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Abstract 
 
The present paper has been framed to study the influence of irregularity, initial stress and porosity on the 
propagation of torsional surface waves in an initially stressed anisotropic poro-elastic layer over a semi-infi- 
nite heterogeneous half space with linearly varying rigidity and density due to irregularity at the interface. 
The irregularity has been taken in the half-space in the form of a parabola. It is observed that torsional sur- 
face waves propagate in this assumed medium. In the absence of irregularity the velocity of torsional surface 
wave has been obtained. Further, it has been seen that for a layer over a homogeneous half space, the velo- 
city of torsional surface waves coincides with that of Love waves. 
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1. Introduction 
 
The study of surface waves in a half-space is important 
to seismologists due to its possible applications in Geo- 
physical prospecting and in understanding the cause and 
estimation of damage due to earthquakes. Surface waves 
carry the greatest amount of energy from shallow shocks 
and are of primary cause of destruction that can result 
from earthquakes. The propagation of surface waves in 
detail are well documented in the text book literature 
(Achenbach, J. D. [1], Ewing, W. M., Jardetzky, W. S., 
Press, F. [2], Bath, M. [3]). One type of surface wave 
may be available in non-homogeneous earth known as 
torsional surface waves. These waves are horizontally 
polarized but give a twist to the medium when it propa- 
gates. Although much information is available on the 
propagation of surface waves such as Rayleigh waves, 
Love waves and Stonely waves etc., the torsional wave 
has not drawn much attention and very little literature is 
available on the propagation of this wave. Some papers 
have been published on the propagation of torsional 
waves in elastic medium with different types of inho- 
mogeneity. Lord Rayleigh [4] in his remarkable paper 
showed that the isotropic homogeneous elastic half-space 
does not allow a torsional surface wave to propagate, in 
this connection Georgiadis et al. [5] have examined the 
torsional surface wave in a linear gradient-elastic half- 
space. Meissner [6] pointed out that in an inhomogene- 
ous elastic half-space with quadratic variation of shear 

modulous and density varying linearly with depth, tor- 
sional surface waves do exist. Vardoulakis, I. [7] has stu- 
died the problem on torsional surface waves in inhomo- 
geneous elastic media. Also S. Dey et al. [8] studied the 
propagation of torsional waves in a homogeneous sub- 
stratum over a heterogeneous half-space. 

The study of porous medium in recent time has ac- 
quired prime interest. The layer of the earth usually of 
such materials and the medium is generally dealt under 
the name of poro-elastic medium. Investigation on pro- 
pagation of waves in liquid saturated porous solids are 
relevant to geophysical prospecting methods, survey 
techniques are very useful in oil industry. While deriving 
the mechanics of such medium it is assumed that the 
pore sizes are small and macroscopially speaking their 
average distribution is uniform. The role of pore water in 
seismology has been emphasized in many studies. Biot 
[9] has established the theory of the propagation of elas- 
tic waves in a porous elastic solid saturated by a viscous 
fluid. Under the assumption of dynamic coupling be- 
tween solid and fluid mass, Biot [10] has developed the 
mathematical theory for the propagation of elastic waves 
in a fluid saturated porous medium. Based on this theory, 
many problems of surface waves in poro-elastic materi- 
als have been studied in the past years by Buckingham, 
M. J. [11], Sharma, M. D. and Gogna, M. L. [12], Shar- 
ma, M. D., Kumar, R. and Gogna, M. L. [13], Sharma, M. 
D., Kumar, R. and Gogna, M. L. [14].  

The development of initial stresses in the medium is 
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due to many reasons, for example resulting from the dif- 
ference of temperature, process of quenching, shot peen- 
ing and cold working, slow process of creep, differential 
external forces, gravity variations etc. These stresses have 
a pronounced influence on the propagation of waves as 
shown by Biot [15]. The earth is also an initially stressed 
medium. It is therefore of much interest to study the in- 
fluence of these stresses on the propagation of torsional 
surface wave. The study of surface waves in an initially 
stressed medium is of interest not for theoretical taste 
only but for practical purposes too. Based on the pio- 
neering work of Biot [15] on pre-stressed solids, various 
studies of body and surface wave propagation in the pre- 
stressed solids have been carried out by many research- 
ers such as Chattopadhyay et al. [16], Kar, B. K. and 
Kalyani, V. K. [17] and Dey, S. and Addy, S. K. [18] . 

The study of wave propagation in elastic medium with 
different irregularities is of great importance to seismo- 
logists as well as to geophysicists to understand and pre- 
dict the seismic behavior at the different margins of earth. 
This fact leads us towards this study. The present paper 
discusses the possibility of existence of torsional surface 
wave in an initially stressed anisotropic poro-elastic layer 
over a semi-infinite heterogeneous half space with line- 
arly varying rigidity and density due to irregularity at the 
interface. The irregularity has been taken in the half- 
space in the form of a parabola. It is observed that tor- 
sional surface waves propagate in this assumed medium. 
Irregularity and initial stress play an important role in the 
seismic wave propagation. This paper has been framed 
out to show the effect of irregularity at the interface in 
the parabolic form and initial stress on the propagation of 
torsional surface wave. As the porosity parameter de- 
creases, the half-space will become an elastic solid with 
less pores and the velocity of torsional surface waves 
decreases and ultimately vanishes when the medium is 
elastic solid. The effect of irregularity and the initial 
stresses are very prominent on the propagation of tor- 
sional surface waves. The presence of initial compressive 
stress reduces the velocity of torsional surface waves. As 
the initial compressive stress increases, the velocity of 
propagation decreases. It is also observed that in the li- 
miting case if the porous medium changes to a liquid layer 
then a torsional surface wave don’t exist. It is interesting 
to note that in a poro-elastic medium over a homogene- 
ous half-space the torsional wave mode changes to Love 
wave mode. Parabolic irregularity is mostly found in the 
earth so the present study can help the seismologists to 
understand and predict the seismic behaviour at different 
margins of the earth. 
 
2. Formulation of the Problem 
 
Let us Consider a model which consists of a water satu-

rated porous layer M1 of thickness H with anisotropy of 
Weiskopf type under compressive initial stresses 

rrP s    along the radial direction and with one para- 
bolic irregularity on the interface between the layer and a 
semi-infinite non-homogeneous elastic half-space M2 as 
shown in Figure 1. The heterogeneity has been consid-
ered both in density and rigidity. We assume that the 
irregularity is of the form of a parabola with span of 
length 2 m and depth h. 

Assuming the origin of the cylindrical co-ordinate 
system at the middle point of the interface irregularity 
and the z-axis downward positive, the following varia-
tion in rigidity and density has been taken 

1) for the layer, 0,o      
2) for the half-space,    1 11 , 1az bz      

where and    are rigidity and density of the media 
respectively and  are constants having dimensions 
that are inverse of length. 

,  a b

The equation of irregularity has been taken as  
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3. Solution of the Problem 
 
3.1. Solution for Porous Layer 
 
The dynamical equations of initially stressed poroelastic 
medium is obtained by suitably coupling Biot’s [19] dy-
namical equations of an initially stressed medium with 
the equations of poro-elasticity given by Weiskopf [20] 
and Biot [9,10]. Those are 

 
2

2

1 r rrrr rz

rr r r r

s s ss s
P

r r z r z

u U
t

  






 

           
   
   


   (1) 

 
2

2

1 2r z z
r

rr r

s s s
s P

r r z r r

v V
t

  


  




 

          
   
   


    (2) 

 
2

2

1 1zrz zz
rz

rr z r z

ss s
s P

r r z r r

w W
t

 






 

         
   
   


     (3) 

and  


2

2 r r r

s
u U

r t
  

   
 

          (4) 

Copyright © 2011 SciRes.                                                                                  AM 



S. GUPTA  ET  AL. 1455 
 

 

Figure 1. Geometry of the problem. 
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=incremental stress components; 

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r z = components of the displacement vector 
of the solid; 
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are the components of the rotational vector  . 
The stress-strain relations for the water saturated ani-

sotropic porous layer under normal initial stress P  are 
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(8) 

where , , ,A F C N
N

 and  are elastic constants of the 
medium.  and G  are, in particular, shear moduli of 
the anisotropic layer in the radial and the z-direction re-
spectively. 
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Further, Q  being the measure of coupling between 

the volume change of the solid and the liquid is a posi-
tive quantity. s  is the stress vector due to the liquid. 
The stress vector s is related to the fluid pressure  
by the relation 

P

f s P                 (10) 

where f is porosity of the layer. 
The mass coefficients ,rr r   and   are related 

to the densities , ,s w    of the layer, the solid and the 
water respectively by 

 1 ,  rr s r wr f f          



   (11) 

so that the mass density of the aggregate is 

s w sf               (12) 

The above relation shows that in case the fluid of 
lighter density  w  is filled up in the solid matrix of 
density  s  then the density of the aggregate    
will be less than the density of the solid  s , there may 
be the case of heavier fluid such as mercury, molten 
metal etc. filled in the solid matrix, when the density of 
the aggregate will be more than that of solid. Further this 
relation shows that as the porosity factor f decreases from 
1 to 0 i.e. as the volume of pores decreases, the density 
of the aggregate tends to the density of the solid. It has 
been shown by Biot that the mass coefficients obey the 
following inequalities also 

20,  0 , 0rr r rr r       0,       (13) 

For torsional surface waves propagating along the ra-
dial direction having displacement of the particles along 
  direction we have, 
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The above displacements will produce ze  and re   
strain components and the other strain components will 
be zero. Hence the stress-strain relations are 
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Using (15) in (1) to (6) the equations of motion, which 
are not automatically satisfied, are 
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Using stress-strain relations (8), (16) may be written as 

 

2 2

2 2 2

2

2

1

2

rr r

v v v vP
N G

r rr r z

v V
t

  

   

             


   
  


 

    (18) 

Copyright © 2011 SciRes.                                                                                  AM 



S. GUPTA  ET  AL. 1456
 

 

y

From (17), we have 
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From Equation (20) it is clear that the velocity of the 

shear wave along radial(r) direction is 
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Introducing the non-dimensional radial and depth co- 
ordinates we have  
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We assume a solution of Equation (21) of the form 
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   , where  1J R  is the Bessel func-
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The solution of Equation (22) may be taken as  
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Therefore, for the torsional surface wave propagating 
in the radial direction, the solution of Equation (21) may 
be taken as 
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the phase velocity of the torsional surface wave. 
 

3.2. Solution for Non-Homogeneous Elastic Half 
Space 

 
The lower medium is considered as non-homogeneous 
elastic half space. The Equaiton of motion may be writ-
ten as 
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where r  and z  are stress components in the half 
space,  , , zv r  is the displacement and   is the 
density of the material of the half space. 

The non-homogeneity in the medium are taken as 
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where, 1  and 1  are the values of   and   re-
spectively at 0z  , and  are constants having di-
mensions that are inverse of length. 
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Using the stress-strain relations 
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L
, the Equation (20) may be written as  
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and the relations (25), the Equation of motion (24) may 
be written as 
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Introducing the non-dimensional co-ordinates 
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Equation (27) takes the form as  
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(28) 

We assume a solution of Equation (28) of the form 

   2 1 ,i tv v J R e   

where 2  is the solution of the following equation 
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        (29) 

In the above, c   is the phase velocity of the tor- 

sional surface wave and 1
1

1

,c



  velocity of shear  

wave in an initially stress-free elastic medium and 
 1J R  is the Bessel function of the first kind. 

Substituting    
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 in the Equa-

tion (29) to eliminate the term 2d

d

v


, 

we obtain 
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(30) 

Using         in (30), where 
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where 
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p
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Equation (31) is Whittaker’s equation. 
We are interested in the solution of Equation (31) 

which is bounded and vanishes as z 
 v z 

, therefore we 
search for the solution which gives  as  0
z  . This condition is equivalent to   0


 


lim . 

Therefore the solution of Equation (31) satisfying the 
above condition may be written as 
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         (32) 

 
4. Boundary Conditions and Dispersion 

Equation 
 

The boundary conditions are as follows  

1) 0 0 at  
v
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z
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and  ,0,l n  are components of unit normal (to the in-
terface at z = 0). 
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where 
d

d

F
F

r
   

The boundary condition (3) may be written as 
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               

, 

at  z F r  

  we get Now, using boundary conditions (1), (2) and (3) re-
spectively we get 
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5. Particular Cases 
 
If the medium is non-porous then and 0f  s   
which leads to 11 12 1    and 11 12 0    and 
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Again if  then w1f     and the medium 

becomes fluid. In this case, the velocity of shear wave in  
Now, eliminating A, B and D1 from Equations (33), 

(34) and (35) we get  
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0d   and for porous solid filled with liquid 0 1d  . 
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5.1. Case I 
 

Expanding the Whittaker function  ,0sW   up to lin- 
ear terms in  , Equation (37) reduces to 
 

If 0, 0h    i.e. in the absence of irregularity in the 
half space, then (38) reduces to 
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which is the same velocity equation in initially stressed 
anisotropic heterogeneous poroelastic medium as ob-
tained by Dey & Sarkar (2002). 
 
5.2. Case II 
 
If 0, 0, 0a b     i.e. when half space is free 

from irregularity and also half space is homogeneous 
then from (38) we get 
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which is the dispersion equation of Love wave in an ini-
tially stressed poro-elastic medium. 
 
5.3. Case III 
 
If  i.e. in the presence of normal 
initial stress and when the half-space is homogeneous 
then Equation (38) reduces to 

0, 0, 0P a b   
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2 2
2 2

2 2
1

tan ,  
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which is the velocity equation of Love wave in this case. 
 
5.4. Case IV 
 
If  i.e. in the absence of normal 
initial stress and when the half-space is homogeneous 
then from (38) we get 
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5.5. Case V 
 
If 0,  0, 0, 0, 1 and  =a b d N G       i.e. 
when the half-space is homogeneous and free from ir-
regularity and also when the layer is initial stress free, 
isotropic and non-porous then (38) reduces to 
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which is the well-known classical result of Love wave. 
 
6. Numerical Computation and Discussion 
 
To study the consolidated effect of porosity, irregularity 
and initial stresses on the propagation of the torsional 
surface waves, the numerical computation of velocity 

2 2c c  has been made from (38) under different values 
of ,  ,  ,  ,  ,d aL bL N G h H  1 0 ,  ,  ,  r m h m km,     

,   and   2 2
1 0.5c c  . The results are presented in 

Figures 2 to 5. 
Figure 2 gives the dispersion curves for increasing 

values of at different sizes of the irregularity and 
compares the results in the medium with and without 
initial stresses. The curve numbers 1, 2 and 3 are for an 
initially stress-free medium, and the curve numbers 4, 5 
and 6 are for the initially stressed medium with 

kH

0.4  . 
The figure shows that the effect of the irregularity and 
the initial stresses are very prominent on the propagation 
of torsional surface waves. The presence of initial com- 
 

 

Figure 2. Torsional wave dispersion curves at different ini-
tial stresses and at different sizes of irregularity μ1/μ0 = 0.4, 
N/G = 0.3, d = 0.6, a/k = 0.1, b/k = 0.1, ε = 0.1, r/m = 0.02, 
h/m = 0.03, km = 0.01. 
 

 

Figure 3. Variation of velocity of torsional wave with re-
spect to initial compressive stress for kH = 0.72, N/G = 2, d 
= 0.6, aL = 0.1, bL = 0.1, h/H = 0.3, ε = 0.1, r/m = 0.01, h/m = 
0.02, km = 0.01, μ1/μ0 = 0.4. 
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Figure 4. Variation of velocity of torsional wave with re-
spect to porosity for kH = 0.72, N/G = 2, ζ = 0.6, aL = 0.1, bL 
= 0.1, h/H = 0.3, ε = 0.1, r/m = 0.01, h/m = 0.02, km = 0.01, 
μ1/μ0 = 0.4. 
 

 

Figure 5. Effect of initial stress on the velocity of torsional 
wave for μ1/μ0 = 0.4, N/G = 0.3, d = 0.6, a/k = 0.1, b/k = 0.1, ε 
= 0.1, r/m = 0.02, h/m = 0.03, km = 0.01, h/H = 0.3. 
 
pressive stress reduces the velocity of torsional surface 
waves. The presence of the liquid-filled pore in the me- 
dium also reduces the velocity. 

Figure 3 gives a variation of velocity of torsional sur- 
face waves for the variation of  . The curve confirm 
that as the initial stress parameter increases, the velocity 
decreases. 

Figure 4 gives a variation of velocity of torsional sur- 
face waves for the variation of porosity. The curve con- 
firm that as the porosity increases, the velocity decreases. 

Figure 5 gives the dispersion curves at different val- 
ues of . This shows that as increases, the velo- 
city drops down. Hence it is expected that after certain 

thickness of the layer, the torsional surface wave will not 
propagate in the medium. This figure also confirms that 
as the initial compressive stress increases, the velocity of 
propagation decreases. 

kH kH
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Appendix s : Stress in the liquid 

, ,r  z     : Components of the rotational vector   in 

radial, circumferential and axial directions respectively. 

 
H : Thickness of the layer 
 : Rigidity of the medium  : Circular frequency 
 : Density of the medium k : Wave number 

 , a b : Constants having dimensions that are inverse of 
length 

f : Porosity of the layer 

c : Phase velocity of the torsional surface wave 
ijs : Incremental stress components 

1c : Velocity of shear wave in an initially stress-free elas-

tic medium. ije : Components of strains 
R : Dimensionless quantity. , ,ru v w  z

z

: Displacement components of the solid in the 

radial, circumferential and axial directions respectively. A, B and D1: Arbitrary constant 
 , ,rU V W   : Displacement components of the liquid in 

the radial, circumferential and axial directions respec-
tively. 
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