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Abstract 
 
Using measured radial velocity data of five double-lined spectroscopic binary systems ROXR1 14, RX 
J1622.7-2325Nw, RR Lyn, 12 Boo and HR 6169, we find corresponding orbital and spectroscopic elements 
via a Probabilistic Neural Network (PNN). Our numerical results are in good agreement with those obtained 
by others using more traditional methods. 
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1. Introduction 

Analysis of both light and radial velocity (hereafter RV ) 
curves of binary systems helps us to determine the 
masses and radii of individual stars. One historically 
well-known method to analyze the RV  curve is that of 
Lehmann-Filhés [1]. Other methods were also introduced 
by Sterne [2] and Petrie [3]. The different methods of the 

RV  curve analysis have been reviewed in ample detail 
by Karami & Teimoorinia [4]. Karami RV  Teimoorinia 
[4] also proposed a new non-linear least squares velocity 
curve analysis technique for spectroscopic binary stars. 
They showed the validity of their new method to a wide 
range of different types of binary See Karami & Mohebi 
[5-7] and Karami et al. [8]. 

Probabilistic Neural Network (PNN) is a new tool to 
derive the orbital parameters of the spectroscopic binary 
stars. In this method the time consumed is considerably 
less than the method of Lehmann-Filhés and even less 
than the non-linear regression method proposed by 
Karami & Teimoorinia [4]. 

In the present paper we use a Probabilistic Neural 
Network (PNN) to find the optimum match to the four 
parameters of the RV  curves of the five double-lined 
spectroscopic binary systems: ROXR1 14, RX J1622.7- 
2325Nw, RR Lyn, 12 Boo and HR 6169. Our aim is to 

show the validity of our new method to a wide range of 
different types of binary. 

ROXR1 14 and RX J1622.7-2325Nw are very young, 
low-mass pre-main sequence (PMS) stars, and double- 
lined spectroscopic binaries that recently discovered in 
the Ophiuchus star forming region. The spectral type of 
both systems is M1 and the orbital period of ROXR1 14 
is P = 5.72 days and the orbital period of RX J1622.7- 
2325Nw is P = 3.23 days [9]. RR Lyn is a double-lined 
spectroscopic binary with a well-determined orbital in- 
clination and primary and secondary masses of 1.927  
0.008 and 1.507  0.004 M , respectively. The com- 
ponents have spectral classes of A3/A8/A6 and the 
orbital period is P = 9.945080 days [10]. 12 Boo is a 
double-lined eclipsing binary system with a primary and 
secondary masses of 1.416  0.003 and 1.375  0.002 
M , respectively. The two components have very 
similar mass and the system’s combined spectral type is 
F8 IV and the orbital period is P = 9.6045529 days [10]. 
HR 6169 is a double-lined spectroscopic binary and 
consists of primary and secondary components. The 
minimum masses of the primary and secondary are 2.20 
 0.01 and 1.64  0.02 M , respectively. This system 
have spectral classes of A2 V and the orbital period is P 
= 10.559435 days [10]. 

This paper is organized as follows. In Sect. 2, we 



E. GHASEMISALEHABADI  ET  AL. 233 
 
introduce a Probabilistic Neural Network (PNN) to 
estimate the four parameters of the RV  curve. In Sect. 3, 
the numerical results are reported, while the conclusions 
are given in Sect. 4. 

2.  Curve Parameters Estimation by the 

Probabilistic Neural Network (PNN) 
RV

Following Smart [11], the RV  of a star in a binary 
system is defined as follows 

 cos cosRV K e                (1) 

where  is the 
RV  of the center of mass of system 

with respect to the sun. Also K is the amplitude of the 

RV  of the star with respect to the center of mass of the 
binary. Furthermore ,   and  are the angular polar 
coordinate (true anomaly), the longitude of periastron 
and the eccentricity, respectively. 

e

Here we apply the PNN method to estimate the four 
orbital parameters, , ,K e  and   of the RV  curve in 
Equation (1). In this work, for the identification of the 
observational RV  curves, the input vector is the fitted 

RV  curve of a star. The PNN is first trained to classify 

RV  curves corresponding to all the possible com- 
binations of , ,K e  and  . For this one can syntheti- 
cally generate RV  curves given by Equation (1) for each 
combination of the parameters: 
 100 100    in steps of 1; 
 00K   in steps of 1; 1 3
 0 1e   in steps of 0.001; 
  in steps of 5; 0 360  

This gives a very big set of k pattern groups, where k 
denotes the number of different RV  classes, one class 
for each combination of , ,K e  and  . Since this very 
big number of different RV  classes leads to some com- 
putational limitations, hence one can first start with the 
big step sizes. Note that from Petrie [3], one can guess 

, K  and  from a e RV  curve. This enable one to limit 
the range of parameters around their initial guesses. When 
the preliminary orbit was derived after several stages, then 
one can use the above small step sizes to obtain the final 
orbit. The PNN has four layers including input, pattern, 
summation, and output layers, respectively (see Figure 5 
in Bazarghan et al. [12]). When an input vector is pre- 
sented, the pattern layer computes distances from the 
input vector to the training input vectors and produces a 
vector whose elements indicate how close the input is to 
a training input. The summation layer sums these contri- 
butions for each class of inputs to produce as its net out- 
put a vector of probabilities. Finally, a competitive trans- 
fer function on the output layer picks the maximum of 
these probabilities, and produces a 1 for that class and a 
0 for the other classes [13,14]. Thus, the PNN classifies 

the input vector into a specific k class labeled by the four 
parameters , ,K e  and   because that class has the 
maximum probability of being correct. 

3. Numerical Results 

Here, we use the PNN to derive the orbital elements for 
the five different double-lined spectroscopic systems 
ROXR1 14, RX J1622.7-2325Nw, RR Lyn, 12 Boo and 
HR 6169. Using measured RV  data of the two com- 
ponents of these systems obtained by Rosero et al. [9] for 
ROXR1 14 and RX J1622.7-2325Nw and Tomkin & 
Fekel [10] for RR Lyn, 12 Boo and HR 6169, the fitted 
velocity curves are plotted in terms of the photometric 
phase in Figures 1-5. 
 

 

Figure 1. Radial velocities of the primary and secondary 
components of ROXR1 14 plotted against the photometric 
phase. The observational data have been measured by 
Rosero et al. [9]. 
 

 

Figure 2. Radial velocities of the primary and secondary com- 
ponents of RX J1622.7-2325Nw plotted against the photo- 
metric phase. The observational data have been measured 
by Rosero et al. [9]. 
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Figure 3. Radial velocities of the primary and secondary com- 
ponents of RR Lyn plotted against the photometric phase. 
The observational data have been measured by Tomkin & 
Fekel [10]. 
 

 

Figure 4. Radial velocities of the primary and secondary com- 
ponents of 12 Boo plotted against the photometric phase. 
The observational data have been measured by Tomkin & 
Fekel [10]. 

 
The orbital parameters obtaining from the PNN for 

ROXR1 14, RX J1622.7-2325Nw, RR Lyn, 12 Boo and 
HR 6169 are tabulated in Tables 1, 3, 5, 7 and 9, 
respectively. Tables show that the results are in good ac- 
cordance with the those obtained by Rosero et al. [9] for 
ROXR1 14 and RX J1622.7-2325Nw and Tomkin & 
Fekel [10] for RR Lyn, 12 Boo and HR 6169. 

Note that the Gaussian errors of the orbital parameters 
in Tables 1, 3, 5, 7 and 9 are the same selected steps for 
generating RV  curves, i.e. 1, 1, 0.001K e       
and 5  . These are close to the observational errors 
reported in the literature. Regarding the estimated errors, 
following Specht [14], the error of the decision bound- 
aries depends on the accuracy with which the underlying  

 

Figure 5. Radial velocities of the primary and secondary com- 
ponents of HR 6169 plotted against the photometric phase. 
The observational data have been measured by Tomkin & 
Fekel [10]. 
 

Table 1. Orbital parameters of ROXR1 14. 

 This Paper Rosero et al. [9] 

 km s  8 ± 1 7.98 ± 0.18 

 km spK  43 ± 1 42.66 ± 0.33 

 km ssK  44 ± 1 43.94 ± 0.33 

e  0.021 ± 0.001 0 .020 ± 0.007 

( )   5 ± 5 3 .87 ± 17.04 

 
Probability Density Functions (PDFs) are estimated. Par- 
zen [15] proved that the expected error gets smaller as 
the estimate is based on a large data set. This definition 
of consistency is particularly important since it means 
that the true distribution will be approached in a smooth 
manner. Specht [14] showed that a very large value of 
the smoothing parameter would cause the estimated errors 
to be Gaussian regardless of the true underlying distri- 
bution and the misclassification rate is stable and does 
not change dramatically with small changes in the smooth- 
ing parameter. 

The combined spectroscopic elements including 
 3sinpm i , 3sinsm i ,   3sinp sm m i ,  sinsa a ip  and  

s

p

m
are calculated by

m
 substituting the estimated para-  

meters ,K e  and   into Equations (3), (15) and (16) 
i and Teimoin Karam orinia [4]. The results obtained for 

the five systems are tabulated in Tables 2, 4, 6, 8 and 10 
show that our results are in good agreement with the 
those obtained by Rosero et al. [9] for ROXR1 14 and 
RX J1622.7-2325Nw and Tomkin & Fekel [10] for RR 
Lyn, 12 Boo and HR 6169, respectively. Here the errors 
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Table 2. Combined spectroscopic elements of ROXR1 14. 

Parameter This Paper Rosero et al. [9] 

3sin Mpm i   0.1972 ± 0.0003 — 

3sinsm i M  0.1928 ± 0.0003 — 

  3sinp sm m i M   0.3900 ± 0.0006 — 

6sin 10 kmpa i  3.3832 ± 0.0786 3.36± 0.03 

6sin 10 kmsa i  3.4619 ± 0.0786 3.46± 0.03 

  6sin 10 kmp sa a i  6.8450 ± 0.1572 — 

s pm m  0.9773 ± 0.0005 0.97± 0.01 

 
Table 3. Orbital parameters of RX J1622.7-2325Nw. 

 This Paper Rosero et al. [9] 

 km s  –7 ± 1 6.75 ± 1.09 

 km spK  79 ± 1 78.71 ± 3.52 

 km ssK  80 ± 1 80.31 ± 3.58 

e  0.301 ± 0.001 0.30 ± 0.037 

( )   130 ± 5 133.45 ± 4.41 

 
able 4. Combined spectroscopic elements of RX J1622.7- 

meter This Paper Rosero et al. [9] 

T
2325Nw. 

Para

3sin Mpm i   0.5869 ± 0.0006 — 

3sinsm i M  0.5796 ± 0.0005 — 

  3sinp sm m i M   1.1666 ± 0.0011 — 

6sin 10 kmpa i  3.3478 ± 0.0413 3.34± 0.14 

6sin 10 kmsa i  3.3902 ± 0.0413 3.40± 0.15 

  6sin 10 kmp sa a i  6.7380 ± 0.0825 — 

s pm m  0.9875 ± 0.0002 0.98± 0.06 

 
Table 5. Orbital parameters of RR Lyn. 

 This Paper Tomkin & Fekel [10]

 km s  12 ± 1 12.03 ± 0.04 

 km spK  66 ± 1 65.65 ± 0.06 

 km ssK  84 ± 1 83.92 ± 0.17 

e  0.079 ± 0.001 0  .0793 ± 0.0009

( )   175 ± 5 179.4 ± 0.6 

 
f the combined spectroscopic elements in Tables 2, 4, 6, 

pectroscopic elements of RR Lyn. 

o
8 and 10 are obtained by the help of orbital parameters 
errors. See again Equations (3), (15) and (16) in Karami 
and Teimoorinia [4]. 

Table 6. Combined s

Parameter This Paper Tomkin & Fekel [10]

3sinp Mm i   1.9292 ± 0.0006 1.921 ± 0.008 

3sinsm i M  1.5158 ± 0.0006 1.503 ± 0.004 

  3sinp sm m i M  3.4450 ± 0.0012 — 

6sin 10 kmpa i  9.0022 ± 0.1357 8.950 ± 0.008 

6sin 10 kmsa i  11.4574 ± 0.1355 11.441 ± 0.024 

  6sin 10 kmp sa a i 20.4596 ± 0.2712 — 

s pm m  0.7857 ± 0.0041 — 

 
Table 7. Orbital parameters of 12 Boo. 

 This Paper Tomkin & Fekel [10]

 km s  9 ± 1 9.578 ± 0.022 

 km spK  67 ± 1 67.286 ± 0.037 

 km ssK  69 ± 1 69.30 ± 0.05 

e  0.192 ± 0.001 0.1 2 9268 ± 0.0004

( )   290 ± 5 286.87 ± 0.14 

 
Table 8. Combined spectroscopic elements of 12 Boo. 

Parameter This Paper Tomkin & Fekel [10]

3sin Mpm i   1.2004 ± 0.0005 1.218 ± 0.002 

3sinsm i M  1.1656 ± 0.0005 1.183 ± 0.001 

  3sinp sm m i M  2.3659 ± 0.0010 — 

6sin 10 kmpa i  8.6887 ± 0.1279 8.720 ± 0.005 

6sin 10 kmsa i  8.9480 ± 0.1279 8.981 ± 0.007 

  6sin 10 kmp sa a i 17.6367 ± 0.2558 — 

s pm m  0.9710 ± 0.0004 — 

 
Table 9. Orbital parameters of HR 6169. 

 This Paper Tomkin & Fekel [10]

 km s  18 ± 1 18.33 ± 0.09 

 km spK  71 ± 1 71.35 ± 0.38 

 km ssK  96 ± 1 95.46 ± 0.13 

e  0.413 ± 0.001 0  .4140 ± 0.0012

( )   15 ± 5 10.69 ± 0.20 

4. Conclusions 

A Probabilistic Neural Network to derive the orbital 
elements of spectroscopic binary stars was applied. PNNs 
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sternbahn aus Spectroskopischen Messungen der im Vi-
sionsradius Liegenden Geschwindigkeitscomponente,” As- 
tronomische Nachrichten, Vol. 136, No. 2, 1894, pp. 17-30. 

[2] T. E. Sterne, “Notes on Binary Stars. V. The Determina-

Table 10. Combined spectroscopic elements of HR 6169. 

Parameter This Paper Tomkin&Fekel [10]

3sinp Mm i   2.2126 ± 0.0006 2.197 ± 0.012 

3sinsm i M  1.6364 ± 0.0005 1.642 ± 0.015 

  3sinp sm m i M   3.8489 ± 0.0011 — 

6sin 10 kmpa i  9.3939 ± 0.1276 9.431 ± 0.051 

6sin 10 kmsa i  12.7016 ± 0.1260 12.618 ± 0.019 

  6sin 10 kmp sa a i  22.0955 ± 0.2536 — 

s pm m  0.7396 ± 0.0050 — 

 
re used in both regression (including parameter estima a- 

tion) and classification problems. However, one can dis- 
cretize a continuous regression problem to such a degree 
that it can be represented as a classification problem 
[13,14], as we did in this work. 

Using the measured RV  data of ROXR1 14, R
J1

an

X 
622.7-2325Nw, RR Ly 12 Boo and HR 6169 ob- 

tained by Rosero et al. [9] and Tomkin & Fekel [10], we 
find the orbital elements of these systems by the PNN. 
Our numerical results show that the results obtained for 
the orbital and spectroscopic parameters agree well with 
those obtained by others using traditional methods. 

This method is applicable to orbits of all eccentrici

n, 

ties 
d inclination angles. In this method the time consumed 

is considerably less than the method of Lehmann-Filhés. 
It is also more accurate as the orbital elements are de- 
duced from all points of the velocity curve instead of 
four in the method of Lehmann-Filhés. The present me- 
thod enables one to vary all of the unknown parameters 

, ,K e  and   simultaneously instead of one or two of 
t a time It is possible to make adjustments in the 

elements before the final result is obtained. There are 
some cases, for which the geometrical methods are inap- 
plicable, and in these cases the present one may be found 
useful. One such case would occur when observations 
are incomplete because certain phases could have not 
been observed. Another case in which this method is 
useful is that of a star attended by two dark companions 
with commensurable periods. In this case the resultant 
velocity curve may have several unequal maxima and the 
geometrical methods fail altogether. 

them a . 
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