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Abstract

We discuss three-dimensional uniform distribution and its property in a sphere; give a method of assessing
the tactical and technical indices of cartridge ejection uniformity in some type of weapon systems. Mean-
while we obtain the test of generating function and the estimation of equivalent radius. The uniformity of
distribution is tested and verified with »” test method on the basis of stochastic simulation example.
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1. Introduction

Uniform distribution is very important in the probability
statistics, many scholars pay attention to it. The follow-
ing questions have been explored: the estimate of inter-
val length about uniform distribution in [a,b] [1,2], the
estimate of regional area about two dimension uniform
distribution in a rectangle [3], the estimate of cuboid
volume about three dimension uniform distribution [4],
the estimate of regional area about two-dimensional uni-
form distribution in a circle [5,6], estimate of radius on
three-dimensional uniform distribution in a sphere [7]. In
addition, many scholars get useful test statistics and limit
theorems [8-12]. In this paper, basing on some articles
[13-18], according to t the indices of cartridge ejection
uniformity in some type of weapon systems, we give the
test of generating function and the estimation of equiva-
lent radius by simulation example.

Definition 1 [7]. If (X,Y,Z) is three-dimensional
continuous random variable, its probability density func-
tion 18

o (w26,
f(x,y.2) =1 4nR; (1.1)

0 (x,y,2) 2 G.
where G = {(x,y,z)|x2 +y'+27 < R(f},R0 >0, then we

call that (X,Y,Z) obeys uniform distribution in
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G:{(x, vt eyt <R§} , recorded as (X,Y,2)~U(G).

Give a transformation

x=rsin@cosf

y=rsingsind (0<r<R,,0<p<n,0<8<2m)(l.2)

Z=7rcosp

The probability density function of three-dimensional
r.v. (R,®,0) is
o(x,y,2)
owr,p,0)

(1.3)

o(x,y,z) .
0rhp.0)
Jacobi determinant of the transformation (1.2), and
ox oOx Ox
o op 06
oy |y o o
o(r,p,0) |or O¢p 00
0z 0z Oz
or op 00

sinpcos@ rcospcosd —rsing@siné

h(r,p,0) = f(rsin@cosd,rsin@siné,rcos @)

in which 0<r<R,,0<@p<mn,0<8<2m,

=|sin@sind rcospsind rsingpcosd| (1.4)
cos @ —rsing 0
=r’sing
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Therefore the probability density function of (R, D,®)
is
3r’sing
h(r,p,0) =1 4nR,
0, otherwise
(1.5)
Theorem 1. If the marginal density functions of 7.v.
(R,D,0) about R,®,0 are h(r), h(p), mE),
then

, 0<r<R,,0<p<mn,0<6<2n

sl
D k(=1 R’

0, otherwise.

O<r<R,,

1.
—sing,0< p<m,

2) hp)=4 2
0, otherwise.
L 0<8<2m
3) h(0)=1 2n’ ’
0, otherwise.

Proof. According to (1.5) and the definition of mar-
ginal density function, we have

nr2n
h(r)= |, |,  (r.0,0)dpde
% (22317 sin @ 3t n
= " dedf=2nx——| singpd
L 4mR; v 4nR, Jysinodo
3 3r°

x2=—,
4nR, R)

where 0 <r < R,

=271 X

Ry 2m Ry (27 377 sin
hZ((p):J.OOIO h(lG(/’,@)drdé’:J.o -[0 ﬁdrdﬁ
0

3sing (r 1.
Rgﬂ J'O 'ridr = Esm o,

=271 X
4n

where 0 < @ < T,

R 1 R ¢x 377 sin
1(0) = [." [} h(r,p.0)drdp = [ | mew
0

= 4;Rg IORO rzdrf;[ sinpdg = ﬁx%&f x2
1
=5

where 0 < 8 < 27.

Corollary 1 [7]. If r.v. (R,®,0) is defined by (1.5),
then three 7.v. R,®,0 are independent each other.

Corollary 2. If 7.v. (R,®,0) is defined by (1.5), the
marginal distribution function of r.v. (R,®,®) about
R,®,0 are H,(r),H,(p),H,(0), then
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0, r<0

H(r)={—,0<r<R,,
RO
1, rzR,

0, <0
Hy(p) = %<l—cos(p),0<(p<n,

1 p=m

0, 6<0
H,(0)= %, 0<fO<2m .
L 02>2n

Proof. According to theorem 1, we can get it easily.

Corollary 3. If E(R)=pu, Var(R)=0c", then the
probability of cartridges falling into a ball with radius
M is about 42.2%, and the probability of cartridges fal-
ling into a sphere with radius x+ o is about 84.0%.

Proof. By the definition of Mathematical expectation,
we have

R 3
p=ER)=["rh(r)dr= 7R (1.6)
4
E(RY) = J'OR" P2y (r)dr :jj"%dr :%Ré (1.7
0
then
3 9 3
o’ =D(R)=E(R*)-E*(R)==R; ——R, =—R,
(R)=E(R")-E"(R) SRR =g R

Ji5

and o :ERO’ then the probability of cartridges fal-

ling into a sphere with radius x is about
H (u)=H [E(R)]|=H, ERO} ~42.2% (1.8)

then the probability of cartridges falling into a sphere
with radius g+ o is about

3 15

H,(u+0)=H, [ZRO +EROJ ~84.0% (1.9)

2. Test of Generating Distribution Function

Usually there are y* test method, @’ test method and
Cole Moge Rove test method (K test method) [17] to test
distribution function. Here, we use @” test method, we
want to know the sub-sample is uniform distribution or
not. Because the locations of any cartridges are ascer-
tained by three-dimensional 7.v. (R,®,®), so we should
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test them one by one, test R~H,(r), ®~H,(p),
® ~ H,(0) . We give testing hypotheses H,
Hj:F(x)=®,(x)

where F(x) is generating distribution function, ®,(x)
is known distribution function, and ¢,(x) is the deriva-
tive of @ (x).

Tests for generating function should be independent,
YaysYays'' > Yy 18 the sequent sub-sample of the test,
under hypotheses H,, is correct, the statistic

n

1 2i-17
s -
nw =—+ §)—— 2.1
12n 121:|: 0()’(1)) n i| (2.1)
is Smirnov distribution. For the given confidence level «,
according to the Table 10 in [17], we obtain the boundary
value z, of nw’, in which P(nw’ >z,)=a . Then
(z,,®) is rejection region of the hypotheses H,, when
nw’ >z, wereject H,,if no’ <z,, we should accept
H,.

3. Estimation of Equivalent Radius

On the supposition that N is the number of cartridges
from a shrapnel, # is the actual observed number of car-
tridges within a certain region near the centre of disper-
sion. When calculating equivalent radius, we presume all
the cartridges are found. The distances from any car-
tridges to the dispersion centre point 4 are recorded as

r(i=1,2--,n), let 7 ——Zr According to the pro-
i=1
perties of density function #, (), we know that R obeys

uniform distribution in a ball with radius

ro,(0<r,<R)), E(R)= %rno (by 1.6), owing to

E(7>=EG§4) ZI"" di=ny G

nO

so 7, is aunbiased estimate of 7, [7]. on the basis of
the properties of distribution function, let ¢ =n,6 =2n,

we have H(r)=H(r,,6) ;”_z et N>, (N is

amount of test cartridges ), then
3

. Q= nor,
lim H(r,p,0 =lim — =" 3.2
lim H(r,p )9:21t VN TR (3.2)
Therefore let ﬁo = \/Efno, that is AO = \/ﬁ
n
and
- 16N
D(R,) = WD(@) (3.3)

As well as by (1.7), D(;;)z%rfo, substitute into
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(3.3), we obtain

2
DRy =g D) =k =,
80 15n (3.4)
A lSNrn0
o(Ry) =N
15n

Based on Formula (3.4), if N is large enough, when
n—>N, cr(l%o) becomes small enough. In order to
decrease estimating error of equivalent radius R,, sam-
ple size is large enough.

4. Stochastic Simulation

In order to verify the correctness of above methods, we
give a simulation example. For some type of weapon
systems, assuming the tactical technical requirements,
the cartridges from single shrapnel should be more
evenly scattered in a ball with equivalent radius (120 +
20) m, launching a shrapnel, the number of cartridges is
N = 400, measuring the coordinates of one hundred car-
tridges near the dispersion centre (n = 100), they were
produced by computer simulation basing on uniform
requirements in a sphere, i.e. (r,p,6) were produced
by stochastic simulation according to the following for-
mulas

r=3H (D0 = arccos[l 2H (qo)] @1
6 =2nH,(0)
where, r, =60, H,(r), H,(p), H,(0) are random
number produced by stochastic simulation in (0,1), coor-
dinates for cartridges as below Table 1, and the MAT-
LAB program as below,
>> clear
for k=1:100
r=rand(1,3);

x=60*sqrt(r(1));

y=acos(-2*r(2)+1);

z=2*pi*r(3);
[Xs Y, Z]

end

>>clear
for k=1:100
a=(x"2-((2*k-1)/200))"2;
b=(y"2/3600-((2*k-1)/200))"2;
c=(z"2/3600-((2*k-1)/200))"2;
[a, b, c]
end

>> clear

for k=1:100
s=1/1200+sum(a);
u=1/1200+sum(b);
v=1/1200+sum(c);
[suv]

End
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Table 1. Polar coordinates points of fall for cartridges.

(r/m, ¢/rad , 6/rad) (r/m, @/rad , 6/rad) (r/m,@/rad, 8/rad) (r/m,@/rad, 6/rad)
57.8262 1.1283 0.0936 56.9007 1.7096 0.0811 55.0439 0.4464 5.2025 47.7960 0.6985 5.5996
58.8251 1.3574 1.8108 33.8961 1.4923 1.9503 43.4513 2.1067 5.7655 33.1923 2.1410 3.0668
41.6750 1.5768 5.1315 19.1279 1.4612 4.8952 45.6907 2.4810 0.7106 48.3936 1.3183 6.2367
45.5454 2.0309 6.1921 54.1207 0.6013 1.9308 47.0793 1.1287 5.1026 51.7387 2.2742 2.3455
46.6895 1.1728 0.1093 48.7537 1.4576 5.8226 50.8327 1.0500 5.7070 15.1818 0.4352 3.3389
31.8301 0.6831 5.1484 39.0650 1.3001 4.2644 33.6245 2.6167 0.9827 56.5426 1.7679 1.1391
30.8478 1.4572 3.9025 43.0160 1.1647 0.4668 7.5595 0.7407 0.7672 55.7802 2.6869 3.1535
48.6323 1.5043 3.5198 14.0717 2.3512 0.4442 55.4707 2.6500 4.7922 53.2184 1.1347 2.6528
53.9209 0.2431 1.5331 57.6967 2.1165 0.0748 48.0499 1.9865 4.5352 46.3803 2.4616 4.1494
44.1604 1.9052 5.1648 57.1905 2.6896 1.4275 35.8438 2.3398 4.0941 26.1303 0.6488 4.2330
42.6194 2.0355 1.6537 38.0081 1.6869 3.2440 28.1616 0.9503 4.7375 56.1754 0.5168 6.0149
39.4989 1.1188 4.7350 49.7335 0.2389 2.8790 32.3887 1.4809 4.1670 34.6740 1.0105 1.2057
57.2477 1.0742 4.1444 32.5254 1.7644 4.4183 44.4830 0.5776 5.5512 45.8214 2.6183 0.6987
51.3376 2.0009 1.3452 50.4480 2.2554 3.6600 44.4939 2.3493 1.7103 14.1080 0.5078 3.5506
37.3488 2.1746 3.7831 41.5086 2.8378 3.1994 22.4951 1.6951 2.6352 40.5506 1.0797 6.0897
59.5588 2.9061 3.8007 52.2026 0.9810 0.4668 58.8127 1.2010 1.3383 57.3967 3.0969 0.1489
51.7199 1.5174 4.1438 57.1376 1.9904 1.2139 31.8798 1.3179 0.2237 56.5065 0.9570 5.4676
36.7509 2.5075 1.1523 49.6781 1.6150 2.3851 43.6260 2.3973 0.5102 41.5920 1.5676 0.1690
52.7956 1.4728 3.9992 59.6074 2.6175 1.7367 40.6554 1.3123 5.3445 57.5123 1.1385 3.2641
52.3921 2.2256 1.0700 55.5081 2.0117 4.8437 33.1399 0.5499 2.1375 46.9686 1.9237 1.2083
30.7568 2.2887 3.3904 32.0629 0.9956 1.9723 57.8563 0.9268 2.9292 49.4790 2.7288 4.4969
16.9386 0.8401 3.9169 56.4546 1.4698 4.0099 41.1545 0.4487 5.7416 51.0491 2.1332 1.5752
38.4027 1.3570 4.3096 34.6080 0.8558 6.1990 54.1232 1.7046 1.4363 52.2896 1.9094 5.8679
29.3040 1.6124 4.2556 51.6795 2.7865 3.1598 44.6063 0.7133 5.4161 51.0684 0.7404 0.8621
24.6450 2.0222 5.5091 52.4759 1.2780 5.9546 44.2010 1.6150 4.1255 52.8935 0.6280 3.2773

According to the data in Table 1 and methods in this
paper, using above MATLAB program, we obtain

new! = 0.0888, nw’ = 0.0425, nw, = 0.0749
R, =117.4909, o(R,) = 3.0984

Take conspicuous level a =10%, seeing the Table 10
in [17], we obtain the boundary value z, =0.3472 for
no’. Because nw., nw,, nw, are less than 0.3472,
so we consider that cartridges obeys uniform distribution
in a sphere.
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