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Abstract 
 
Disagreement in estimations of the observed acceleration of Phobos yields several theories empirically 
modifying classical description of motion of the satellite, but its orbital positions detected by Mars-aimed 
spacecraft differ from predictions. It is shown that the satellite’s orbital perturbations can be explained as 
manifestations of the relativistic time-delay effect ignored in classical models. So computed limits of Phobos’ 
acceleration essentially exceed the experimental values. The satellite’s expected orbital shift is calculated for 
the moment of contact with a landing module of the Phobos-Grunt project; the shift assessed in kilometers 
may prevent the mission success. Limits of the apparent relativistic accelerations are predicted for fast satel-
lites of Jupiter. 
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1. Introduction: Phobos’ Irregular Motion, 
Theory and Practice 

A satellite of the planet Mars, Phobos, discovered by A. 
Hall in 1877 still attracts great attention. In 1911 after 
years of observations H. Struve offered a classical theory 
of Martian satellites’ motion taking into account the 
planet’s oblate shape and solar gravity. In 1945 B. Shar- 
pless discovered a secular increase of Phobos velocity [1] 
and surmised that the moon was spiraling in toward Mars. 
I.Shklovski ascribing the orbit’s decay to atmospheric 
friction concluded that the moon could be hollow [2], 
maybe artificial, but the orbit’s evolution was also re- 
ferred to influence of tidal forces [3]. Later mathematical 
models [4-6] were developed in attempts to better ex- 
plain observational results, some of conclusions though 
uncertain about the acceleration value and even sign. 

Cosmic era made Phobos a desired but hardly accessi- 
ble goal. In 1988 Russian Phobos-1 (said badly operated) 
passed by the target while Phobos-2 disappeared at 50 m 
from the moon’s surface. In 1999 Mars Climate Orbiter 
(NASA, also said badly operated) was lost near Phobos’ 
orbit, and Mars Polar Lander vanished hardly touching 
the Martian atmosphere. In 2003 Beagle-2 (UK) shared 
the destiny without any firm conclusion of the loss. Sur- 
vivors showed deficiency of existing theories: Mariner 9 
(NASA, 1971) [7,8] and Mars Express (ESA, 2004) [9] 

found Phobos in kilometers ahead of its expected posi- 
tion. A new space mission Phobos-Grunt (Russia) is 
planned soon [10]; if its computer program determines 
the target position using old models, the project may 
have problems. 

Another reason of the Phobos’ motion irregularity is 
considered here on the base of relativity theory. Section 
2 comprises deduction of formulae for apparent accelera- 
tion and for relativistic shift of a solar system planet’s 
satellite observed from the Earth, using methods of qua- 
ternion model of relativity. In Section 3 calculated and 
experimental values of the Phobos’ acceleration are 
compared, and the shift value is assessed for the Pho- 
bos-Grunt space mission. A compact discussion is found 
in Section 4 with prediction of relativistic shift of fast 
satellites of Jupiter potentially observed from the Earth. 

2. Relativistic Explanation 

Let the Earth (frame of reference ) and a planet of the 
solar system (


 , e.g. Mars) have circular trajectories 

(for simplicity) in ecliptic plane and revolve about the 
Sun with velocities of constant values ,E PV V . A planet’s 
satellite with orbital period  (from viewpoint 
of 

T   const
 ) can be regarded as a clock. The value of    

relative velocity is found as 
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where  is the difference of orbital angular velocities 
of the Earth and the planet,  is a 


t  ,E PV V




-angle, its 
zero initial value is chosen at the planets’ opposition 
point (where the Martian satellites are usually observed 
optically [6]). The relative velocity value is always dif- 
ferent from zero, , hence a relativistic time-delay 
effect exists. A clock belonging to  should be slow in 

, i.e. the satellite, as a point of -clock’s arrow, 
should be seen in  at earlier position on its orbit than 
it is in . Emphasize two features of the effect. First, it 
is accumulated with time since the satellite’s apparent 
shift increases, so the effect is potentially detected. Sec- 
ond, the  -observer will find the satellite’s motion 
non-uniform, since the relative velocity is variable, 

, the frames , 

0V 










( )tV V   being non-inertial. This 
hampers computation of the shift-effect by means of 
Special Relativity (SR) valid for inertial frames of refer- 
ence, though SR can be applied locally as it is done in 
[11] in the deduction of formula for the Thomas preces- 
sion. But here assessment of the relativistic shift is done 
with the help of a more “technological” approach based 
on quaternion square root from SR space-time interval, 
the method admitting computation of relativistic effects 
for arbitrary frames without addressing tensor calculus of 
general relativity. The quaternion model of relativity 
theory is described in detail in Ref. [12], below its very 
short description is given. 

It is straightforwardly verified that multiplication of 
quaternions, the hypercomplex numbers built on one 
scalar (ordinary) unit and three non-commutative vector 
units k , is invariant under rotations of the vector units 
by matrices belonging to special orthogonal group with 
complex parameters 

q

n n kO q kq

 kq

                (2) 

(summation in the repeating indices is assumed here and 
further on), , the group being 1:1 iso- 
morphic to the Lorentz group. It is also proved that simi- 
lar rotations keep form of the vector-quaternion 

(3, )n kO SO С 

 k kd dx idte z ,            (3) 

under the space-time orthogonality condition 0k kdx e  , 
where  are differentials of a particle’s space- 
time coordinates in a frame , k  is any unit 
vector. The square of the vector-interval (3) yields 

, the Minkowski-type space-time inter- 
val of SR, so instead of invariance of this interval one 
can analyze form-invariance of  thus obtaining all 
cinematic effects of SR with an additional advantage to 
consider non-inertial frames of reference [12,13]. Apply 
the method for computation of characteristics of the sat- 

The form-invariant vector-interval describing t



2r

ellite’s motion estimated by an Earth’s observer. 

he rela- 
tiv

,kdx dt

2d dt 

 k  q

dz

e

 2
dz

istic system “Earth-planet (satellite)” is chosen in the 
form automatically satisfying the space-time orthogonal- 
ity condition 

1 1d d d
V

iс t iс t
с

    


z q q q  
2


         (4) 

the fundamental velocity с is constant,  is a proper dt
time interval in  , dt  is respective t  interval of 
the observer. The e tic situation described by (4) is 
equivalent to the 

ime
cin ma

   transformation of the type (2) 
with the matrix 

cosh sinh 0

sinh cosh 0

0 0
k n

i

O i

 
 

 
   
 
 

 

1

         (5) 

what leads to standard expression for relative velocity as 
a function of hyperbolic parameter tanhV c  , and to 
the time-delay relation 

dt t d cosh               (6) 

apparently the same as in SR but valid for the 
non-inertial case. Now let the time-interval dt T   be 
period of the satellite’s revolution measured in   (in 
fact, a physically real period, in this case is smal om- 
pared to t , time of observation), and dt T  be the 
similar “p riod” (here a variable magnitud bserved 
from 

l c

e) oe
 . Then (6) acquire the form 

 2 2cosh 1T T T V t c            (7) 

so the period observed from the Earth is always greater 
that the real one T T  . But search for the period’s dif- 
ference, whatever ble it could be, is of no use since 
relativistic corrections, important as will be shown below, 
would be slurred over by uncertainty of our knowledge 
of the involved magnitudes: gravitational constant [14], 
the planet’s and the satellite’s physical parameters [15]. 
So only the limits of the satellite’s acceleration value and 
an integral apparent shift will be assessed with possible 
accuracy. 

Making f

 desira

uture expressions compact, denote 

 2 2 22 1A V V c   , 2B V V c P E 1P E  

and using (1, 7) find (up to the small A, B) the difference 
between the values of satellite’s real orbital velocity SV   
estimated in  , and observed velocity ( )SV t  esti- 
mated in   

1 1
( ) 2π ( cosS S SV V t r V A B t

T T
   )      

     (8) 

r being the radius of the satellite’s orbit. Differentiation 
of (8) with respect to time of observation leads to for- 
mula for apparent satellite’s acceleration 
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d ( )
sinSV t

a V B   
d S t
t

        (9) 

Now using (8) find the satellite’s orbital sh
fe

ift, the dif- 
rence between its real position and that observed from 

the Earth 

   d sinS S Sl V V t V At B t           (10) 

the integration constant is chosen zero assumin

stem 

Let th

g no shift 
at the beginning of the observation. As expected the 
shift’s value monotonously grows linearly in time with 
imposed cyclic displacements having period of the oppo- 
sitions. 

3. Computations of the Effects for the 
Relativistic Earth-Mars (Phobos) Sy

e planet and satellite be Mars and Phobos. Ob- 
served secular acceleration of Phobos cited in literature 
varies from [1] 3 2

exp 1.88 10 deg yra       to zero [3] 
and to the negativ

3 2
exp 0.83 10 deg yra      , in d e satellite’s 

long ree of Phobos’ orbit (1/180 of 
the orbit length) equal to 327 km . Calculation of respec- 
tive relativistic values req  following (conventio- 
nal) data available in many sources, e.g. in [15]  

fundamental velocity 10 12.997 10 cm sс     
6 1

e value [4,6]  
egrees of th

year, one deg

uires the

itude in a 

Earth’s orbital velocity 2.978 10 cm sVE
    

city 2.413 10 cmVMars’ mean orbital velo 6 1sP
    

rence  Earth-Mars angular velocity diffe
7 10.932 10 s    

e city 52.14 10 c


Phobos’ orbital v lo 1m sSV      
coefficients are fouth

ap

      (11) 

Thus the experimental acceleration values are found 
w

en the small unit-free nd as 
98.174 10A   , 97.997 10B   . 
a (9 it (amplitude) of the Using formul ) find upper lim

parent acceleration caused by relativistic reasons 
10 1

max 1.59 10 cm sSa V B      
3 24.84 10 deg yr   

 

ell inside the limits (11) of the apparent acceleration 

max exp maxa a a   , its sign depending on the observa- 
tio d before or after the opposition point. 
In particular, if the data fixed in a month before the 
Mars-Earth opposition is compared with that obtained at 
the opposition point, then the conclusion should be made 
that the satellite moves with an acceleration having the 
value cited in Ref. [1]. Vice versa, the satellite’s decal- 
eration [4,6] should be detected if the observation is done 
a couple of weeks after the opposition peak. 

Now turn to Equation (10) to assess the Phobos’ ap- 
pa

nal data obtaine

rent orbital shift for parameters of the mission Pho- 
bos-Grunt. The mission is planned to start at the end of 

2011, and it is expected to reach Phobos within 1.25 yr  
of flight. The satellite’s orbital parameters for the  
craft’s computer program could be obtained at the last 
opposition in Jan. 2010 (i.e. plus 1.75 yr  to the flight 
time) or, for higher accuracy, in the ihelion oppo- 
sition in Aug. 2003 (plus 8.25 yr ), thus the time inter- 
vals between the observati  the spacecraft-moon 
contact are 1 3 yrt

space-

last per

ons and
  or 2 9.5 yrt  . So if the relativistic 

effect is ig the m an find Phobos in 

1 1.55 kml
nored, ission c

   or 2 5.18 kml   ahead of its expected 
ese shifts appear to 

be not too great compared to the moon’s size ( 20 km ), 
moreover, corrections of spacecraft’s Martian o e 
foreseen. But the shift-effect seems worth to be taken 
into account in advance since a light signal correcting the 
spacecraft position will have to cover twice the Earth- 
Mars distance of 82.15 10  km  (at the planned contact 
moment), and it w  24 minutes, a time suf- 
ficient for 3000 km  displacement of the spacecraft on 
its Martian orbit (recall for comparison the last 50 m of 
Phobos-2). 

An indepe

position, as earlier m

ill 

issio

do 

ns did.

within

 Th

rbits ar

it 

ndent effect of apparent replacement of Pho- 
bo

4. Discussion and a Prediction 

The above given formulas and numbers should of course 

s arises when distance between the satellite and an 
observer changes, light velocity being finite. Elliptic 
shape of the Mars’ orbit makes this phenomenon essen- 
tial for the Earth’s observer; as well a Phobos’ virtual 
acceleration must be detected by a spacecraft as it ap- 
proaches the moon. But this effect is obvious and hope- 
fully is taken into account in any space mission. 

be regarded only as a zero-iteration to a mathematical job 
good enough for engineering purposes. Strict computa- 
tional technology must take into account a series of es- 
sential details, among them eccentricity of the planets’ 
orbits, dependence on time of the velocities, and cer- 
tainly reliable values of the satellite’s dynamic parame- 
ters refined from synthesis of observations and theoretic 
considerations, e.g. solution of the moon’s equation of 
motion in Schwarzschild (or even Kerr) gravity as well 
as gravitational influence of other moons. But realization 
of these improvements is technologically clear, and if 
necessary it can be successfully performed. Nonetheless 
the shift-effect is noted. In reality its existence will 
hardly cause troubles for spacecraft aimed to explore a 
planet due to tiny probability to meet a small moon. But 
if the goal is the moon itself the effect may become im- 
portant. Hence to a certain extent it must be taken into 
consideration, and in particular in the planned Pho- 
bos-Grunt project; otherwise the mission will be under a 
noticeable “relativistic danger”. 
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lativistic shift-effect po- 
te

piter 

Note in conclusion that the re
ntially can be detected in the motion of other satellites 

of the solar system planets; e.g. the Earth-Jupiter relative 
motion should cause apparent acceleration of fast satel- 
lites of Jupiter. Assess the range of the acceleration val- 
ues for the fastest Jovian moons Metis and Adrastea, 
necessary data given below 

mean orbital velocity of Ju 6 11.307 10 cm sPV     
ifference  Earth-Jupiter angular velocity d

7 11.823 10  s    
mean orbital velocity of Metis 6 13.150 10 cm sMV      

tea  mean orbital velocity of Adras
6 13.138 10 cm sA

     V
the unit-free coefficient being 94.331 10B  

 of the acce

4468 km , and for 
37 10 deg

4503 km . 

. As is
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