
International Journal of Astronomy and Astrophysics, 2011, 1, 183-199 
doi:10.4236/ijaa.2011.14024 Published Online December 2011 (http://www.SciRP.org/journal/ijaa) 

Copyright © 2011 SciRes.                                                                                 IJAA 

An Astrophysical Peek into Einstein’s Static Universe:  
No Dark Energy 

Abhas Mitra 
Theoretical Astrophysics Section, Bhabha Atomic Research Centre, Mumbai, India  

Homi Bhabha National Institute, Mumbai, India 
E-mail: amitra@barc.gov.in 

Received June 26, 2011; revised August 28, 2011; accepted September 13, 2011 

Abstract 
 
It is shown that in order that the fluid pressure and acceleration are uniform and finite in Einstein’s Static 
Universe (ESU), , the cosmological constant, is zero.    being a fundamental constant, should be the 
same everywhere including the Friedman model. Independent proofs show that it must be so. Accordingly, 
the supposed acceleration of the universe and the attendant concept of a “Dark Energy” (DE) could be an 
illusion; an artifact of explaining cosmological observations in terms of an oversimplified model which is 
fundamentally inappropriate. Indeed observations show that the actual universe is lumpy and inhomogeneous 
at the largest scales. Further in order that there is no preferred centre, such an inhomogeneity might be ex- 
pressed in terms of infinite hierarchial fractals. Also, the recent finding that the Friedman model intrinsically 
corresponds to zero pressure (and hence zero temperature) in accordance with the fact that an ideal Hubble 
flow implies no collision, no randomness (Mitra, Astrophys. Sp. Sc., 333,351, 2011) too shows that the 
Friedman model cannot represent the real universe having pressure, temperature and radiation. Dark Energy 
might also be an artifact of the neglect of dust absorption of distant Type 1a supernovae coupled with likely 
evolution of supernovae luminosities or imprecise calibration of cosmic distance ladders or other systemetic 
errors (White, Rep. Prog. Phys., 70, 883, 2007). In reality, observations may not rule out an inhomogeneous 
static universe (Ellis, Gen. Rel. Grav. 9, 87, 1978), if the fundamental “constant”s are indeed constant. 
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1. Introduction 

The “cosmological principle” demands that not only does 
the center of the universe lie everywhere, but also any 
fundamental observer must see the universe as isotropic 
and homogeneous. This means that, the space must be 
“maximally symmetric” [1]. By this consideration, one 
can directly obtain not only the metric for Einstein’s sta- 
tic universe (ESU) but the non-static Friedmann-Rober- 
tson-Walker (FRW) metric as well [1,2] without using Eins- 
tein’s equation  at all ( ). Let us in- 
vert it in the form 

= 8π ik ikG T = = 1G c

1
=

8πik ikT G                 (1) 

The Einstein tensor ik , on the right hand side (RHS) 
of this equation, comprises only geometric quantities, the 
structure of space time 

G

ikg . On the other hand, the left 

hand side (LHS) of the same equation contains much 
more tangible quantity, ik , the energy momentum ten-
sor of the matter generating the space time structure ik

T
g  

or ik . Thus any constraint imposed on ikG g  from 
symmetry or other considerations must take its toll on the 
admissible form of  as well. This means that con-
straints imposed on ik  must be reflected on the ik  of 
the fluid generating the ik . This latter physics aspect 
however may remain hidden in a purely symmetry driven 
mathematical derivation of the cosmological metric 
which does not invoke Einstein equation at all. And in 
this paper, we would like to explore the tacit constraints 
imposed on ik  by the requirements of the cosmological 
principle, “there is no preferred center”, or “center lies 
everywhere”. All the results obtained during this process 
will be also ratified by physical considerations as well. 

ikT
G T

G

T

In effect we shall be dealing with spherically symmet-
ric static solutions of Einstein equation with the inclusion 



A. MITRA 184
 

 

of a cosmological constant  , [3,4]. In recent times 
several authors have shown keen interest in this impor-
tant problem [5-8]. However such studies mostly focus 
attention on isolated objects or stars where there (1) must 
be a pressure gradient, (2) in general, a density gradient, 
(3) a natural boundary  where fluid pressure 
must vanish,  and (4) where a discontinuity 
in the fluid density 

= bRR
  = 0bp R

  might also occur. Further in such 
generalized studies,  has not been considered as a 
fixed fundamental constant contrary to what was in Ein-
stein’s mind when it was first introduced. 



In contrast, in the present study Einstein  is a basic 
constant and there is no question of modifying its value 
according to the needs of a general fluid solution. And of 
course, there must not be any natural “boundary” at all 
for the universe so that Copernican principle remains 
valid. It may be recalled that the ancient Ionian philoso-
pher “Aristarchos of Samos” had proposed the heliocen-
tric theory much before Copernicus and hence we may 
also call this as “Aristarchian Principle”. It will be found 
that both the metric for a star and ESU have a “coordi-
nate singularity at 

  

=R  , where  is the luminosity 
distance and 

R
  is an appropriate integration constant. 

This singularity gets propagated in the hydrostatic bal-
ance equation as well. And in order to ensure that iso-
tropic pressure gradient  does not blow up at this 
singularity, relativistic stars are constructed so that 

p

>bR  . Here a prime denotes differentiation by R. Ac-
cordingly one can almost forget this singularity while 
studying static stars. But for the ESU one has to live with 
this singularity. And in this paper, we would study the 
behavior of physical quantities like pressure and accel-
eration despite the presence of this singularity. And the 
conclusion is that ESU has to be vacuous with = 0  in 
order to avoid such singularities anywhere. 

At the very beginning, let us remind the difference 
between a fundamantal constant and a model parameter. 
Suppose we are studying a room temperature homoge-
neous static gas and we have obtained some expression 
for pressure , temperature T  and particle number 
density . But since , in principle, we may 
obtain a numerical value of the Boltzmann constant . 
Once we assume that  is a fundamental constant and 
not just a model related parameter, the value of  must 
be independent of time  or position  or any other 
variable. Thus, if we would be studying a gas in a situa-
tion where the gas may be inhomogeneous or may have 
bulk motion, we must be able to use the same numerical 
value of  obtained in an ideal static homogeneous 
case. Similarly, here we would study the case of the 
supposed fundamental constant though it will be in the 
context of ESU. Therefore, we would expect 

p
n

k

=p n

k

t

kT
k

k

= 0

r

  for 
the dynamic FRW model too. It would be found that in 

order that the timelike worldlines of test particles always 
remain timelike and no trapped surface is formed, FRW 
model too has to be vacuous with . Then the real 
universe must be something entirely different from the 
isotropic, homogeneous and continuous FRW/ESU mod- 
els. Indeed galaxies and structures are found to be dis- 
tributed in discrete, lumpy and inhomogeneous manner 
even at the largest scales. Nonetheless such matter dis- 
tribution can still satisfy the “Copernican Principle” of 
no unique centre if it would form infinite hierarchal 
fractal pattern. At the beginning, however, we focus at-
tention on the ESU. 

= 0

2 2dR

2. Formulation 

We start with the assumption of spherical symmetry and 
consider a general form a static metric [2] 

2 2d = d ds e t e R  2             (2) 

where 2 2 2d = d dsin
2     and  is the area coor-

dinate. In particular, in a static universe, the luminosity 
distance turns out to be exactly  [2]  

R

R

d =L R                    (3) 

We also assume the cosmic fluid to be perfect with 

 =ik i kT p  iku u p g           (4) 

where,   is the fluid density,  is the isotropic pres-
sure, and  is fluid 4-velocity. As is clear from Equa-
tion (1), at the beginning, we do not consider any cos-
mological constant 

p
iu

 ; and the 0
0  component of the 

Einstein equation reads 

0
0 2

1
8π = 8π =T e

R R
   2

1

R

 
 

     (5) 

This can be integrated to yield 

 
= 1

R
e

R
                (6) 

where 

  2

0
= 8π d

R
R R  R             (7) 

Here the condition (0) = 0  has been used to ensure 
that e  is regular at . Thus whether, it is the in-
terior solution of a star or the static universe, general 
form of the metric is 

= 0R

2
2 2 2d

d = d d
1

R
s e t R

R



2  


       (8) 

Note, as of now, we need not necessarily interpret 
( )R  as related to the observed mass though what we 

have done looks like finding the interior of a relativistic 
star by working out the Schwarzschild interior solution. 
The important difference, however, is that while for a 
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star there is a unique center and a boundary where the 
density may be discontinuous, for the universe, center is 
everywhere and there is no boundary, no exterior solu-
tion, and no density discontinuity. Further even for a 
constant density star, there must be a pressure gradient 
because there is a unique center. On the other hand, for 
an isotropic and homogeneous continuous universe, not 
only  and p  , but all physically meaningful quanti-
ties, all geometrical scalars must the same everywhere. 
Such requirements may demand severe restriction on the 
admissible equation of state (EOS) of the cosmic fluid. 
In contrast for a star, at best only   can be uniform in 
which case there would be a discontinuity at its boundary 

. =R bR
Now we introduce the condition that the fluid must be 

homogeneous: = uniform  and thus both for the uni-
verse as well as a constant density star, one has 

38π
=

3
R                   (9) 

and the metric assumes the form 

 
2

2 2 2 2d
d  d

1 8π 3

R
t R   

 2R
d =s e     (10) 

If we introduce a parameter 

3
=

8π
S


                (11) 

Equation (10) would acquire the form 

2
2 2 2 2d

d = d  d
1

R
s e t R

R S
   

 2 2
     (12) 

It may be noted that Tolman [4] too obtained the static 
cosmological metric in a similar way by using the scalar 

 as the radial variable. In the static case,  is also a 
comoving coordinate for the interior solution because a 
given  shell encloses a fixed number of bar- 
yons/particles. 

R R

= fixR ed

Further, if we introduce a new coordinate 

=r R S                  (13) 

We can rewrite the above metric as 

2
2 2 2 2

2

d 2d  d
1

r
s e t S r

r
  

    
d =       (14) 

Note, the time dependent Robertson-Walker metric 
uses this  as the (comoving) radial coordinate. r

Hence, the spatial section of both the universe and the 
interior of a constant density star is that of a 3-sphere, a 
space of constant curvature, a fact noted by Weyl [3]. 
This becomes clearer if we express 

= = sinr R S                (15) 

to rewrite Equation (14) as 

 2 2 2 2 2d = d d  dsins e t S   2          (16) 

There is clearly a singularity in one of the metric coef-
ficients in Equations (12) and (14) at  or =R S

= 1R  or . On the other hand, metric (16) has a 
similar singularity at 

= 1r
= 0 . But one cannot make any a 

priori comment on the nature of such singularities with-
out studying the behavior of relevant scalar quantities. 
Accordingly, we would try to study the behavior of sca-
lars at appropriate regions instead of having any a priori 
debate/discussion on these singularities. 

Let us suppose that somehow the density of the star 
would be reduced to zero everywhere. In such a case, the 
space time must become flat with a metric 

2 2 2 2d = d d ds t R R 2             (17) 

From the viewpoint of metric(8) it would immediately 
be apparent that one should then have  and = 1e

= 0R . But from the viewpoint of metric (14), it would 
appear that in such a case one would have =S  , 

 and . Why would we have  in 
the latter case? This is so because the general form of a 
space time with constant spatial curvature is 

= 0r =R Sr  0 = 0r

2
2 2 2 2

2

d
d = d  d

1

r
s e t S r

Kr
  2    

     (18) 

where = 1,0, 1K    corresponds to closed, flat and 
open space time respectively. And once we presume 

= 1K   and adopt metric (14), we presume > 0  and 
then it becomes difficult to have a smooth transition to a 

0   case. Hence, if one would try to arrive at a flat 
space  = 0K

= 0r

 by imagining that it is due to a closed 
space of infinite radius, one would land up with the con-
dition . In fact, if in Equation (4), had we taken, 

0
0 =T K                  (19) 

instead of  , we would indeed have obtained Equation 
(18) directly in lieu of Equation (14). Then we would 
have found that the condition for flatness is . But 
when we do take 

= 0K
0

0 =T   and implicitly assume > 0 , 
we presume  and exclude the possibility that one 
might have  too. In such a case, the condition for 
flatness would appear as  as mentioned above. 
Note, the fact that the comoving coordinate  sig-
nifies that there is no baryon/particle at all; i.e., it is all 
vacuum. 

= 1
= 0

K
K

= 0r
= 0r

Cosmological Constant 
It is well known that in order to obtain a static universe 
which would be closed and finite radius, Einstein modi-
fied Equation (1) into 

= 8π ik ik ikG g T             (20) 

Copyright © 2011 SciRes.                                                                                 IJAA 



A. MITRA 186
 

 

apparently implying that either  is a fundamental 
constant like 


48πG c  or a basic scalar, like the Ricci 

scalar  appearing within ikG . It is also well known 
that, from a purely mathematical view point, one can 
incorporate the effect of , by replacing [7] 

R



=
8πe   

                (21) 

and 

=
8πep p p


                (22) 

It should be borne in mind that such a mathematical 
clubbing however does not really make  a new form 
of matter. This is so because while real matter repre-
sented by 



  generates global negative self-gravita- 
tional energy, pure vacuum represented by   is not 
associated with any negative self-gravitational energy. 

So, as far as mathematics is concerned, instead of 
Equation (7), one now obtains 

( )
= 1 e R

e
R

                 (23) 

where 

2

0
= 8π d

R

e eR R               (24) 

One also finds 
2

2 2 2d
d = d d

1 e

R
s e t R

R



 


2        (25) 

And for a constant density case, one has 

 
2

2 2 2
2

d
d = d d

1 8π 3 e

R
s e t R

R



 


2     (26) 

and 

3
=

8π e

S


                (27) 

Equations (12)-(16) remain unaltered in the presence 
of . Thus now, if the space time has to be flat, in ad-
dition to , one must have 


= 1e

0e                    (28) 

This shows that if the original definition of “vacuum” 
is = 0 , as if, in the presence of a , it gets modified 
to 


= 0e . 

3. Acceleration Scalar and Singularity 

The fact that for a spherically symmetric static system, 
one should have < 1R  as has already been investi-
gated [8-10]. The basic reason for this is not difficult to 
see. In general, static or non-static, for spherically sym-

metric space time occurrence of ( , ) >r t R  corre-
sponds to a formation of a “trapped surface” and the 
condition ( , ) = 1r t R  marks the formation of an “ap-
parent horizon”. Though for a non-static system, it is 
conjectured to be possible to have trapped surfaces or 
horizons, for a static system they are not allowed. This is 
so because once a trapped surface would be there, stellar 
matter would be inexorably pulled towards the central 
point of symmetry and thus matter would soon end up in 
a point singularity rather than as an extended static object. 
While this is definitely not allowed for a static star, this 
problem would be much more severe for cosmology be-
cause “center of symmetry lies everywhere”. 

Following the case of a Schwarzschild black hole 
space time, generally, it is believed that this =R   
singularity is a mere coordinate one even in the presence 
of matter. But as we would see below, the coordinate 
independent scalar acceleration of the fluid would blow 
up unless severe constraints are imposed on the fluid 
EOS. 

It may be recalled that Einstein was very much con-
cerned about this =R   singularity and constructed a 
static model of a fluid where test particles are moving in 
randomly oriented circular orbits under their own gravi-
tational field. While the radial stress of the fluid is zero, 
tangential stresses are finite. This configuaration is 
known as “Einstein Cluster” and Einstein showed that, 
the speed of the orbiting particles would be equal to the 
speed of light  at c =R   [11]. Thus, he pleaded that 
there cannot be any =R   or <R   situation. Later 
it turned out that Einstein’s cluster indeed corresponded 
to some well defined interior Schwarzschild solution 
studied by Florides [12,13]. And now Bohmer & Lobo 
[14] have shown that Einstein’s intuition was correct, 
and the =R   singularity is indeed a curvature singu-
larity. This however does not at all mean that all =R   
singularities are curvature singularities. In fact, in the pre- 
sent static case of isotropic pressure, it would be found 
that they should be regions with zero curvature singularity 
to avoid an acceleration or pressure gradient singularities. 

For any static spherically symmetric fluid, one can 
easily find the acceleration [8] 

=  i k
ka u u i              (29) 

In spherical symmetry, only one component of accele- 
ration survives 

 
=

2
R e

a
  

             (30) 

How to evaluate this Ra ? Again, for the sake of easy 
understanding, we first do not consider any   and 
write down the R

R  component of Einstein Equation (1), 
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2

1 1
8π = 8π =R

RT p e
R R R

       
  2      (31) 

In view of Equation (30), let us rewrite this equation 
as 

3

3

8π
 =

e

R R

 
 

pR
           (32) 

or 
3

2

8π
=

2
R R p

a
R

 
             (33) 

Since there is only one component of , the scalar 
acceleration becomes 

ia

/2

= = | | =
2

i R
i RR

e
a a a a g

  
       (34) 

Using Equation (32), we obtain 
3

2

8π
=

2 1

R p
a

R R







             (35) 

If  would be included, then the acceleration scalar 
would be given by 



3

2

8π
=

2 1
e

e

R p
a

R R







e             (36) 

It is now clear that if a static fluid would tread upon 
the = eR   singularity, its acceleration could be infinite 
and it cannot be at rest. And this is the physical reason 
that for a static fluid one must have > eR   everywhere. 
And in case, the manifold would cover = eR  , one 
must satisfy 

38π = 0; =e eR p R e            (37) 

in an attempt to keep  regular. Using a = eR   in the 
foregoing equation, we have  

 21 8π = 0e e ep              (38) 

i.e., one must have either  

= 0e                    (39) 

or, 

  2

1
= =

8πe e
e

p R 


             (40) 

or both of the above two conditions. If we assume that 
the minimum value of  is zero and it cannot be nega-
tive, we will have 

p
= 8πep  . Then Equation (40) 

would yield 

1
= =R S


                (41) 

But one is still not sure whether the additional condi-

tion such as Equation (39) is needed to really ensure that 
 is indeed finite at a = eR  . For a fluid with > 0e , 

the safest way to avoid the = eR   singularity will sim-
ply be to ensure that > eR  . The fluid can do so by 
choosing an appropriate density profile and by ensuring 
that its outer boundary 

>bR e                   (42) 

For a constant density star or the ESU, we have  

 
2

3
=

1 2

e e

e

R p
a

R









             (43) 

where = 4π 3 . In terms of , we obtain  r

 
2

3
=

1

e er p
a S

r







           (44) 

It is clear that the sufficient condition for avoiding the 
= eR   singularity in this case is  

> ; <bR R S              (45) 

In terms of density, this means 

2

3
>

8πe
bR

                (46) 

Thus, if one would imagine a region with = 0 , i.e., 
= 8πe  , one should restrict the radius of this vacuum 

as 

3
<bR


;                (47) 

And in case, one would have = 4π  , then the 
above restriction would become  

1
<bR


                (48) 

and which cannot be satisfied. Thus for a constant den-
sity star with = 1bR  , one must have > 4π  . 
And in case this condition would be violated, one must 
critically analyze the additional constraint on the EOS 
which would prevent ep   from blowing up at = eR  . 
It may be seen that the = 4π   EOS corresponds to 

3 = 0e ep                 (49) 

if . = 0p

4. TOV Equation 

Recall that local energy momentum conservation equa-
tion ; 0k

i kT   immediately leads to [2]  

2
=

p

p






             (50) 

Further if we again consider the R
R  component of 
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Einstein Equation and combine it with Equation (50), we 
will obtain the TOV equation for hydrostatic balance for 
any self-gravitating static fluid: 

  
 

3

2

8π
=

2 1

p R
p

R R

 



 
 



p
          (51) 

Since the effect of  gets included if one replaces 
 and 


p   by their “effective” values[7]  

  
 

3

2

8π
=

2 1

e e e e

e

p R
p

R R

 



 
 



p



        (52) 

Further since , in a complete symmetric man- 
ner, we rewrite the above equation as  

= ep p

   
 

3

2

8π
=

2 1

e e e e

e
e

p R
p

R R

 



 
 



p
        (53) 

This equation strongly suggests that if the definition of 
a “dust” in the absence of   is , as if, in the 
presence of , dust EOS should be . Similarly, 
if the original EOS of “vacuum” is 

= 0p

ep
= 0

 = 0
 , in the pres-

ence of , the vacuum EOS is  = 0e , a hint we have 
already found. 

Note, even now, there is no need to interpret   in 
terms of any exterior boundary condition, and thus TOV 
equation is valid in any spherically symmetric static GR 
problem including ESU. By using Equation (36), it is 
interesting to rewrite the TOV Equation in terms of the 
acceleration scalar 

 
=

1
e e

e

e

a p
p

R





 


             (54) 

Clearly, there is a singularity in the denominator of 
TOV Equation at = eR  . If we write  

= 1 ex R               (55) 

It is seen that while the singularity in acceleration 
, for the pressure gradient it is much stronger 
. And if the fluid would cover the 

1a x
2p x  = eR   sin-

gularity, regularity of  may not be sufficient to ensure 
regularity of . In fact Equation (54) suggests that one 
might require the additional constraint  

a
p

= 0; =e ep R S               (56) 

to tame the  singularity at . p =R S
=Now let us use the condition e uniform  which is 

equally valid for the interior solution of a constant den-
sity star as well as the ESU: 

  
2

3
=

1 2
e e e e

e

p
p R

R

 



 

 


p
         (57) 

In terms of the normalized coordinate , one finds r

  
2

3
=

1
e e e er p p

p S
r

 


 
 


        (58) 

And in term of , we have a

 
2

=
1 2

e e

e

a p
p

R






 


            (59) 

and 

 
2

=
1

e ea p
p

r

 
 


            (60) 

5. Constant Density Star 

For the interior solution of a constant density relativistic 
star one, one finds [7]  

2

=
cp

e
p

 


 
  



e

             (61) 

where c  is the central pressure. This relation is inter-
esting because it does not involve any exterior bounday 
condition. Also note that since  

p

= ep p               (62) 

we can rewrite Equation (61) as  
2

=
c
e e

e e

p
e

p
 


 
  

             (63) 

Since for a star, there must be a pressure gradient, 
 cp p R , and one really cannot reduce  e R  to a 

constant value independent of . But if, from the 
mathematical viewpoint, one would still demand that it 
should be possible to set up a time orthogonal Gaussian 
coordinate system where 

R

2 d 2=dt  , one would un-
knowingly kill the pressure gradient and set  in 
Equation (61). In the absence of , for a static con-
figuration, 

=cp p


= 0  if , and the star would vanish 
under the assumption of ! 

= 0p
e = 1

When   is present, the expression for pressure for a 
constant density star is [7] 

4π 1 cos
( ) =

3 cos

C
p R




  


         (64) 

where 

33 4π
= =

cc
e

c c
e e

pp
C

p p
e

 
 

 
       (65) 

Now it transpires that even when  to honor 
, there would still be a finite density 

= 0p
= 1e = 4π  . 

But one attains this finite density at a huge cost because 
it now turns out that the boundary of the star merges with 
the coordinate singularity  where the metric  =bR S
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behaves badly. For a real star, this singularity can always 
be avoided by allowing  which in turn means by 
having 

> 1e

> 4π  . Thus a “world time” cannot be in-
troduced for a general relativistic star having a finite 
density. 

Verification from TOV Equation 
Although the case of constant density stars in the pres-
ence of cosmological constants has been studied in great 
detail, to our knowledge, nobody actually verified the 
validity of the solutions in case one would tread on the 
coordinate singularity at . Since the denominator 
of Equation (53) becomes zero at , in order that 

 does not blow up there, one must have either 

=R S
=R S

p

= 0; =e ep R S             (66) 

or  
3 = 0; =e ep R S             (67) 

or both 

= 3 = 0; =e e e ep p R S          (68) 

If the last constraint would be satisfied, one would 
immediately obtain = = 0e ep . However, it is possible 
that Equation (68) is not needed and only one of the less 
rigourous conditions (66) or (67) is satisfied. In particu- 
lar, to avoid occurrence of negative pressure, let us as-
sume that only Equation (67) is satisfied at . 
Since  attains a 

=R S
p 0 0  form at , let us study 

the nature of  at this singularity by using L’ Hospital 
rule. For this, let us first write 

=R S
p

( )
=

( )e

f R
p

g R
                (69) 

where 

  ( ) =  3e e e ef R R p p            (70) 

and 

  2= 2 1eg R R               (71) 

Since = 0 , we find that  

  
 

= 3

3 3

e e e e

e e e e e

f p p

Rp p p




 

  

  

    
      (72) 

Also, since, we have already considered 3 = 0e ep  , 
we obtain a reduced expression for  

 = 3 e e ef Rp p              (73) 

On the other hand,  

= 4 eg R                 (74) 

So that  

= 3
4
e e

e
e

p
f g p



              (75) 

And at the singularity, , by l’ Hospital rule, we 
obtain 

=R S

= lime
R S

f
p

g







                (76) 

From Equations (75) and (76) we obtain the required 
condition: 

 3 =e ep 4 e               (77) 

i.e., 

( = ) = 3 ( = )e eR S p R S           (78) 

which looks like the EOS of incoherent radiation! By 
combining Equations (67) and (78), it becomes clear that 
in order that p  does not blow up at the “coordinate 
singularity” at , the constant density star must 
have 

=R S

( = ) = ( = ) = 0e eR S p R S        (79) 

Thus instead of  we would obtain  at 
. This means that if indeed , the solution 

must avoid  singularity. More importantly, since 

= 0p = 0ep
=R S

=e co

> 0
=R S

ntnsta , we find that, if the solution would indeed 
extend upto , we must have =R S = 0e . Thus all 
finite density stars must avoid the = 1e R  or  
singularity. 

= 1r

6. Static Universe 

In cosmological case, there must be a universal time 
which would be the proper time of all fundamental ob-
servers, i.e., 2 =dt d 2 . This demands that one must be 
able to set  so that, the Equation (14) would be-
come the ESU metric  

= 1e

2
2 2 2 2 2

2

d
d = d  d

1

r
s t S r

r

 
    

         (80) 

Note that the value of  for ESU is still given by 
Equation (27) and thus one is justified in deducing ESU 
metric indeed by setting . Since the Einstein equa-
tion tells that the metric is essentially determined by ik , 
such an important change of setting  on the LHS 
of this equation must be endorsed by the RHS, i.e., by 
the admissible forms of fluid EOS. What are those con-
ditions? To explore them, we note from Equations (50) 
and (51) that the most general form of static, spherically 
symmetric Einstein Equation yields  

S

= 1e

T
= 1e

 
3

2

8π
=

1
e

e

R p

R R




 


e             (81) 

In constant density case, this condition becomes 

 
2

3
= 2

1 2
e e

e

R p

R


 




 


            (82) 
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And in term of r , this condition becomes  

 
2

3
= 2

1
e er p

S
r


 


 


           (83) 

In order that , one must have = 1e = 0  , and from 
the foregoing equation, it is immediately clear that then 
we must have atleast 

3 = 0e ep                 (84) 

In any case, we must have  everywhere in-
cluding  or . Then if we follow the L’ Hos-
pital treatment of the previous section, we would find, 
we must have 

= 0ep 

=R S = 1r

= 0e                   (85) 

everywhere because =e constant . Although, we have 
already obtained this important result, it would be inter-
esting to obtain this result from somewhat different 
routes. 

First consider Equation (59) and write  

( ) = e e f R a p               (86) 

and 

  2= 1 2 eg R   R            (87) 

so that 

= ef p a                 (88) 

and 

  1 22= 2 1 2e eg  


  R          (89) 

Now applying L’Hospital rule at , we find =R S

21 2
=

2
e

e

a R
p p

R





             (90) 

Since the lim = 1x x  irrespective of whether  
or 

0x 
x   or =x finite , we can cancel  from both 

sides of the foregoing equation. Then, using Equation 
(43) in the above Equation , we find  

p

3
= 1

2
e e

e

p



               (91) 

This again implies 

= 3e pe                 (92) 

In conjunction with (68), this will lead to = =e ep 0 . 
It may be also of some interest to extend this study by 
directly considering the radial variable as  rather than 

. Note that  
r

R

1
= d de ep p

S r               (93) 

Now if we denote differentiation by  with a prime, 

we rewrite Equation (60) as  

r

 
2

=
1

e eSa p
p

r

 
 


            (94) 

so that 

( ) = e e f r Sa p              (95) 

and 

2( ) = 1g r   r              (96) 

Then we have  

=f Sap                  (97) 

and 

2
=

1

r
g

r



              (98) 

Again applying L’Hospital rule for the limit of p  at 
, we find =R S

21
= 1

Sa r

r


             (99) 

Inserting the expression for  from Equation (44), 
we obtain the interesting relation  

a

 2 3 =e eS p   1



            (100) 

or 


3

=
4π 3e e

S
p 

          (101) 

Comparison of Equations (27) and (101) would again 
convey one of the hidden messages for the ESU as well 
as for a constant density star which is attemting to sup-
press its pressure gradient, namely e3 =ep  . The sum 
and substance of the entire exercise is that for the ESU, 
in oder that ep   is indeed zero everywhere, one must 
have 

= 3 = 0e ep              (102) 

But unlike the constant density stellar case now we 
cannot escape confronting this singularity by demanding 
that > 4π  . And hence we must accept the fact that 
for the ESU fluid = = 0e ep  everywhere. This means 
that  

8π = 0; = 8π           (103) 

atleast for the ESU. The weak energy condition demands 
that 0   and thus we find that ! = 0

7. Einstein’s Solution 

If one would directly use Equation (80) into Einstein 
Equation (20), one would be led to[4] 
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 4π 3 =p              (104) 

and  

  2

1
4π =p

S
              (105) 

Einstein chose,  EOS which led to  = 0p

2 1
1 = ; =S S


            (106) 

Note that Equations (104) and (105) may be rewritten 
as 

 4π 3 = 0e ep              (107) 

and 

  2

1
4π =e ep

S
              (108) 

But, if we recall, Equation (92), actually, = 0e ep   
so that . Further Equations (100)-(101) showed that  =S 

  2

3
4π 3 =e ep

S
             (109) 

And a comparison of Equations (108) and (109) again 
shows that,  and =S  = 0e . As mentioned before, 
for weak energy condition, this would mean = = 0  . 
Note that it is indeed possible to have a situation where 

1rest e  , where  is the proper internal energy den-
sity. In such a case, one might approximately write 

. But this does not mean that pressure is strictly 
zero. A strict  EOS is possible only when 

e

0p 
= 0p = 0 . 

In such a case, Equation (104) would again yield = 0 . 
However, if we would ignore such physical and 

mathematical regularity or self-consistency considera-
tions, Einstein’s solution (106) would apparently suggest 

2= 4π > 0G c . 
Further, if one would assume that (1) ESU correctly 

describes the real universe and (2) the true mean density 
of the real universe in its totality (about which we may 
never have an absolute knowledge) is equal to the mean 
density of the patch of the observed universe, i.e.,  

31 3= = 10  g cmpatch true    



       (110) 

one would obtain[2] 
58 210  cm               (111) 

Now ponder over the fact that until the advent of big 
optical telescopes in 1920 or so, for hundreds of years, 
most of the astronomers thought that total universe was 
nothing but our Milkyway galaxy. And if would have 
been possible to measure the mean density of the Mil-
kyway, one might have concluded that  

13 3= = 10  g cmpatch true           (112) 

and accordingly 
40 210  cm   before 1920           (113) 

As late as 1970, we hardly had any idea that the gal-
axy clusters and superclusters are actually distributed as 
“filaments” and “walls” around huge voids whose di-
mensions could be as large as  Mpc [15]. The re- 
cent Sloan Digital Sky Survey has revealed structures of 
dimension  Mpc [16]. Thus, we cannot rule out 
the possibility that eventually, it might be found that the 
entire patch of presently observed universe also lies on 
the wall of a larger void. If the mean density of observed 
universe would be revised by future observations, would 
we again revise the value of the fundamental constant 

280

500

 ? 
At the cost of sounding repetitive, let us again raise the 

old question: if   would indeed be due to some quan-
tum mechanical effect, why the value of  obtained 
under the assumption of 


=patch true   falls short of the 

theoretical value by an approximate factor of ? 
And if the various field modes would cancel one another 
to generate a small 

12010

 , why do they not cancel exactly 
to result = 0 ? In fact there are some theoretical esti-
mates by which = 0  [17]. 

8. Summary So Far 

Both a spherically symmetric static star and the ESU 
result from the same spherically symmetrical form of 
Einstein equations. If R

R  component of the Einstein 
equation would be studied, one would obtain, the expres-
sion for acceleration scalar and condition for hydrostatic 
balance in both the cases. In fact, Tolman [4] did obtain 
one of the constraints to be followed by the ESU fluid by 
demanding that the pressure gradient  must vanish 
for the ESU: e

p
3p = 0e  . We found that the singularity 

appearing in the  ,R R  component of the metric tensor 
in all spherically symmetric static configurations do 
propagate in the expressions for acceleration scalar  
and pressure gradient 

a
p . While, for the former, the 

nature of singularity is , for the latter it is much 
stronger 

1xa 
2xp   . In fact, the requirement 3e p = 0e   

is the basic condition for ensuring that the  does not 
blow up at  or . This basic condition how-
ever need not be the sufficient condition for ensuring that 

 is finite at . Further, since  tends to blow 
up much faster at , one must require an additional 
condition to ensure the regularity of . We found that 
the latter requirement is e

a
= 0x

= 0x
= 0x

= 1r

a p

p
= 3e p . This means that if the 

constant density static star would have , one 
must have 

=bR S
= 0e . But one can always avoid this singu-

larity by ensuring that > 4π  . However, previous 
detail studies of perfect fluid spheres were primarily in-
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tended for isolated systems and not for the universe, and 
to our knowledge, nobody tried to study the remedy for 
either the 1x  or 2x  singularities at . = 0x

Incidentally, it has been found that even for a sup-
posed constant density star with <bR  , the “constant 
density” is nothing but = 0  [18]. 

9. Buchdahl Inequality 

It is well known that any spherically symmetric static 
configuration, homogeneous or inhomogeneous, sup-
ported by isotropic pressure, satisfies a constraint much 
stronger than the >bR   or < bR  constraint. In the 
absence of a , this is known as Buchdahl inequality 
[19]:  



8
<

9bR


                 (114) 

If one would have  = 8 9 bR , central pressure 
would blow up (assuming > 0 ). For a uniform density 
star this borderline would correspond to  

= 8 9r                  (115) 

But suppose there is a solution which appears to vio-
late this constraint, i.e., 8 9r  . Then how to ensure 
that central pressure is still finite? The only solution out 
of this dilemma would be to set = 0  or = 0 . From 
this more stringent condition, it should be clear why Ein-
stein’s original static universe must have = 0 . 

Does the fate of the ESU improve after the incorpora-
tion of a positive ? From Equation (3.35) of ref.[7], it 
turns out that now the modified Buchdhal constraint is  



2
< 4

9 4π
e

R




 


 
              (116) 

Thus with a positive , this constraint gets even 
tighter. With 


= 4π  , one obtains  

2
<

3
e

R


                  (117) 

In view of Equations (9), (11) and (33), this means 
that for a constant density star, one must have  

< 2 3r                 (118) 

to ensure that pressure does not blow up at the center 
! For the ESU, this would mean blowing up of 

pressure everywhere because “center would lie every-
where”. And the only solution to get rid of this problem 
is is accept the fact that 

= 0r

= 0e  for ESU. 

9.1. Mass Function 

Since for a fluid in an asympotictially flat space time, 

one can define a “mass function” in terms of which ac-
celeration scalar 

3

2

4π
=

1 2

M R p
a

R M


 R

           (119) 

we can now identify ( )R  in Equation (36) as twice 
the quasilocal mass-energy of the fluid  

( ) = 2 ( )R M R             (120) 

In the presence of a  , the quasilocal mass will be 
= 2e eM  . 

In general relativity, the gravitational mass of a sta-
tionary system is[3]  

 0 0 3
0 0=   dM T t g x            (121) 

where  is energy momentum pseudo tensor and k
it g  

is the determinant of the metric tensor. One can work out 
 from the metric ik

0
0t g  of the universe. Probably start-

ing from Rosen [20], many authors have worked out the 
mass energy of a closed universe and all of them have 
concluded that for a closed universe  [21-25]. 
This too would suggest that, in the absence of 

= 0M
 , 

= 0 , and, in general = 0e . For the ESU, it is possi-
ble to confirm this result irrespective of the value of . 
In all coordinate systems, for a static fluid, one obtains 
[2-4]  

0
0t

 
 

3

3

= 3 4π   d

= 3   d

e

e e

M p g

p g x





  

 




x
      (122) 

In view of Equation (84) we thus directly obtain 

= 0eM                  (123) 

Further, from Equation (24), we obtain = 0e  

9.2. Poisson Equation 

It is known that the RHS of Poission equation indicates 
the source of gravity. For a spherically symmetric static 
fluid the Poission’s equation is [26,27]  

 
 

2
00 00

00

= 4π 3 4π

= 4π 3e e

g g p

g p





 




     (124) 

This shows that the source density of gravity is  

 00= 3g e eg p              (125) 

And when , one will obtain  00 = 1g

 = 3g e ep               (126) 

In either case, the RHS of Equation (124) is zero when 
3 = 0e ep  , which is the case for both a constant den-

sity star (if it would be extended up to ) or the =R S
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ESU. In all such cases, one must necessarily have 

00 = =g e constant

= 0e

. And since source of gravity is zero, 
the space time must be flat. And a space time is flat when 
 , as obtained by us. Alternatively, if one would 
first focus attention on the LHS of Equation (124), it 
seems that if one would set , the source of 
gravity will vanish, again in which case, one should have 

=e constant

= 0e . 

10. A Simple Reason 

Suppose one chooses to ignore most of the previous 
proofs that = 0e  for ESU in order to avoid any 
physically singular behavior. Even then, one can arrive 
at the same conclusion by simply demanding that all 
physical quantities must be position independent in ac-
cordance with the inherent assumption in the following 
manner: 

For a constant density case, we may rearrange the 
TOV equation(58) as  

2

 
=

3 ) 1( )( e e

p S r

p p r


 


  e e

         (127) 

We may also rewrite the acceleration Equation (44) as  

2

 
=

3 1e e

a S

p r

 r

  
             (128) 

The RHS of Equations (127) and (128) obviously de-
pends on r  if r  would indeed be a free parameter. 
For a constant density star, the LHS of the same equa-
tions too must depend on r . And they do depend n r  
becaus )e e  even though 

 o
e = (p p r =e constant . But 

suppose we would like to freeze the  dependence of 
 to make . Then the value of  on the RHS of 

Equations (127) and (128) too must be frozen. And since 
 during the freezing process, the only solu-

tion here would be to adopt  

r
rp = 1e

= 0R Sr 

= 0K

=ikT K

= ; = 0; 0S r R             (129) 

We have already discussed that occurrence of Equa-
tion (129) actually signifies that the spatial section is flat: 

. This would have been more transparent had we 
taken  

1 2 3
1 2 3= = =T T T Kp             (130) 

alongwith Equation (19), i.e., had we written  

  i k ikp u u pg             (131) 

instead of Equation (4). Further had we also taken the 
cosmological constant as K  instead of , Equations 
(127) and (128) would have appeared as 



   2

 
=

3 1e e e e

p K S r

p p Kr


 


  

       (132) 

and  

2

 
=

3 1e e

a K S

p

r

Kr


  

           (133) 

respectively. In such a case, it would have been seen 
immediately that the requirement that the RHS of Equa-
tions (132) and (133) are independent of , one must 
have is . And since we have already set , it 
means, the space time must be flat to ensure that the 
RHS of Equations (127) and (128) or (132) and (133) are 
indeed independent of . Hence one must have 

r
= 0K = 1e

r
= 0eK  in such a case. So will be the case for ESU. 

This means that in order that all physically meaningful 
quantities are position independent, the mean density of 
the ESU must be zero. 

11. Non-Static FRW Universe: Big Bang 
Model 

In physics, we have various fundamental constants like 
, , , e  etc. But in no case there is any evidence 

that the values of such constants directly depend of am-
bient factors like mean density of universe. In fact, all 
truly fundamental factors allow themselves to be deter-
mined with high precision by judicious combination of 
theory and experiments. The only exception here is the 
supposed 

G c h m

 ! This anomaly seems to be resolved with 
the result that there is no ! On the other hand, cos-
mologists have found that distant Type 1a supernovae 
appear to be fainter than expected if one would assume 1) 
them to be standard candles and there is no evolutionary 
effect in the intrinsic luminosities of the distant superno-
vae, 2) Assume that cosmological luminosity distance 
measurements to be perfect; i.e., assume that standard 
Big Bang Model (BBM) is correct, 3) Assume that there 
is no dust absorption of lights from distant supernovae. 
And by ignoring such questions, in the paradigm of the 
BBM, such extra faintness was interpreted as the proof 
of existence of 



  or “Dark Energy” (In fact, the Phys-
ics Nobel for 2011 was due to such an interpretation): 

4π 4π
= ( 3 ) = 3

3 3 πe eS S p p        
 


4

   (134) 

The extra faintness is explained by assuming that the 
galaxies are further away than expected (in a decelerat-
ing universe); i.e., by considering  and which is 
possible for a fine tuned positive  

> 0S

 3
4π

p 
               (135) 

But if indeed = 0 , then BBM cannot explain a 
supposed . Nonetheless, it has been claimed that if 
“Cold Dark Matter”, another crucial ingredient of BBM, 
will have pressure, BBM would be able to explain  

> 0S
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> 0S  even if  [28]. However, this suggestions is 
patently false because 

= 0
3p 

p

 includes contribution 
from both visible matter and DM, and any increase in the 
value of matter pressure , can only give . 
Therefore, the faintness of distant supernovae need not 
imply that they are further away; and the faintness could 
be due to unknown systemetic effects [29]. 

< 0S

The fact that the BBM cannot explain the physical 
universe is apparent from the fact, for the BBM [30] 

00

2
= exp e

e e

p
g

p 



             (136) 

And in oder that the FRW metric indeed has , 
one must have 

00 = 1g

2
= 0e

e e

p

p 



               (137) 

Since <e ep   , it is necessary here that 
= 8π = 0ep p  . Then, it is immediately seen from 

Equation (134) that, BBM model must (actually) have  

4π
=

3
eS

S


 


0             (138) 

Thus contrary to the popular belief, the BBM actually 
cannot explain any accelerating universe! Further 

= 8π = 0ep p   would imply = 8πp  . And if we 
would rule out such a fine tuning of matter pressure, we 
should have = 8π = 0p   for the BBM irrespective of 
the result obtained in the context of ESU. And with 

, there can be neither any matter pressure nor any 
microwave background radiation[30]. 

= 0p

12. Why the Big Bang Model Could Be 
Vacuous 

We have already pointed out that the total energy associ-
ated with the FRW metric is zero; and this is not because 
of any negative self-gravitational interaction. The latter 
can reduce total energy only when 00 00 , 
but for the FRW case, 00 00  [26,27]. On the 
other hand field energy density . Thus vanishing 
of total energy indicates 

= ( , ) <g g r t
= 1

0

1
= ( )g g t

0
0t 

= 0e . We probed this impor-
tant question independently and found that FRW metric 
should intrinsically correspond to = 0e  in order that 
total energy is conserved [31]. In fact there can be a sim-
plified way to confirm this: 

Long back Kriele showed that there cannot be any 
trapped surface for a spherically symmetric homogene-
ous perfect fluid [32]. This seems to be a special case of 
the no trapped surface theorem obtained by demanding 
that timelike worldlines associated with material parti-
cles must always remain time like [33], i.e., 

2

2 ( , )
< 1

GM r t

Rc
             (139) 

For the FRW case, one has  and  = ( )R rS t
34π

( , ) = ( )
3 e

R
M r t t          (140) 

so that one should have  

2 2
2

8π
( ) ( ) < 1

3 e

G
r t S t

c
            (141) 

And in order that  does not blow up either in 
future or past, one needs to have  

2
eS

2( ) ( ) =e t S t constant            (142) 

Again for this, first, it is necessary that = 0  and 
=e  : 

2( ) ( ) =t S t constant            (143) 

But the FRW model generally obeys  
so that one should have  

2 =t constant

( )S t t                  (144) 

And it is only for the Milne model (with = 1k  ), one 
obtains ( )S t t . But the Milne model is empty with 

e= = 0  ! Since we have already found , we 
eventually obtain the vacuum EOS for the FRW metric: 

= 0ep

=p =p 0e e   . Does this result lead to any contra-
diction with Equation (137)? The answer is “no” because 
a 0 0  form could be anything including 0. One may 
also point out that the result = 0e  for the FRW model 
is not rigorous because we did not offer any proof for the 
usual relation . Such an objection would 
be valid, and thus now we focus on the de-Sitter case 
with 

2 =t constant

2= 8πe c  . Now Equation (141) will reduce to 

2 21
( ) < 1

3
r S t             (145) 

In order that above constraint is satisfied, one must 
have = 0 . Thus, in a rigourous manner, we should 
have = 0  in order to satisfy the condition of “no 
trapped surface” in the de-Sitter model. 

So for the time being, let us ignore the possibility that 
the FRW metric subtly represents a vacuum spacetime 
and which is the reason that there is no density or pres-
sure gradient and there is an universal Newtonian time 
despite the supposed presence of self-gravity. And even 
if one would ignore the proof that , there are al-
ready many suggestion that  and “Dark Energy” 
could be illusions created by an inhomogeneous lumpy 
universe which is significantly different from the sim-
plistic BBM [34-38]. However if there would be inho-
mogeneity in a monotonous and continuous manner, 
there would be a preferred centre of the universe in vio-
lation of the “Copernican Principle” of no unique centre. 

= 0

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On the other hand, the discrete fractal models could still 
satisfy the Copernican Principle. 

13. Fractal Model 

In a fractal distribution, the number of galaxies increases 
with  as [39-41]  R

(< ) DN R R                (146) 

and the number density of galaxies varies as  

  3< Dn R R                (147) 

Thus, in principle, for a fractal distribution over suffi-
ciently large scale, one may have , 0n  0  . Most 
of the fractal patterns however tend to have a preferred 
center and thus not suitable for “Copernican Principle”. 
But there could be some fractal structures like Levy Dust 
which may not have any preferred center. 

Indeed many cosmologists believe that within the 
patch of the observed universe, galaxies are distributed in 
fractal like pattern atleast on scales  Mpc [42-45], 
and one may recall here a succint comment by Wu, La-
hav & Rees [45] 

10

“The universe is inhomogeneous—and essentially 
fractal—on the scale of galaxies and clusters of galaxies, 
but most cosmologists believe that on larger scales it 
becomes isotropic and homogeneous.” 

This review written in 1999 however concluded that 
galaxy distribution is homogeneous on larger scales. But 
now it is seen that galaxies are distributed in a roughly 
fractal pattern with dimension  even on  
Mpc scale [46,48-52]. Note, many of the objections 
against the fractal model have already been addressed to 
[53]. 

2.2D  100

14. Conclusions 

Since cosmological constant , so-called “Dark 
Energy” too is expected to be absent. Simultaneously it 
has been found that the Big Bang Model intrinsically 
corresponds to zero pressure and zero temperature [30]. 
Note this result is in perfect agreement with the fact that 
an ideal Hubble flow implies smooth radial motion with 
no collision amongst the test particles. Thus even if one 
would assume , in view of Equation (138), the 
BBM cannot explain any cosmic acceleration. Note, 
Equation (138) can be obtained by purely Newtonian 
gravity! But when can a GR result be exactly synony-
mous with a purely Newtonian result? To appreciate this, 
have a close look at GR Poission equation (124). 

= 0

= 0

 Assume gravitation is extremely weak:  

00 2
1 2g

c


                 (148) 

where   is the Newtonian potential and 22 1c  . 
Then by further stting , one can obtain the ap-
proximate Newtonian Poission equation: 

= 0p

2 4πG                 (149) 

But by starting from GR equation, one would never 
obtain an exact Poission’s Equation 2 = 4πG   if 

0  . Thus, GR can yield an exact Newtonian result 
only when the gravitational potential = 0 ! This sug-
gests that though, mathematically, one can conceive of 
global clock synchronization and set 00 , physically, 
gravitation tends to manisfest itself with non-synchroni- 
zation of clocks! In other words, a model assuming 
global synchronization of clocks could be vacuous with 
zero matter density! Thus one expects all dust models to 
correspond to 

= 1g

= 0 . And indeed, the famous Oppen-
heimer -Snyder dust collapse has explicitly been found to 
correspond to = 0  [54]. The Schwarzschild “Black 
Hole” exact solution too is illusory because the integra-
tion constant involved there is actually zero implying 
true black holes have zero gravitational mass; and the 
so-called “Black Hole Candidates” must be something 
else[55]. Similarly, it has been found that a uniform den-
sity sphere cannot undergo any adiabatic collapse at all 
and hence scores of exact solutions indicating collapse 
must actually correspond to = 0  [56]. In general, 
there cannot be any adiabatic gravitational evolution at 
all, and which shows that all exact solutions indicating 
evolution must tacitly correspond to = 0  [26]. Even 
the famous interior solution for a static uniform density 
spherical star is illusory in the sense that it actually cor-
responds to = 0  [18]. This may be suggesting that 
self-gravity manifests itself not only through pressure 
gradient and non-syncronization of clocks, but also 
through density inhomogeneity. 

Thus it is indeed possible that FRW metric too subtly 
corresponds to a vacuum solution just like its static 
counterpart. In general, though, “exact GR solutions” 
may often be physically meaningful for the static cases, 
they need not be so for the complex non-static cases; the 
complexities of a physical system, such as unknown and 
evolving equation of state of matter, unknown radiation 
transport properties, unknown evolution of shear and 
dissipation, may rarely allow physically meaningful 
non-static exact solutions. For instance, it has been found 
that celebrated non-static Kerr solution is an illusion be-
cause the integration constants, namely the rotation pa-
rameter  and mass m  are actually zero:  
[57,58]. 

a = = 0a m

Even if this suggestion that FRW metric too is tacitly a 
vacuum solution, would be ignored at this moment, there 
is now firm conclusion that galaxies are distributed in a 
fractal pattern atleast on scales ~100 Mpc in violation of 
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the assumptions of  CDM model [46-52]. In fact the 
latest Sloan Digital Sky Survey results confirm that the 
observed universe is indeed lumpy on the largest scale 
[59], and Thomas et al. too have rightly questioned the 
physical reality of “Dark Energy” [59]. The recent ob-
servation that there is no hint of non-baryonic “Cold 
Dark Matter” in two dwarf galaxies Fornax and Scul- 
ptor raises serious questions about the validity of the 



  
CDM model [60]. 

Note that it is possible that the distant Type 1a super-
novae may have different luminosities compared to local 
ones because of different metallicities or other evolu-
tionary effects. And even if they would be standard can-
dles without appreciable cosmic evolution, there is some 
chance that their faintness could be due to opacities of 
distant inter-galactic medium. For example, it has been 
pointed out that Lyman Alpha clouds might introduce 
some non-transparency for optical emission from distant 
universe [61]. It has been also argued that the atmos-
phere of planets could be additional sources of opacities 
for very distant supernovae lights [62]. Also, there could 
be a fundamental non-accuracy in estimating the precise 
luminosity distances of distant supernovae because of 
missing gaps and extrapolations in the cosmic distance 
measurement ladders. Further, consider the fact that we 
are able to “see” galaxies and measure their redshifts 
because they are radiating. But in the standard cosmolo-
gies, galaxies are considered as non-radiating neutral 
“dust” particle. Consequently, one should leave here an 
open window for some hitherto unknown physics or sur-
prise for understanding this new phenomenon. In general, 
there could be unknown systemetic effect behind the 
interpretation of extra faintness of distant Type 1a su-
pernovae [29]. 

And if the universe would indeed be unbounded and 
infinite hierarchial fractal, then the basic assumption 
behind the formulation of Hubble’s law, i.e., strict ho-
mogeneity, gets invalidated. In such a case, the universe 
need not be expanding and the observed redshits could 
be of non-Doppler origin. Recall long back Ellis [63] 
argued that observations really cannot rule out a static 
but inhomogeneous universe. Photons propagating over 
cosmic scales might undergo energy losses by yet un-
known feeble quantum electrodynamical interaction with 
the quantum vacuum [64]. Photons might also lose en-
ergy by interacting with plasma permeating the whole 
cosmos [65]. It is interesting to note that the plasma red-
shift proposed by Ari Brynjolfsson can simulate a value 
of “Hubble Parameter”  Km/s/Mpc by considering 
a mean cosmic free electron density of  cm–3 
[64-68]. The only “new physics” involved with his red-
shift mechanism is to include an electron-electron colli-
sion term in an otherwise standard quantum derivation of 

photon-electron plasma interaction cross-sections. Thus, 
the excess dimming at high redshifts could simply be a 
consequence of the Compton scattering that accompanies 
the redshifting mechanism in the hot, sparse electron 
plasmas that fill intergalactic space. 

75
0.0002

In Brynjolfsson’s cosmology, the universe is not ex-
panding, and there is no time dilation affecting super-
nova light curves, and it claims to account for the red-
shift/SNe Ia luminosity data. 

Though the BBM has had many successes to its credit 
and it is the most developed cosmology, it fails to satis-
factory explain many cosmological facts [69]. And irre-
spective of the presence or absence of an appropriate 
static model for the universe, there are innumerable 
problems with the BBM. In particular, 
 BBM may be failing the angular size test; whereas a 

static model fits data better [70]. 
 The age of extremely red and massive galaxies at 

very high redshift may be contradicting the  CDM 
cosmology [71]. And most importantly, 

 The Gamma Ray Bursts having zs as large as 9  
do not show signs of supposed space-expansion re-
lated time dilation [72,73]. 



In fact a static model of universe (which must be en-
tirely different from a vacuous ESU) may fit at least 
some of the cosmological observations better [74,75] 
without any exotic assumptions. 

Also, in an infinite and eternal universe, part of the 
starlight may get thermalized to generate the observed 
microwave background radiation, as was first suggested 
by Sir Fred Hoyle. However, there could also be alterna-
tive explanations for the same. For instance, the micro-
wave background radition might be due to superposition 
of redshifted quiescent surface glow of the Eternally Col-
lapsing Objects, the so-called “Black Holes” [76].  

Note, when acoustic wave packets traverse a disper-
sive medium for very long duration, they develop “red-
shift” [77]. And if the wave packet will have a Gaussian 
shape, it maintains this shape despite central energy loss; 
and further, the attendant redshift obeys the Hubble’s 
Law [77]. Recall, all emitted electromagnetic lines are 
actually narrow “wave packets”, and their propagation in 
the cosmos is likely to be dissipative. At a classical level, 
one can think that the cosmos with matter and plasma 
behaves as a “dissipative medium”; and on a Quantum 
Electrodynamic level, one may take the QED vacuum as 
a “dissipative medium”. Can the electromagnetic wave 
packets too undergo red-shift similar to the acoustic 
waves? Or can the electromagnetic wave packets spread 
in the momentum space like the “de-Broglie matter 
waves” and somehow simulate the Hubble’s law? 

In any case, from a purely observational view point, 
one can say that [78] “it is impossible to conclude either 
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way whether the Universe is expanding or static. The 
evidence is equivocal; open to more than one interpreta-
tion. It would seem that cosmology is far from a preci-
sion science, and there is still a lot more work that needs 
to be done to resolve the apparent evidences.” 

15. Endnote 

A very old version of this paper was submitted to Phys. 
Rev. D. in 2008. And though the assigned referee did not 
point out any technical error, he would not accept the 
result  claiming it would be against observation! 
Simulataneously one moderator of arXiv.org also quietly 
shifted it from astro-ph to phys-gen section; and in frus-
tration, I did not look at this manuscript for 3 years. Only 
this yesr, another version was submitted to J. Cosmology 
& Astroparticle Physics. The referee here accepted that 
the proofs claiming  are correct. But he suggested 
that the revised version should (1) not only cite and high-
light the reference [28] for explaining the  result, 
but (2) all explanations in the light of inhomogeneity, 
fractal strcture etc. should be avoided. While the revised 
version conceded the first part of this arm-twisting, it 
could not yield to the latter part. Then this paper was 
rejected by JCAP even after accepting that the proof 

 was correct. Note here that the suggestion by 
Kleidis & Spyrou that an increase in the value of  for 
the DM can make  even when  is com-
pletely wrong (see Equation [134]) even though it is 
published in A & A! Yet Dr Spyrou killed this paper in 
order to highlight his completely wrong idea by sup-
pressing all competing correct ideas! However, the refe-
ree of IJAA found this paper so important that the proc-
essing charges were kindly waived off. Thanks IJAA. 

= 0

= 0

> 0S

= 0

= 0

= 0
p
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