and experimental 
screening for novel inhibitors. This study represents a first step towards the virtual screening of novel com- 
pound databases to identify inhibitors of DNMTs. Results of this study are general and can be used for the 
virtual screening of the compound databases against targets directed to other therapeutic applications. 
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1. Introduction 
 
Inhibitors of DNMT are relevant for the treatment of 
cancer and other diseases [1-3]. Most of the inhibitors 
known so far have been identified fortuitously. Only two 
drugs, 5-azacytidine and 5-aza-2’-deoxycytidine (decit- 
abine), have been developed clinically. These drugs, how- 
ever, have relatively low specificity and are characterized 
by substantial cellular and clinical toxicity [4]. Therefore, 
there is an urgent need to identify novel and more spe- 
cific DNMT inhibitors that do not function via incorpo- 
ration into DNA. To this end, computational approaches 
are increasingly being used to better understand at the mo- 
lecular level the mechanism of established inhibitors of 
DNMTs [5]. 

Chemical libraries are becoming and important role 
for the discovery of inhibitors of DNMT. Structure-based 
virtual screening of the National Cancer Institute (NCI) 
database [6], followed by experimental validation, has iden- 
tified hits with novel scaffolds [6,7]. Promising hits have 
been proposed from a docking-based virtual screening of 
a large natural product collection available in the ZINC 
database [8]. There are several additional promising data- 
bases for structure- and ligand-based virtual screening for 
novel DNMT inhibitors and other molecular targets [9]. 
For example, the Traditional Chinese Medicine (TCM) 
represents an attractive source to identify novel inhibitors 
of natural origin. Also, a focused library for DNMT in- 
hibitors has been recently developed. An initial and im- 
portant step before conducting the virtual screening of 
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these compound databases is the comprehensive charac- 
terization of the molecular properties, scaffold content and 
chemical space coverage of the screening libraries [10,11]. 
There are available several chemoinformatic tools that 
have been employed by the authors and other research 
groups to analyze chemical libraries. Representative and 
recent examples include the characterization of the NCI 
database [12], a natural product collection available in ZINC 
[12] and other natural products databases [14,15], several 
commercially available libraries and approved drugs [16,17] 
and public repositories [18]. 

As part of on-going efforts to conduct virtual screen- 
ing for novel DNMT inhibitors [19-21] and compounds 
directed to other targets of therapeutic interest [22,23] 
herein, we report a comprehensive chemoinformatic cha- 
racterization of a focused library on DNMT inhibitors, 
two natural products databases including the TCM col- 
lection available in ZINC, and other reference databases. 
The analysis was performed using a comprehensive and 
complementary set of criteria including physicochemical 
properties, molecular fingerprints, and scaffolds [13]. 
 
2. Methods 
 
2.1. Data Sets 
 
We analyzed two natural product databases including TCM 
implemented in ZINC [24], a recently developed DNMT 
focused library, and the NCI diversity set that was used 
as a reference. Table 1 summarizes the source and sizes 
each collection after removal of duplicates. In addition, a 
collection of 1403 approved drugs obtained from Drug- 
Bank [25] was used as a reference to characterize the phy- 
sicochemical properties and structural diversity of the 
screening collections. All molecular databases were pro- 
tonated and prepared using the “Wash” function imple- 
mented in Molecular Operating Environment (MOE, v2010. 
10, Chemical Computing Group, Montreal, Canada). 
 

Table 1. Molecular databases characterized in this work. 

Database (source) Size (unique structures) Ref. 

Natural products from the  
Traditional Chinese Medicine 
(TCM) database implemented  
in ZINC 

2200 [24,47,48]

Natural products from Specs 456 [49] 

National Cancer Institute (NCI) 
diversity set 

1832 [50] 

DNMT-focused library 26944 [51] 

2.2. Physicochemical Properties 
 
The following properties were computed with MOE: mo- 
lecular weight (MW), number of rotatable bonds (RB), 
hydrogen bond acceptors (HBA), hydrogen bond donors 
(HBD), topological polar surface area (TPSA), and the 
octanol/water partition coefficient (SlogP). The six de-
scriptors used here have been used widely to compare the 
property space of compound collections [12,13,26]. 
 
2.3. Molecular Fingerprints 
 
Molecules were represented by 2D MACCS key finger- 
prints (166 bits) [27] as implemented in MOE and the si- 
milarity of the i-th and j-th molecules was computed us- 
ing the well-known Tanimoto similarity coefficient [28,29]: 

 ,
c

T i j
a b c


 

            (1) 

where a and b are the number of  fragment bits corre- 
sponding to the i-th and j-th molecules and c is the num- 
ber of fragment bits common to both molecules. Despite 
some caveats related to size-dependent effects [30,31], 
the Tanimoto coefficient is the measure of choice to as- 
sess the molecular similarity of molecules based on 2-D 
fingerprints, because on its extensive usage in a wide va- 
riety of studies [32]. To obtain a visual representation of 
the chemical space, a subset of 1000 compounds was ran- 
domly selected from each database in the molecular weight 
range 60 - 1000. Several visualization methods of the che- 
mical space are available [16,17,33,34]. In this work, a vi- 
sual representation of the chemical space [33] was obtained 
with principal component analysis (PCA) of the similar- 
ity matrix of the databases computed using MACCS keys 
and the Tanimoto coefficient [35]. PCA was carried out 
in Spotfire 7.1.2 [36]. 
 
2.4. Scaffold Content and Diversity 
 
In this work the scaffolds were defined as the cyclic sys- 
tems that result from iteratively removing all vertices of 
degree one, in other words, by iteratively removing the 
side chains of the molecule. The cyclic systems are part 
of the chemotype methodology and were computed with 
Molecular Equivalence Indices (MEQI) developed by 
Johnson and Xu [37]. A chemotype code or chemotype 
identifier (a code of five characters) is assigned to each 
scaffold using a unique naming algorithm. This approach 
has been successfully used to classify collections of com- 
binatorial libraries, drugs, natural products, and other com- 
pound databases [13,38,39]. An advantageous feature of 
using cyclic systems to compare databases is that they re- 
present equivalence classes and molecules classified in a  
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given cyclic system [40]. The number of scaffolds in each 
database were recorded along with the number of scaffolds 
containing only one compound (e.g., singletons) using 
MEQI. The fraction of scaffolds relative to the data set 
size, and the fraction of singletons relative to the data set 
size and relative to the number of scaffolds provide in- 
formation regarding the scaffold diversity in the collec- 
tion. The distribution of molecules over the different scaf- 
folds was obtained using the cyclic systems retrieval (CSR) 
curves [38-41]. In these curves, the fraction of cyclic sys- 
tems (x) is plotted by the fraction of compounds (y) that 
contain those cyclic systems. The CSR curves were fur- 
ther characterized by obtaining the fraction of cyclic sys- 
tems required to retrieve 50% of the corresponding data- 
base and the area under the curve (AUC). 

The specific distribution of compounds in the n most 
populated cyclic systems was quantified with the imple- 
mentation of the Shannon entropy (SE) [42,43] the au- 
thors introduced recently [38]. The SE of a population of 
P compounds contained in n cyclic systems is defined as: 

2
1

log
n

i i
i

SE p p


  ; i ip c P        (2) 

where pi is the relative frequency of the cyclic system i in 
a population of P compounds containing a total of n dis- 
tinct cyclic systems; ci corresponds to the absolute num- 
ber of molecules containing a particular cyclic system i. 
The values of SE range between 0 and log2n and hence 
depend on n, but not explicitly on P. If SE = 0, then all P 
compounds possess only a single cyclic system. If SE = 
log2n, then the P compounds are uniformly distributed 
among the n cyclic systems which represents maximum 
cyclic system diversity on the data set. To normalize the 
SE values for different values of n, the scaled SE (SSE) 
is defined as [43]: 

2

SE
SSE

log n
                (3) 

The values of SSE range between 0, where all P com- 
pounds are contained in one cyclic system, and 1.0, where 
each cyclic system contains an equal number of compounds. 
Therefore, SSE values closer to 1.0 indicate large scaffold 
diversity within the n most populated cyclic systems. 
 
3. Results and Discussion 
 
3.1. Physicochemical Properties 
 
Figure 1 summarizes the distribution of the six physico- 
chemical properties described as box plots implemented 
in Spotfire 9.1.2. The three important molecular proper- 
ties of size, flexibility, and molecular polarity are describ- 
ed by MW; RB; and SlogP, TPSA, HBA, and HBD, re- 
spectively. The yellow boxes enclose data points with 

values within the first and third quartiles of the distribu- 
tion; the lines above and below indicate the upper and 
lower adjacent values. The black and blue triangles denote 
the mean and median of distributions, respectively, and the 
red squares indicate outliers. The summary of the maxi- 
mum, minimum, median, mean, and standard deviations of 
the distributions are presented at the bottom of the box 
plots. According to the distribution of properties in Fig- 
ure 1, the DNMT focused library (labeled in this figure 
as “ChemDiv”), has slightly larger number of HBA than 
drugs as reflected by the mean and median values. The 
two natural products collections, Specs and TCM, have a 
distribution of HBA similar to drugs although with lower 
mean values. Only NCI diverse set has a narrower dis- 
tribution of HBA than drugs. Overall, the four libraries 
have a smaller number of HDB than drugs. The focused 
library and Specs databases have the same median values 
of HDB. Specs, TCM and NCI databases have lower va- 
lues of RB than drugs. The focused library has similar 
values of RB as drugs. The NCI diverse set and TCM da- 
tabases have a distribution of SlogP values similar to drugs 
as reflected by the median and mean values. In compari- 
son, the focused library and Specs have slightly larger SlogP 
values than drugs. It means that the focused library and 
Specs are more hydrophobic than drugs and the other 
databases. The distribution of TPSA values of the four 
databases was similar to drugs. Regarding MW, the fo- 
cused library and Specs are similar to drugs, while NCI 
and TCM have slightly smaller values. Taken together, 
the analysis of the distribution of physicochemical prop- 
erties indicates that the DNMT focused library and the 
two natural products collections have molecules with 
properties similar to approved drugs. 
 
3.2. Molecular Fingerprints and Chemical Space 
 
Figure 2 shows a visual representation of the chemical 
space obtained with PCA of the similarity matrix using 
MACCS keys and Tanimoto coefficient as described in 
the Methods section. The first three principal components 
account for 80% of the variance. Figure 2(a) shows all 
databases in the same space. For the sake of clarity, Fig-
ure 2(b)-(f) shows a comparison of approved drugs with 
each compound collection separately but within the same 
coordinates. As a reference, we included in the chemical 
space the position of the known DNMT inhibitor SGI- 
1027 [44] (the chemical structure is shown in Figure 2(b)). 
This compound is particularly attractive because it seems 
to have a distinct mode of enzymatic inhibition of DNMT 
and represents an attractive reference compound for simi- 
larity-based virtual screening. Figure 2(b) shows that SGI- 
1027 is within the chemical space of drugs. Figure 2(c) 
clearly shows that the DNMT focused library is located 
within the dense populated area of the drugs and that the  
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Figure 1. Box plots for the physicochemical properties of the compound databases. The yellow boxes enclose data points with 
values within the first and third quartile; the black and blue triangles indicate the mean and median of distributions, respec-
tively; the lines above and below indicate the upper and lower adjacent values; the red squares indicate outliers. The focused 
library is labeled in this figure as “ChemDiv”. 
 

Figure 3 shows a heat map of the similarity matrix 
calculated with MACCS keys/Tanimoto of the four col- 
lections and drugs. The heat map is color-coded by simi- 
larity value using a continuous scale from green (low si- 
milarity) over black to red (high similarity). Each library 
is distinguished with a different color on the left-hand side 
of the map. This map helps to visually inspect the struc- 
ture similarity between individual libraries. The region 
that intersects the natural product collections, TCM and 
Specs, contain black-to-red squares indicating, overall, high 
inter-library similarity. This result is in agreement with the 
representation of the chemical space in Figure 2(a). In con- 
trast, the region that intersects the focused library with the 
natural product collections (TCM and Specs) contains a 
larger number of green-to-black squares indicating low 
inter-library similarity between these databases. Also, this 
is in agreement with the chemical space depicted in Fig-
ure 2(a). 

known inhibitor is within the chemical space of the fo- 
cused library. It follows, according to the similarity prin- 
ciple [29,45], that is very likely to identify additional in- 
hibitors of DNMT in the focused library. It is anticipated 
that virtual screening based on similarity searching of the 
focused library would lead to several hit compounds with 
high structure similarity to SGI-1027. The NCI diverse set 
also shares the chemical space of approved drugs. (Fig-
ure 2(d)) In contrast, most of the compounds in the natu- 
ral product databases, TCM and Specs, are located in a 
sparse area of approved drugs. (Figures 2(e) and (f)) This 
comparison indicates that the majority of the compounds 
in the natural products databases are structurally different 
from approved drugs, the focused library and the NCI di- 
verse set. Therefore, it is anticipated that similarity-based 
virtual screening of these natural product collections would 
result in few compounds with high structure similarity to 
SGI-1027. 
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Figure 2. Visual representations of the chemical space of the screening collections obtained by PCA of the similarity matrix 
computed using MACCS keys and Tanimoto similarity. The first three PCs account for 80% of the variance. (a) All com-
pounds libraries; (b) approved drugs (red) and known DNMT inhibitor, SGI-1027 (black); (c) DNMT focused library (blue); 
(d) NCI (yellow); (e) Specs (green); (f) TCM (cyan). 
 

 

Figure 3. Heat map of the similarity matrix comparing drugs 
(red) with four data sets; namely, DNMT focused library 
(blue); NCI diverse set (yellow); Specs (green); TCM (cyan). 
Similarity is colored using a continuous color scale from red 
(high similarity) to green (low similarity). 

3.3. Scaffold Analysis 
 
The scaffold diversity of the four compounds libraries was 
assessed using frequency counts, CSR curves and SSE 
values. Table 2 summarizes the number of scaffolds (N) 
in each database and the fraction of scaffolds relative to 
the number of molecules in the data set (N/M). The num- 
ber and fraction of singletons (i.e., scaffolds with one mo- 
lecule; Nsing) are also reported. The focused library, NCI, 
and Specs data sets have comparable and high diversity 
with nearly one scaffold for every two molecules (N/M 
values of 0.42, 0.50, and 0.53, respectively). These three 
sets also showed the largest proportion of singletons 
relative to the number of molecules (Nsing/M) and relative 
to the number of cyclic systems (Nsing/N). In particular, 
the natural product collection from Specs showed the 
largest fractions (N/M values of 0.53 and Nsing/N value of 
0.70) as an indicative of the largest scaffold diversity of 
the four analyzed databases (according to these two mea- 
sures, see below). In contrast, the natural products from 
TCM showed the lowest fractions (N/M values of 0.32 
and Nsing/N value of 0.19) suggesting lower scaffold di- 
versity in this collection. 
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Table 2. Results of the scaffold diversity analyses of the data sets analyzed in this worka. 

Database N N/M Nsing Nsing/N Nsing/M AUC F50 SSE5 SSE10 SSE20 n5 n10 n20 

DNMT-focused library 11288 0.42 7189 0.64 0.27 0.54 0.42 0.96 0.95 0.96 0.09 0.13 0.19
NCI 910 0.50 568 0.62 0.31 0.58 0.39 0.77 0.84 0.87 0.20 0.28 0.38
Natural products from Specs 241 0.53 168 0.70 0.37 0.61 0.32 0.94 0.93 0.93 0.35 0.50 0.69
TCM 703 0.32 413 0.59 0.19 0.61 0.36 0.80 0.83 0.83 0.58 0.76 0.97
aN = number of scaffolds; M = number of molecules (Table 1); Nsing = number of singletons; AUC = area under the curve; F50 = fraction of cyclic systems that 
contains 50% of the data set; SSE5,10,20 = scaled Shannon Entropy at 5, 10, and 20 most populated cyclic systems, respectively; n5,10,20 = fraction of molecules 
contained in the 5, 10, and 20 most populated cyclic systems, respectively. 

 
Frequency counts, number of singletons and fractions 

discussed above give an overall idea of the diversity but 
do not prove information concerning the specific distri- 
bution of the molecules in the scaffolds. This was ad-
dressed using additional measures as the authors [38] and 
other groups [16] have proposed. CSR curves measure the 
entire distribution of compounds over all the cyclic sys- 
tems of a compound collection. The lower the area under 
the CSR curve indicates larger scaffold diversity. Figure 
4 depicts the corresponding CSR curves for the four data 
sets in Table 1. The curves for the focused library and NCI, 
closer to the diagonal, indicate larger scaffold diversity 
than TCM and Specs which curves rise more steeply. In 
order to compare the curves quantitatively, Table 2 sum- 
marizes the area under the curve (AUC) and the F50 value 
which is the fraction of cyclic systems containing 50% of 
the molecules of the data set (see the Methods section). 
Thus, a low AUC value suggests high scaffold diversity 
and larger F50 values indicate more diversity. The focused 
library showed the largest F50 (0.42) and lowest AUC va- 
lues (0.54) for the four data sets suggesting that this col- 
lection has the largest diversity of the four data sets. NCI 
showed the second largest F50 (0.39) and second lowest 
AUC (0.58) values. The two natural products data sets from 
Specs and TCM showed the same AUC values (0.61) 
and similar F50 (0.32 and 0.36) suggesting comparable 
diversity between them and lower diversity than the fo-
cused library and NCI. 

The lower scaffold diversity of TCM as compared to 
the other data sets, as captured by the CSR curves, is in 
agreement with the lower diversity of TCM as measured 
by the fractions of scaffolds discussed above. However, 
according to the fractions of the scaffolds, the natural pro- 
ducts collections from Specs appear to be the more diverse 
set while the focused library is the more diverse accord- 
ing to the CSR curves (vide supra). This result highlights 
the importance of considering multiple measures to quan- 
titatively assess the scaffold diversity of compound da- 
tabases [38]. 

Table 2 summarizes the fraction of compounds con- 
tained in the top 5, 10, and 20 most populated cyclic sys- 
tems and the corresponding SSE values for the data sets. 
A relative small portion of compounds contained in top 

 

Figure 4. CSR curves for representative data sets. The cur- 
ves can be characterized by the area under the curve (AUC) 
and the fraction of cyclic systems required for retrieving 50% 
of the compounds in the data sets (F50). See text for details. 
 
populated scaffolds suggests a large diversity. Notably, 
the focused library contains the lowest proportions and is 
the most diverse according to this measure; 9% of the com- 
pounds in this collection are contained in the top 5 most 
populated scaffolds, and 13% and 19% of the compounds 
are contained in the top 10 and 20, respectively. In con- 
trast, 58% of the molecules in TCM are contained in the 
top 5 most populated scaffolds and 76% and 97% are con- 
tained in the top 10 and 20 most populated cyclic systems, 
respectively. The lower proportion of molecules contained 
in the top 5, 10, and 20 scaffolds of NCI (0.20, 0.28 and 
0.38, respectively), as compared to Specs (0.35, 0.50 and 
0.69) suggest the larger diversity of NCI. These results 
are in agreement with the conclusions derived from the 
CSR curves discussed above.  

The Scaled Shannon Entropy (SSE) is a measure of 
the specific distribution of molecules in the scaffolds. SSE 
values closer to 1.0 indicate that the molecules are more 
equally distributed in the scaffolds (high diversity) and 
smaller SSE values indicate that most of the molecules 
are distributed in fewer scaffolds (low diversity). Table 2 
summarizes the results of the SSE values for the 5, 10 
and 20 most populated scaffolds. The focused library and 
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natural products from Specs are the most diverse collec- 
tions with SSE10 values of 0.95 and 0.93, respectively. In 
contrast, lower SSE10 values are observed for NCI (0.84) 
and TCM (0.83) indicating lower diversity. Similar con- 
clusions can be obtained from the SSE values for the top 
5 and 20 most populated scaffolds. We would like to 
point out that SSE implemented in this work measures 
the diversity of the most populated scaffolds as opposed 
to the diversity of the entire collection measured with 
fractions of cyclic systems and CSR curves. Figure 5 de- 
picts the distribution of compounds in the top 10 most po- 
pulated cyclic systems for each data set. The graph clearly 
shows the large cyclic system diversity of the focused 
library (Figure 5(a)) and Specs (Figure 5(c)) as com-
pared to NCI and TCM. 

Figure 6 depicts the chemical structures and chemo-
type identifiers of the top three most frequent scaffolds 
for each data set. The most frequent cyclic system in NCI 
and TCM is benzene which is a very common cyclic sys- 
tem found in drugs, natural products, MLSMR and sev- 
eral other databases [13,46]. The most frequent scaffolds 
in the focused collection were not identified in the other 

three compounds databases suggesting the scaffold nov- 
elty of this collection. 
 
4. Conclusions and Perspective 
 
We report a chemoinformatic analysis of general screen- 
ing libraries using a comprehensive set of criteria including 
physicochemical properties, molecular fingerprints, and 
scaffolds. The DNMT-focused library, NCI diversity set, 
and two natural products databases were compared with 
approved drugs. Analysis of the physicochemical proper- 
ties shows that the DNMT focused library and the two 
natural products collections have molecules with proper- 
ties similar to drugs. Analysis of the chemical space us- 
ing molecular fingerprints indicates that the DNMT fo- 
cused library occupy an area of the space densely popu- 
lated by drugs and that encloses the space occupied by a 
known DNMT inhibitor. In contrast, the compounds in 
the natural products databases are structurally different 
from approved drugs, the focused library and the NCI di- 
verse set. These observations indicate that the focused li- 
brary and natural product collections are attractive sources 

 

 

Figure 5. Distribution of compounds in the top 10 most populated cyclic systems for (a) DNMT-focused library; (b) NCI; (c) 
Specs; and (d) TCM. The corresponding SSE values for each distribution are indicated. 
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Figure 6. Three most frequent scaffolds found in the data sets. 
 
to identify DNMT inhibitors with high structure similar- 
ity to SGI-1027 and inhibitors with novel chemical scaf- 
folds. The focused library has, overall, the largest scaffold 
diversity as captured by several measures including an en- 
tropy-based measure recently developed. During the course 
of this work we also concluded that multiple measures are 
required for the complete assessment of scaffold diver- 
sity of compound collections. A major perspective of this 
study is the virtual screening and experimental validation 
of the screening libraries analyzed in this work. The ap- 
proaches presented here for comparing compound collec- 
tions are general and can be applied for analyzing other 
compound collections. 
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