
Applied Mathematics, 2011, 2, 1546-1550 
doi:10.4236/am.2011.212220 Published Online December 2011 (http://www.SciRP.org/journal/am) 

Copyright © 2011 SciRes.                                                                                  AM 

Test of Generating Function and Estimation of Equivalent 
Radius in Some Weapon Systems and Its Stochastic 

Simulation 

Famei Zheng 
School of Mathematical Science, Huaiyin Normal University, Huai’an, China 

E-mail: hysyzfm@163.com, 16032@hytc.edu.cn, hssky10@163.com 
Received November 16, 2011; revised December 6, 2011; accepted December 14, 2011 

Abstract 
 
We discuss three-dimensional uniform distribution and its property in a sphere; give a method of assessing 
the tactical and technical indices of cartridge ejection uniformity in some type of weapon systems. Mean-
while we obtain the test of generating function and the estimation of equivalent radius. The uniformity of 
distribution is tested and verified with ω2 test method on the basis of stochastic simulation example. 
 
Keywords: Uniform Distribution in a Sphere, Weapon Systems, Generating Function, Equivalent Radius, 

Stochastic Simulation 

1. Introduction 
 
Uniform distribution is very important in the probability 
statistics, many scholars pay attention to it. The follow-
ing questions have been explored: the estimate of inter-
val length about uniform distribution in [a,b] [1,2], the 
estimate of regional area about two dimension uniform 
distribution in a rectangle [3], the estimate of cuboid 
volume about three dimension uniform distribution [4], 
the estimate of regional area about two-dimensional uni-
form distribution in a circle [5,6], estimate of radius on 
three-dimensional uniform distribution in a sphere [7]. In 
addition, many scholars get useful test statistics and limit 
theorems [8-12]. In this paper, basing on some articles 
[13-18], according to t the indices of cartridge ejection 
uniformity in some type of weapon systems, we give the 
test of generating function and the estimation of equiva-
lent radius by simulation example. 

Definition 1 [7]. If ( , , )X Y Z  is three-dimensional 
continuous random variable, its probability density func-
tion is 

3
0

3 , ( , , )
4π( , , )

0 ( , , )

,

.

x y z G
Rf x y z

x y z G

  
 

       (1.1) 

where  2 2 2 2
0 0( , , ) , 0G x y z x y z R R     , then we 

call that ( , , )X Y Z  obeys uniform distribution in 
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, recorded as (X,Y,Z)~U(G). 
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The probability density function of three-dimensional 
r.v. ( , , )R    is 
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Therefore the probability density function of ( , , )R    
is 
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Theorem 1. If the marginal density functions of  
about  are  

r.v.
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Proof. According to (1.5) and the definition of mar-
ginal density function, we have 
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Corollary 1 [7]. If r.v. ( , , )R    is defined by (1.5), 
then three  are independent each other. r.v. , ,R  

Corollary 2. If is defined by (1.5), the 
marginal distribution function of about 
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Proof. According to theorem 1, we can get it easily. 
Corollary 3. If ( )E R  , 2( )Var R  , then the 

probability of cartridges falling into a ball with radius 
  is about 42.2%, and the probability of cartridges fal-
ling into a sphere with radius    is about 84.0%. 

Proof. By the definition of Mathematical expectation, 
we have 
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15

20
R  , then the probability of cartridges fal- 

ling into a sphere with radius   is about 

 1 1 1 0

3
( ) ( ) 42.2%

4
H H E R H R      

  (1.8) 

then the probability of cartridges falling into a sphere 
with radius    is about 

 1 1 0 0

3 15
84.0%

4 20
H H R R 

 
     

 
  (1.9) 

 
2. Test of Generating Distribution Function 
 
Usually there are 2  test method, 2  test method and 
Cole Moge Rove test method (K test method) [17] to test 
distribution function. Here, we use 2  test method, we 
want to know the sub-sample is uniform distribution or 
not. Because the locations of any cartridges are ascer-
tained by three-dimensional , so we should r.v. ( , , )R
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) )test them one by one, test 1 , ~ (R H r 2~ (H  , 

3~ (H ) . We give testing hypotheses 0H  
0 0 ( ): ( )H F x x   

where ( )F x  is generating distribution function, 0 ( )x  
is known distribution function, and 0 ( )x  is the deriva-
tive of 0 ( )x

, ,y y 

. 
Tests for generating function should be independent, 

(1) (2) ( )  is the sequent sub-sample of the test, 
under hypotheses 
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is Smirnov distribution. For the given confidence level  , 
according to the Table 10 in [17], we obtain the boundary 
value z  of 2n , in which 2(P n )z  . Then 

 is rejection region of the hypotheses 0( , )z  H , when 
2n z  , we reject 0H , if 2n z  , we should accept 

0H . 
 
3. Estimation of Equivalent Radius 
 
On the supposition that N is the number of cartridges 
from a shrapnel, n is the actual observed number of car-
tridges within a certain region near the centre of disper-
sion. When calculating equivalent radius, we presume all 
the cartridges are found. The distances from any car-
tridges to the dispersion centre point A are recorded as 

( 1, 2,ir i  , )n , let 
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perties of density function 1 , we know that R obeys 
uniform distribution in a ball with radius 
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so 0  is a unbiased estimate of 0n  [7]. on the basis of 
the properties of distribution function, let 
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Based on Formula (3.4), if N is large enough, 
,  becomes small enough. In order to 

ss of above methods, we 
some type of weapon 

when 
n N

le size 

0
ˆ( )R

large e
decrease estimating error of equivalent radius 0R , sam-
p is nough. 
 
4. Stochastic Simulation 
 
In order to verify the correctne

ive a simulation example. For g
systems, assuming the tactical technical requirements, 
the cartridges from single shrapnel should be more 
evenly scattered in a ball with equivalent radius (120 ± 
20) m, launching a shrapnel, the number of cartridges is 
N = 400, measuring the coordinates of one hundred car-
tridges near the dispersion centre (n = 100), they were 
produced by computer simulation basing on uniform 
requirements in a sphere, i.e. ( , , )r    were produced 
by stochastic simulation according to the following for-
mulas  

 3
1 0 2( ) , arccos 1 2 ( ) ,nr H r r H

32π ( )H

   
  (4.1) 

 
where, 0 60nr  , 1( )H r , 2 ( )H  , 3 ( )H   are 
number  (0,1

for cartr es as ow Table 1, a

*sqrt(r(1)); 
2*r(2)+1); 

0 
(2*k-1)/200))^2; 

((2*k-1)/200))^2; 
)^2; 

:100 
sum(a); 

m(b); 

random 
), coor-produced by stochastic simulation in

dinates idg  bel nd the MAT-
LAB program as below, 
>> clear 
for k=1:100 

nd(1,3);     r=ra
        x=60
        y=acos(-
        z=2*pi*r(3); 
[x, y, z] 
 end 
>>clear 

1:10for k=
a=(x^2-(
b=(y^2/3600-
c=(z^2/3600-((2*k-1)/200)
[a, b, c] 
end  
 

ar >> cle
or k=1f

s=1/1200+
u=1/1200+su
v=1/1200+sum(c); 
[s u v] 
End 
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Table 1. Polar coordinates points of fall for cartridges. 
 

( , ,r m rad rad   ) ( , , )r m rad rad   ( , , )r m rad rad   ( , ,r m rad rad   )

57.8262 1.1283 0. 9007 1.7096 0. 0439 0.4464 5. 7960 0.6985 5.0936 56. 0811 55. 2025 47. 5996 

58.8251 1.3574 1. 8961 1.4923 1. 4513 2.1067 5. 1923 2.1410 3.8108 33. 9503 43. 7655 33. 0668 

41.6750 1.5768 5.1315 19.1279 1.4612 4.8952 45.6907 2.4810 0.7106 48.3936 1.3183 6.2367 

45.5454 2.0309 6.1921 54.1207 0.6013 1.9308 47.0793 1.1287 5.1026 51.7387 2.2742 2.3455 

46.6895 1.1728 0.1093 48.7537 1.4576 5.8226 50.8327 1.0500 5.7070 15.1818 0.4352 3.3389 

31.8301 0.6831 5.1484 39.0650 1.3001 4.2644 33.6245 2.6167 0.9827 56.5426 1.7679 1.1391 
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30.7568 2.2887 3.3904 32.0629 0.9956 1.9723 57.8563 0.9268 2.9292 49.4790 2.7288 4.4969 

16.9386 0.

38.4027 1.

8401 

3570 

3.9169 56.

4.3096 34.

4546 1.

6080 0.

4698 

8558 

4.0099 41.

6.1990 54.

1545

1232

0.4487 

1.7046 

5.7416 51.

1.4363 52.

0491 2.

2896 1.

1332 

9094 

1.5752 

5.8679 

29.3040 1.6124 4.2556 51.6795 2.7865 3.1598 44.6063 0.7133 5.4161 51.0684 0.7404 0.8621 
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in d s i

aper, using above MATLAB program, we obtain 
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Accord g to the data in Table 1 an method n this 
p
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10%  , seeing the Table 
in [17], we obtain the bou e 

10 
ndary valu 0.3472z 

2
 for 

n . Because 2
rn , 2n  , 2n   are less than 0.3472, 

so we consider that cartridges obeys unif tion 
sphere. 
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