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Abstract 
 
In patients with heart failure and disordered intracardiac conduction of activation, doctors implant a biven- 
tricular pacemaker (“cardiac resynchronization therapy”, CRT) to allow adjustment of the relative timings of 
activation of parts of the heart. The process of selecting the pacemaker timings that maximize cardiac func-
tion is called “optimization”. Although optimization—more than any other clinical assessment—needs to be 
precise, it is not yet conventional to report the standard error of the optimum alongside its value in clinical 
practice, nor even in research, because no method is available to calculate precision from one optimization 
dataset. Moreover, as long as the determinants of precision remain unknown, they will remain unconsidered, 
preventing candidate haemodynamic variables from being screened for suitability for use in optimization. 
This manuscript derives algebraically a clinically-applicable method to calculate the precision of the opti-
mum value of x arising from fitting noisy biological measurements of y (such as blood flow or pressure) ob-
tained at a series of known values of x (such as atrioventricular or interventricular delay) to a quadratic curve. 
A formula for uncertainty in the optimum value of x is obtained, in terms of the amount of scatter (irrepro-
ducibility) of y, the intensity of its curvature with respect to x, the width of the range and number of values of 
x tested, the number of replicate measurements made at each value of x, and the position of the optimum 
within the tested range. The ratio of scatter to curvature is found to be the overwhelming practical determi-
nant of precision of the optimum. The new formulae have three uses. First, they are a basic science for any-
one desiring time-efficient, reliable optimization protocols. Second, asking for the precision of every re-
ported optimum may expose optimization methods whose precision is unacceptable. Third, evaluating preci-
sion quantitatively will help clinicians decide whether an apparent change in optimum between successive 
visits is real and not just noise. 
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1. Introduction 
 

 
Plato, Apology of Socrates, 38a 

Every year, ~100,000 cardiac resynchronization pace- 
makers are being implanted into patients with heart fail- 
ure, because they deliver substantial symptomatic and 
survival benefits [1-3] by altering intracardiac timings. 
After implantation, the process of determining which ti- 
mings to programme is described as “optimization” [4-6]. 

Responses of physiological variables to changes in pace- 
maker settings fit well to a parabola in the vicinity of the 
optimum [6,7]. Curve-fitting to calculate a clinical opti- 
mum has the advantage of permitting interpolation to 
settings which were not directly tested, and also avoids 
the problem that simply “picking the highest” leads to 
illusory optima, illusory increments in physiology from 
optimization, and illusory changes in optimum over time 
[8]. 

In clinical practice physiological measurements con- 



D. P. FRANCIS 1498
 

 

tain noise which can sometimes be substantial in com-
parison to the underlying signal, and which prevents the 
true underlying optimum being identified precisely even 
with curve fitting (Figure 1). The impact of such noise 
can be reduced by averaging multiple measurements, but 
this consumes resources such as time in a clinical envi- 
ronment or battery power if the measurements are con- 
ducted by the implanted device. It is therefore important 
to be able to calculate the precision of an optimum so 
that resource usage can be planned to be appropriate to 
achieve the clinically-required precision. 

As well as needing to know how many replicates are 
required, doctors planning an optimization protocol also 
need guidance regarding what range of settings to cover 
during testing, and how coarsely or finely. Widening the 
range or making finer-grained measurements (i.e. at 
more closely-spaced intervals) increase the cost of the 
optimization process, and so are only justified if there is 
a clinically-valuable increase in precision of the opti- 
mum.  

Finally, doctors caring for patients from day to day 
need to know the uncertainty of the optimum obtained 
this clinical optimization process. Without this know- 
ledge, it is impossible to interpret apparent differences in 
optimum within an individual patient between one as-
sessment method and another, or over time [8,9] or after 
an operation or a heart attack. 

This paper derives a simple formula for the uncer-
tainty of the parabolically-defined optimal setting of a 
pacemaker, and presents practical implications for pro-
tocol design and for medical practice. 
 
2. Description of Method 
 
2.1. Physiological Measurements with Noise 
 
The pacemaker setting may be adjusted over a wide ran- 
ge of values. Within individual patients, clinical infor- 
mation provides a priori a constrained range which con- 
tains all biologically plausible locations of the optimum 
for that patient. During the optimization procedure, the 
clinician acquires a series of pairs of values of the pace- 
maker setting and the corresponding physiological mea- 
surement. The first value, the pacemaker setting, has 
negligible uncertainty because it is programmed digitally. 
However the second value, the measured physiological 
variable, is not perfectly reproducible and therefore has 
an element of uncertainty.  

Some choices of physiological variable, such as blood 
pressure, permit automatic acquisition, while others, such 
as Doppler velocity-time integral, typically require hu- 
man involvement for each measurement. In practice the 
protocol is often to make more than one replicate mea- 
surement at each setting, and then to summarize the data  

80 100 120 140 160
90

100

110

1

1 1
1

12

2

2

2

2

3

3

3

3

3

1

1 1 1

1

2

2

2

2

2

3

3
3

3

3

Optimization
#1

Optimization
#2

Optimization
#3

Three 
optimization 
datasets

Three 
clinical 
optima

Uncertainty
in location
of optimum

AV delay (ms)

Physiological 
response
(arbitrary units)

80 100 120 140 160
90

100

110

1

1 1
1

12

2

2

2

2

3

3

3

3

3

1

1 1 1

1

2

2

2

2

2

3

3
3

3

3

Optimization
#1

Optimization
#2

Optimization
#3

Three 
optimization 
datasets

Three 
clinical 
optima

Uncertainty
in location
of optimum

AV delay (ms)

Physiological 
response
(arbitrary units)

 

Figure 1. Sketch showing how noise in the measured data 
creates uncertainty in the optimum. Note: If there is enough 
time to conduct many optimizations, they can be analyzed 
separately to provide separate estimates of the optimum, so 
the uncertainty in the optimum can be observed. The upper 
panel sketches 3 optimization datasets in one simulated 
patient. All 3 datasets are plotted on the same graph and 
labeled “1” to “3”. The lower panel shows the 3 individual 
interpolated optima obtained by curve fitting with a parab-
ola. This paper provides a method of calculating the uncer-
tainty in a clinically-obtained optimum, without having to 
conduct several independent optimizations. 
 
for each setting by the mean of the raw measurements at 
that setting.  

Let the optimization protocol try S different values xi 
of the pacemaker setting, evenly spaced at intervals of x. 
Let the averaged physiological measurements represent-
ing each setting be denoted yi, each of which is the mean 
of R replicate raw measurements. The observed data yi 
during clinical testing are composed of an underlying 
value yund,i and an error component εR. 

,und Ri iy y    

Let us consider the error component to be independent 
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of yund,i and normally distributed, with its standard devia-
tion for a single raw measurement being 

1
  and, by 

the central limit theorem, the standard deviation for the 
error εR of the average of R replicates being 

1R 
 

R  . 

2.2. The Optimization Process 
 
The best-fit parabola, Axi

2 + Bxi + C, to the observed data 
is defined by the standard least-squares method, to 
minimize the squared deviation between the observations 
yi and the parabola. The clinical optimum from that fitted 
parabola is –B/2A, which will differ from the true opti-
mum OptTrue by an amount whose standard deviation can 
be calculated as follows. The best-fit parabola is defined 
by having A, B and C values that minimize the squared 

error  22
i i iF Ax Bx C y    . 

This is achieved by setting all the partial derivatives of 
F with respect to A, B and C to zero: 

 
 
 

2 2

2

2

2 0

2 0

2 0

i i i i

i i i

i i i

F A Ax Bx C y x

F B Ax Bx C y x
i

F C Ax Bx C y

        
         
        







2
i i

i i

i

 

Therefore  
4 3 2

3 2

2 1

i i i

i i i

i i

A x B x C x x y

A x B x C x x y

A x B x C y

  

  

  

   
   
   

 

These can be solved for A, B and C as follows: 

 

 

2 2

24 2

4 2

2 24 2
,

i i i i

i i

i i i i i i i

i i i

S x y x y
A

S x x
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B C
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
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 



  
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    
  

x y
 

 
3. Results 
 
3.1. The Clinical Optimum 
 
The clinician will choose as optimal the pacemaker set-
ting which corresponds to the middle of the fitted parab- 

ola, i.e. ˆ
2opt

B
x

A


 . In terms of the clinical data xi and yi, 

this clinical optimum is 

 22 4

2 2 2
ˆ

2 2

i i

opt
i i i i

x S x
x

S x x y x y





 

   

For simplicity, and without loss of generality, a coor-
dinate system for x can be chosen that makes 0 the centre 
of the range of settings tested during optimization. This 
symmetrical arrangement of xi values provides the fol-
lowing convenient identities: 

  
   

2 2

3 4 4 2

0, 1 1 12,

0, 1 3 7 1 240

i i

i i

x x x S S S

x x x S S S S

    

     

 
 

 

Applying these substitutions permits the clinical opti-
mum to be described as follows: 

 
 

2 2

2 2 2

2 4
ˆ

5 1 60

i i

opt

i i

S x x y
x

S x y x

 


  


  iy

.       (1) 

If yi is augmented by any constant k, the numerator is 
unchanged because 

 i i i i i i ix y k x y k x x y       . The denomi-

nator is also unchanged because it is augmented by  

 2 2 25 1 60 iS x k k x   

 

 which is 

 2 2

2 2
60 1

5 1
12

k x S S
kS S x

 
0    .  

Therefore without loss of generality the observed val-
ues yi may be defined in terms of the underlying quad-
ratic curvature coefficient Aund, the true optimum xopt, and 
the noise component εR as follows: 

 2

,i und i opt R iy A x x     

 

 

2
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,
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,
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1
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y A x x
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S S
A x A S x
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
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3.2. Expression for the Clinical Optimum 
 

i

. 
Applying these within Equation (1) gives: 

Copyright © 2011 SciRes.                                                                                  AM 



D. P. FRANCIS 

Copyright © 2011 SciRes.                                                                                  AM 

1500 
  

   

        

   

2

2 2 2
,

2 2 2

2 2 2 2 4 2 2 2
, ,

2

2 2 2
,

ˆ

1
2 4

6

1 1 3 7
5 1 60

12 240 12

1
2 4 2

12

opt

opt und i R i

und und opt R i und opt i R i

opt und i R i

x

S S
S x x A x x

S S S S S S S
S x A x A Sx A x x x x

S S
S x x A x x



 





 
     
  

     
            
      

 
    




 



   

2 1 



  

    
        

2 2 2

2 2 2 4 2
, ,

2 2

4 2 2
,

2 2 2 2 2 2

4 4 2
, ,

1 1 3 7
5 1 60 60

12 240

1 4
2 4

3
5 1 1 1 3 7 5 1 60

12 4

und R i und i R i

und opt i R i

R i i R i
und und

S S S S S
S x A x A x x

S S S
A x x S x x

S S S S S S S x
x x x

A A

 



 





   
       
  

 
    


     

   

 



 

 

    

    

 

    

2 2 2 2

4
,

2 2 2 2

4 2
, ,

,2 2

2
, ,2 2 4 2 2

1 4 2 4

3
ˆ

1 4 5 1 60

3
6

1

15 180
1

4 1

opt i R i
und

opt

R i i R i
und und

opt i R i

und

4
R i i

und und

S S S S x
x x x

A
x

S S S S x
x x

A A

x x
A x S S

x
A x S S A x S S S



 



R i 

   
  


   

  


 


 

    



 



 

 

 
3.3. Imprecision of the Clinical Optimum 
 
It can be seen from this that the clinically observed opti- 
mum ˆoptx  differs from the underlying optimum optx  
because of two types of error, which affect the numerator 
and denominator respectively. The component in the 
numerator is a simple additive error. The impact of the 
denominator error, however, scales with optx . 

In clinical situations where the errors are large in com-
parison with the degree of curvature that is manifested, 
the entire denominator of this formula falls near (or be- 
yond) zero and behavior of the expression becomes 
strongly nonlinear. In such a situation there is almost no 
useful information about the underlying optimum avai- 
lable from the acquired data. Clinically this can be con- 
sidered likely whenever the information content (or in- 
traclass correlation coefficient) is low [8]. 

In most situations of well-designed optimization pro- 
tocols, however, the error is not large compared with the 
curvature of the signal, which makes it possible to pro- 
vide a closed-form expression for the imprecision of the 
optimum. 

To do this, the variance of the numerator is first shown 

to be  

 
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 
 
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 
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



 

Likewise the variance of the denominator is 
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By the binomial expansion, 1/(1−z) = 1 + z + z2 + z3 
 which can be approximated with 1 + z as long as the 

magnitude of z is well below 1. Thus as long as we can 
make the following assumption: 



  2 4 2 2 21 4 180
RundA x S S S         (2), 

and as long as the numerator and denominator errors are 
not large, a linear approximation can be used for the va-
riance of ˆoptx  as follows: 
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 
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 
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The standard error of the clinical optimum, being the 
square root of this, is therefore  

 
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2

2

2

60
3 1

4
ˆ

1

R

opt

opt
und

x

xS
SE x

A x S S


 

    
 

. 

 
3.4. Contributory Factors to Imprecision of the 

Clinical Optimum 
 
In general the optimization protocol may have multiple 
replicates, i.e. R  1, in order to reduce the effect of noise. 

1R   so that in terms of the fundamental bio-
logical characteristics, the standard error of the clinical 
optimum is 

R 

 

 
1

2

22

ˆ

3 1 60
1

41

opt

opt

und

SE x

x

A xSR S x S

  
         

 (3) 

This formulation highlights the 4 contributory factors 
to imprecision of the optimum clearly. First, the impreci-
sion of the clinical optimum falls with the square root of 

, the number of individual physiological measure-
ments made. Since making additional measurements ei-
ther consumes scarce time in a clinical environment, or 
battery power if conducted automatically by the pace-
maker, having knowledge of this tradeoff between num-
ber of measurements and imprecision may be helpful. 

SR 

Second, by observing that the second term is almost 
the reciprocal of the width of the range of settings tested, 

, it can be seen that the wider the range tested, 
the more precise the optimum. In practice this is limited 

by loss of fit to the parabola for settings far from the op- 
timum. However, within the range over which behaviour 
is parabolic, this analysis suggests it is desirable to cover 
a wide range rather than to focus exclusively on the very 
close vicinity of the optimum. 

 1S  

Third, biology sets an lower limit on 1

undA


. While  

measurement error can be reduced by choosing meas-
urement techniques with smaller instrument noise, even-
tually almost all the variability between replicates is 
genuine biological variation between heart beats, which 
places a lower boundary on 

1
 . Meanwhile Aund is a 

manifestation of dependence of physiology upon changes 
in pacemaker setting, and is determined by the patient’s 
own biological characteristics. For ideal measurement 
modalities, where the equipment contributes no noise, all 
the variability is biological, and may well be similar 
across different modalities. For example, measures of 
pressure and flow, although fundamentally different and 
having distinct units, may change proportionally with the 
same constant of proportionality in response to both sig-
nal (change in pacemaker setting) and noise (spontane- 

ous biological variability). Thus 1

undA


 may have a bio- 

logically-imposed lower limit within an individual pa-
tient which cannot be improved upon by the clinician. 

The final term can be neglected if the optimum is very 
close to the centre of the tested range, i.e. 

1

2opt

S
x x


 . However, it rises as optx  rises. For 

rapid interpretation by non-mathematicians it may be 
useful to develop a dimensionless variable E, represent-
ing how far the true optimum is away from the centre of 
the tested range, running from 0 when optx = 0, to 1 when 

1

2opt

S
x x


  . 

Reworking Equation (3) to use this, and introducing W 
=  1S x  , the width of the range of settings tested, 
gives: 

   1

2

2
22

13 1 1
ˆ 1 15

41
opt

und

SS
SE x E

W A SR S S

 
    

 
 

(4) 

This formula is only valid when the condition de- 
scribed above in (2) is satisfied. That condition, the bare 
minimum number of raw measurements needed before 
the standard error of the optimum can be validly esti-
mated, can be approximated in this simplified way: 

1

2

2
180

und

R S
W A

 
 

 
x             (5) 
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If  exceeds the above formula by (for example) 
more than 5-fold, the uncertainty of the optimum is iden-
tified reliably using Equation (4). If  exceeds by 
only a small margin, Equation (4) will underestimate the 
observed scatter between repeat optimizations. Finally, if 
RS does not even exceed the right hand side, the dataset 
is so poor in information content that it should be dis-
carded, and the protocol redesigned.  

R S

R S

In practice the doctor does not know the underlying 
values of 

1
  and undA  but instead assesses them from 

clinical measurements: 
1

ˆ  and Â  respectively. 
Figure 2 summarizes all the relevant variables in a 

format convenient for visual appreciation. It shows the 
steps necessary to gauge the uncertainty of the optimum. 

The expressions can be applied to any unit of “pace-
maker setting”, and any unit of “physiological response”. 
Typically pacemaker settings (atrioventricular and inter-
ventricular delay) are expressed in either milliseconds or 
seconds. Physiological response may be based on flow, 
for which suitable units might be true flow rates (e.g. 
ml/min, L/min) or expressed per beat (ml/beat), or as a 
peak instantaneous flow rate, or as an average velocity 
(cm/min or m/min) or peak velocity, or velocity-time 
integral (cm/beat). Alternatively physiological response 
may be pressure (e.g. mmHg) as a systolic, mean, or 
pulse pressure, or a value derived from pressure such as 
intraventricular peak first derivative of pressure (dp/dtmax). 
In principle uncalibrated physiological response vari-
ables and even those of unknown physical unit may be 
used, as long as it is reasonable to believe they vary ap-
proximately linearly with cardiac performance. 

Any physical units may be used to express scatter 
1

  
and width W but, once they are decided, the units that 
must be used to express curvature undA  are [scatter]/ 
[width]2. 
 
3.5. Simplified Expression for Rapid 

Appreciation 
 
In practice the number of settings tested is usually fairly 
large, e.g. S  6, and E  does not exceed 1. Thus to 
explain the implications of the formula to a non-mathe- 
matician protocol designer, it may be sufficient to use the 
following simplified approximation. First check that 

1

2

2

ˆ
180

ˆ
R S

W A

 
 

 
  , otherwise redesign the experiment, 

with more replicates or with a variable which has a sma- 
ller 

1

ˆˆ A  ratio. Second: 

  1 23
ˆ ~ 1opt

und

SE x E
AW R S

 


15       (6) 

The left factor contains 3 variables known precisely  

from the experimental design. The right factor contains 3 
variables that must be estimated from observations in the 
patient. 

 
3.6. Examples of Application to Existing 

Protocols 
 

3.6.1. Example 1. Atrioventricular Delay 
Optimization  

In a published study [10] of clinical optimization in 15 
patients, there were S = 6 atrioventricular delay settings 
tested, and R = 6 replicate measurements. The width of 
the spectrum of settings covered was W = 0.200 − 0.040 
s = 0.160 s. The observed scatter between individual re- 
plicate measurements was 

1
ˆ = 3.9 mmHg. The ob-

served curvature was Â  = 1194 mmHg·s–2. With these 

observed data, 1

2

2

ˆ

ˆW A

 
 
 

180 was 2.9, which RS com-

fortably exceeded. 
For an optimum lying near the middle of the tested range,  

E ≈ 0, so   3 1 5 3.9
ˆ

0.200 11946 6 35
optSE x    


 ≈ 0.005  

s. For optima half-way to the edge of the tested spectrum, 
 ˆoptSE x  is almost double, at 0.010 s. For optima at the 

edge of the tested spectrum,  is almost 4-fold 
higher than at the middle of the range, i.e. ≈ 0.019 s. 

 ˆoptSE x 
Pacemakers only permit quantized values to be pro-

grammed, for example in steps of 0.010 s. For optima 
lying near the centre of the tested range in that study, the 
optimization procedure can be seen to be sufficient to 
identify the optimum for clinical purposes. However, for 
optima at the edge of the tested range, the protocol would 
need to be adjusted to maintain that level of optimization 
precision. The most generically effective step to achieve 
this would be to conduct more replicate measurements. 

 
3.6.2. Example 2. Interventricular Delay 

Optimization  
In the same study, [10] optimization of interventricular 
delay was also examined. There were again S = 6 settings 
tested, and R = 6 replicate measurements. The width of 
the spectrum of settings covered was W = 0.120 s. Ob- 
served measurement scatter 

1
 mmHg. Curva- 

ture was measured to be Aund = 67 mmHg·s–2. The bare 
minimum number of measurements needed 

ˆ 3.9 

1

2

2

ˆ
180

ˆW A

 

 

  is ~2900, which RS falls far below. This 

signals that application of Equation (4) will likely sub-
stantially underestimate the true standard error of the 
optimum.  

Despite therefore being only a crude lower estimate,  
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Figure 2. Illustration of the 6 variables that affect precision of the optimum. Note: Three are set by the design of the protocol 
and are therefore under the control of the clinician (within reason) and three are measured experimentally and depend on 
biology and on the physiological variable chosen for monitoring. Step 1 highlights the necessity for performing enough repli-
cate measurements before attempting to calculate a standard error. 
 
for an optimum lying in the middle of the tested range, 
Equation (4) provides  > ~0.118 s. For optima 
at the edge of the tested spectrum,  is 4-fold 
higher, i.e. > ~0.422 ms. These lower limits on the stan-
dard error are so large that the 95% confidence intervals 
(1.96 standard errors) dwarf the entire spectrum of 
clinically plausible settings. 

 ˆoptSE x 
 ˆoptSE x

This analysis shows that interventricular delay opti-
mization conducted in this way in such patients is unre-
liable. Interventricular delay optimization protocols 
recommending a few (or even just one) measurement at 
each setting will never work. Biological variability has 
an ineradicable lower limit which can only be overcome 
by repetitions so numerous as to be unrealistic for man-
ual methods such as echocardiography, and challenging 
even for automatable haemodynamic approaches. 

The curious silence of the world literature on the ele-
mentary question of blinded test-retest reproducibility of 
interventricular delay optimization is a dog that didn’t 
bark [11]. 

 
3.7. Examples of Application in Protocol Design 
 
A doctor designing an optimization protocol can use this 

formula to ensure that the protocol delivers a clinically- 
satisfactory degree of precision. Suppose the protocol 
needs to deliver optimization within 0.010 s on 95% of 
occasions, i.e.  ˆoptSE x  needs to be 0.005 s. Rewriting 
Equation (4), we see that the number of replicate meas-
urements required is: 

 
 

 1

2
2 2

2
3 2

1 11
3 1

4ˆ undopt

S S
R E

AS S SW SE x

    
      

      
15  

(7). 

A simplified form of the relationship, for easy appre-
ciation by non-mathematicians, is shown below: 

   1

2

23 1
~ 1

ˆ undopt

R E
S AW SE x

 
   
  

15  

Three of the variables are handled easily. The protocol 
designer can choose how many settings to test (S, e.g. 6), 
and the width covered (W, e.g. 0.160 s) and can arrange 
from physiological knowledge that the optimum will lie 
in the middle 50% of the spectrum of tested settings, i.e. 
E< 1/2.  

The value of 
1

ˆˆ A  must be assessed experimentally 
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

for each proposed optimization variable. This requires 
only a few minutes per subject.  

Table 1 shows how this ratio, and other variables, af-
fect the number of replicates needed, R, to achieve the 
desired optimization precision.  

Although mathematically the tested range W, the re-
quired precision , and the scatter-to-curvature 
ratio 

 ˆoptSE x

1

The many haemodynamic variables that are affected 
by AV delay appear to be initially change proportionally 
[12] which suggests that Aund may be approximately the 
same proportion of the baseline value of each variable. 
The protocol designer desiring small 

1

ˆˆ A  should 
therefore favour the variable whose scatter 



1
ˆ  is the 

smallest proportion of its baseline value. 
ˆˆ A  each have the same impact on the number 

of replicates required, in clinical practice 
 

1

ˆˆ 4. Limitations A  has by 
far the greatest range of possible values, and the design 
process should therefore focus on ensuring that this is 
small, if the optimization protocol is to be practical. 


 
Although it is convenient to describe optimization re-
sponses with a parabola, the true underlying shape may  

 
Table 1. Impact of physiology (scatter, curvature and extremeness) and protocol design (number of tested settings, width of 
spectrum) on the number of replicates needed for optimization of a desired level of precision. 

Distribution of tested settings and physiological characteristics 
Number of  

replicates per setting 
needed to achieve this 

Number of 
tested 

settings 

Width of 
spectrum 

Desired 
precision 

Extremeness Scatter Curvature 
Scatter/  

Curvature ratio 

S W  ˆ
optSE x  E 

1
ˆ  Â  1

ˆˆ A  

R 

 s s  mmHg mmHg·s–2 s2  

6 
 

6 
6 
6 
6 
6 
 

6 
6 
6 
6 
 

6 
6 
6 
6 
6 
 

6 
6 
6 
6 
 

6 
6 
6 
6 
 

4 
6 
8 
10 
12 

0.16 
 

0.16 
0.16 
0.16 
0.16 
0.16 

 
0.16 
0.16 
0.16 
0.16 

 
0.16 
0.16 
0.16 
0.16 
0.16 

 
0.16 
0.16 
0.16 
0.16 

 
0.08 
0.12 
0.16 
0.20 

 
0.16 
0.16 
0.16 
0.16 
0.16 

0.010 
 

0.005 
0.005 
0.005 
0.005 
0.005 

 
0.005 
0.005 
0.005 
0.005 

 
0.005 
0.005 
0.005 
0.005 
0.005 

 
0.002 
0.005 
0.010 
0.020 

 
0.005 
0.005 
0.005 
0.005 

 
0.005 
0.005 
0.005 
0.005 
0.005 

0.5 
 

0.5 
0.5 
0.5 
0.5 
0.5 

 
0.5 
0.5 
0.5 
0.5 

 
0 

0.25 
0.5 
0.75 

1 
 

0.5 
0.5 
0.5 
0.5 

 
0.5 
0.5 
0.5 
0.5 

 
0.5 
0.5 
0.5 
0.5 
0.5 

3.9 
 
3 
3 
3 
3 
3 
 
1 
3 

10 
30 

 
3 
3 
3 
3 
3 
 
3 
3 
3 
3 
 
3 
3 
3 
3 
 
3 
3 
3 
3 
3 

1194 
 

30 
100 
300 

1000 
3000 

 
1000 
1000 
1000 
1000 

 
1000 
1000 
1000 
1000 
1000 

 
1000 
1000 
1000 
1000 

 
1000 
1000 
1000 
1000 

 
1000 
1000 
1000 
1000 
1000 

0.00327 
 

0.1 
0.03 
0.01 
0.003 
0.001 

 
0.001 
0.003 
0.01 
0.03 

 
0.003 
0.003 
0.003 
0.003 
0.003 

 
0.003 
0.003 
0.003 
0.003 

 
0.003 
0.003 
0.003 
0.003 

 
0.003 
0.003 
0.003 
0.003 
0.003 

6 
 

21,929 
1974 
219 
20 
2 
 

2 
20 

219 
1974 

 
5 
9 
20 
38 
64 

 
123 
20 
5 
1 
 

79 
35 
20 
13 

 
24 
20 
17 
14 
13 

In practice the number of tested settings, width of spectrum, desired precision, and extremeness, all have a limited range of realistic values (as shown). In con-
trast, curvature and scatter have a wide range of possible values and, although rarely formally quantified in research reports, have enormous impact on the 
precision of the optimization process. This table can be used for physiological response measures that have any measurement unit (not only mmHg) since it is 
the relative size of scatter versus curvature, rather than their absolute values, that is important. For example, if “mmHg” was replaced by “% of value at refer-
ence setting”, the table could without any other alteration be used for any variable such as echo-Doppler velocity-time integral, uncalibrated pressure signal, 
bioimpedance-derived stroke volume, or any marker of pulsatility in the peripheral circulation. 
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be more complex. For example, where intrinsic (or even 
just fusion) conduction becomes active as AV delay is 
lengthened, the data points may deviate upwards from 
the parabolic trend, and so fitting to a parabola may bias 
the fitted AV delay optimum toward higher values. Nev-
ertheless, the principles in this manuscript would still 
hold true. Moreover, in the close vicinity of the optimum, 
which is relevant to precise optimization, curvature may 
be closer to parabolic. 

Merely applying formulae will not make optima more 
precise. Only selecting a physiological variable of suita-
bly low 

1

ˆˆ A  ratio, and taking time to conduct 
enough measurements (shown in Equation (7)), can im-
prove precision. Lack of interest in scatter and curvature 
in a doctor conducting optimization is as uninspiring as 
lack of interest in wings and engines in an aircraft pilot. 



 
5. Conclusions  
 
The practical implications may be summarized from in-
spection of each factor in Equation (6) in turn. To obtain 
precise clinical optima: 
 most importantly, either commit enough resources to 

obtain enough measurements, or do not embark on 
optimization; 

 cover a wide range of pacemaker settings while re-
maining within the parabolic region of the response 
curve; 

 choose a physiological variable with as narrow a 
random variability (in relation to its sensitivity to 
pacemaker setting change) as possible; and  

 if possible, design the spectrum of settings tested so 
that the true optimum will lie near its middle rather 
than at an extreme. 

Clinicians treating patients and scientists designing 
and conducting studies have not had simple, quick me- 
thods to establish the uncertainty in planned or actual 
optimization procedures. As a result, patients may be 
undergoing apparent optimization procedures that are in 
fact worsening the programming of their pacemaker. 
Moreover without methods for recognizing unreliable 
optimizations, clinicians finding the optimum appearing 
to change every 1 or 2 years may feel compelled to carry 
out worthless optimization procedures more frequently, 
[8] which wastes clinical resources and may be harmful 
to patients. 

The results in this paper permit easy quantification of 
uncertainty of the optimum of a cardiac resynchroniza-
tion therapy pacemaker. They help patients gain the best 
physiological benefit, help doctors design protocols that 
deliver efficient and reliable optimization, and assist in 
distinguishing genuine change in patient physiology over 
time, versus random noise.  

An unexamined optimization is not worth doing. 
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