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ABSTRACT 

The prediction accuracy and generalization of fer-
mentation process modeling on exopolysaccharide 
(EPS) production from Lactobacillus are often dete-
riorated by noise existing in the corresponding ex-
perimental data. In order to circumvent this problem, 
a novel entropy-based criterion is proposed as the 
objective function of several commonly used model-
ing methods, i.e. Multi-Layer Perceptron (MLP) net-
work, Radial Basis Function (RBF) neural network, 
Takagi-Sugeno-Kang (TSK) fuzzy system, for fer-
mentation process model in this study. Quite different 
from the traditional Mean Square Error (MSE) 
based criterion, the novel entropy-based criterion can 
be used to train the parameters of the adopted mod-
eling methods from the whole distribution structure 
of the training data set, which results in the fact that 
the adopted modeling methods can have global ap-
proximation capability. Compared with the MSE- 
criterion, the advantage of this novel criterion exists 
in that the parameter learning can effectively avoid 
the over-fitting phenomenon, therefore the proposed 
criterion based modeling methods have much better 
generalization ability and robustness. Our experi-
mental results confirm the above virtues of the pro-
posed entropy-criterion based modeling methods. 
 
Keywords: Relative Entropy; MSE-Criterion Based 
Modeling; Robustness; Parzen Window; TSK Fuzzy 
System 

1. INTRODUCTION 

Polysaccharides are produced by plants, algae and bacte-
ria, which are used in pharmaceutical, chemical, pesti-
cide and oil exploitation. Some microorganisms such as 
the lactic acid producers are known to synthesize exopoly-
saccharides (EPS), which can be used commercially as 

food additives and have health stimulating properties 
such as immunity stimulation, anti-ulcer activity and 
cholesterol reduction. However, as we may know well, 
EPS’s fermentation mechanism is very complex because 
it refers to the growth and reproduction of microorgan-
isms [1]. In view of control, fermentation process con-
tains high non-linearity, high time-varying and uncer-
tainty. Meanwhile the lack of biosensor and the interac-
tion of coupled parameters also bring much difficulty for 
the fermentation process modeling [2]. In the last decade, 
artificial neural networks (ANNs) have been proved to 
be able to model nonlinear systems and successfully 
applied in various chemical and biological models [3]. 
Especially they have emerged as an attractive tool for 
predicting and approximating the parameters in fermen-
tation process [4], and demonstrated their powers in the 
factorial design [5]. More examples include one ANNs- 
based model for amino acid composition and optimum 
pH in G/11 xylanase [6], and another ANNs-based model 
for optimization of fermentation media for exopolysac-
charide production from Lactobacillus plantarum [7]. In 
recent years, fuzzy systems and/or fuzzy neural networks 
researchers have paid particular attention on industrial 
fermentation process modeling [8]. For instance, fuzzy 
neural network has been used for dissolved Oxygen pre-
dictive control of fermentation process [9], and Takagi- 
Sugeno-Kang (TSK) fuzzy system has been used for 
biochemical variable estimation of fermentation process 
[10]. In addition, an application of fuzzy control in cit-
ric acid fermentation process has been adopted to maxi-
mize the biomass quantities [11]. However, when MSE- 
criterion based objective function is used for model pa-
rameter learning, the above methods have the so-called 
over-fitting drawback, that is to say, MSE-criterion based 
modeling methods may over-fit each training sample 
such that the whole distribution of the training set is er-
rously estimated and the generalization ability can not be 
assured. 

In this study, in order to overcome the weaknesses 
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mentioned above, the new criterion is proposed as the 
objective function for fermentation process modeling. 
This new criterion, called the entropy criterion, is based 
on the probability density estimation for the whole train-
ing set and relative entropy [12]. And then the proposed 
criterion is used in the classical Multi- Layer Perceptron 
(MLP) network modeling, Radial Basis Function (RBF) 
neural network modeling and Takagi-Sugeno-Kang (TSK) 
fuzzy system modeling, for the EPS fermentation proc-
ess modeling. 

2. MATERIALS AND METHODS 

The data we used in this study was derived from the ref-
erence [7]. This project was conducted in 2004-2006 by 
Mumbai University of Food Engineering, in Mumbai, 
India. 

2.1. Bacterial Strain 

Lactobacilli strain is isolated from the Indian fermented 
food ragi. This isolation is characterized as Lactobacillus 
plantarum using biochemical tests. 

2.2. Medium 

The medium contain lactose, casine hydrolysate, triam-
monium citrate, beef extract and proteose peptone, along 
with sodium acetate: 1 g/l, Mg-sulfate: 1 g/l, manganese 
sulfate: 0.5 g/l and calcium chloride: 0.25 g/l. The me-
dium are autoclaved at 110℃ for 10 min; lactose is 
autoclaved separately. 

2.3. Fermentation Conditions 

The batch fermentation is carried in a 250 ml shake flask 
for 24 h at 150 rpm and 35℃. The pH of the fermenta-
tion medium is adjusted to 6.5 ± 0.3 with the addition 
of 1N NaOH/1N HCL. Flasks at the end of fermentation 
are analyzed for EPS production. 

2.4. Analysis 

The cells are separated by centrifugation(10,000 rpm, 10℃, 
15 min) and the crude EPS is precipitated from the broth 
at 4 by the addition of two volumes of cold ethanol (95﹪). 
The resulting precipitate is collected by centrifugation 
and re-dissolved in water. The crude EPS solution is 
dialyzed at 4℃ to estimate the yield. 

2.5. MSE-Criterion Based Fermentation Process 
Modeling 

In most of current modeling methods, the MSE-criterion 
based objective function is often used for training model 
parameters. The MSE-criterion can be formulated as 
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where ,i diy y  are the predicted and desired output for ith 

sample , respectively. 
From Eq.1, we can see that the MSE-criterion based 

model parameter learning is just a local approximation 
process and does not consider the whole distribution of 
the training set [13,14], thus the generalization and ro-
bustness of the model will not be ensured and the 
over-fitting often occurs, especially when there are noises 
in the training data. 

3. ENTROPY-CRITERION BASED  
FERMENTATION PROCESS  
MODELING 

3.1. Relative Entropy and Jeffreys-Divergence 
Entropy 

Entropy is a measurement of uncertainty in information 
theory, which is a function of the probability density 
distribution. The concept of relative entropy can be in-
troduced to measure the difference between certain 
probability density distribution  1 if x  and a given prob-

ability density distribution  2 if x , which may be written 

as follows [12,15], 

1 2 1 1 2( , ) ( ) log[ ( ) / ( )] 0i i iV f f f x f x f x      (2) 

where the smaller value of relative entropy is, the larger 
difference between the two density distributions is. 
Meanwhile, when certain probability density distribution 
is equal to the given distribution, the relative entropy 
will reach its maximum (equal to zero). It is well known 
that relative entropy is additive and non-symmetrical. To 
obtain a symmetrical measure, Jeffreys-divergence en-
tropy (J-divergence entropy) can be used. It is also called 
symmetrical relative entropy which can measure the 
difference between two densities  1 if x and  2 if x . 
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(3) 

According to the above J-divergence entropy, a novel 
objective function based on entropy-criterion will be illus-
trated in the next subsection. 

3.2. Relative Entropy Based Objective Function 

For a given training sample set  

  , 1, 2,...,d
i di i diy R y R i N  x x ， ， , we can re-

construct two new sets, i.e., one contains the sample 

inputs and the sample outputs, ' '
1 { ( , )}i i i diS y z z x , 
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' 'd
i Rz  ( ' 1d d  ), and the other contains the sample 

inputs and the model predicted outputs, 2S   
'' ''{ ( , )}i i i iyz z x , '' 'd

i Rz . 

For the above sample set 1, 2,...,d
i i R i N x x ， , 

its probability density can be estimated with the follow-
ing parzen window density estimator, 
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where   represents the window width. For a given 
data, it is constant and can be used to effectively esti-
mate the corresponding density distribution. Here with 
maximum likelihood estimation (MLE), it is determined 
through cross-validation (CV) method, and the value 
resulting in the max magnitude is chosen [16]. 

For the above two data sets 1S and 2S , their probabi- 

lity density distribution functions, 1( , )f z  and 2 ( , )f z  , 

can be formulated as 
'

'
22

1
1

1
( , ) ( 2 )

i
d

N

i

f e
N








 
z z

z         (5) 

''

'
22

2
1

1
( , ) ( 2 )

i
d

N

i

f e
N








 
z z

z         (6) 

Suppose

'

2' 2 2( , )
i

G e




 
z z

z z  , then we get, 

'

1

' 2
1

1

( 2 )
( , ) ( , )

d N

t

f G
N





 z z z
     (7) 

'

2

'' 2
2

1

( 2 )
( , ) ( , )

d N

t

f G
N





 z z z
     (8) 

By using the properties of relative entropy, the bigger 
the value of relative entropy is, the smaller the difference 
between two probability densities is, as aforementioned. 
When the relative entropy reaches its maximal value, the 
two density functions will absolutely be the same, i.e., 

2 ( , )f z   is equal to 1( , )f z  . In other words, in this 

case the predicted output iy  of the model approximates 

the sample output diy  in the training set well. Conse-

quently the novel objective function may be defined as 
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From Eq.4-Eq.6, we can see that f(z) is obtained by 
Parzen window estimator , thus its value ranges from 0 
to 1. According to the properties of Taylor’s expansion, 
when  f z  is small, we can just keep the linear parts 

of  log f z , that is to say,  log f z can be simplified 

as follows, 

      log log 1 1 1f f f      z z z   (10) 

Therefore, submitting Eq.10 into Eq.9, we get, 
Please note, Erhan and Jose [17] have strictly inferred 

the following formulas, 

 
   

1 2

1 2

2 2
1 2

1 1

2 2
,2z z z z

d
N N

t t
t t

f d G
N



 

  
 

  (12) 

 
   

1 2

1 2

2 2
2 2

1 1

2 2
,2z z z z

d
N N

t t
t t

f d G
N



 

  
 

  (13) 

   
   

1 2

1 2

2
1 2 2

1 1

2 2
, 2z z z z z

d
N N

t t
t t

f f d G
N



 

  
 

  

(14) 

Thus, submitting Eqs.12,13, and 14 into Eq.11, we 
can immediately derive the novel objective function as 
follows 
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Since Eq.15 actually originates from the Parzen win-
dow desity estimator and relative entropy for the sam-
pling set and roots at the whole distribution of the train-
ing sample set, this novel objective function has the fol-
lowing virtues: since the new criterion is based on the 
density probability and not the local data points, this 
corresponding model parameter learning can effectively 
avoid the over-fitting drawback and show a less sensitiv-
ity to noise in the noisy environment. Our experimental 
results in this study will confirm these virtues. 

3.3. Entropy-Criterion Based Parameter Learning 

For a given modeling model, with the commonly used 
gradient descent procedure [18], we can easily get the 
following model parameter’s learning rule, 

    21
E

p t p t r
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
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            (16) 

where p denotes the model parameter; t denotes the it-
eration number and r is the learning rate. 
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4. RESULTS 

In this section, we will illustrate the performance of the 
proposed entropy-criterion based fermentation process 
modeling on EPS production from Lactobacillus. 

4.1. Performance Index 

In order to do the comparative study for the perform-
ances of different modeling methods with MSE-criterion 
and entropy-criterion, we adopt the following perform-
ance index to evaluate different modeling methods 
[19,20]. 
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where
1

1 N
d
l

l

y y
N 

  ; N denotes the number of the testing 

samples; d
ly  is the l  th desired output in the testing 

set; ly  is the predicted output of the model in testing 
set. Here, the smaller the value of J is, the better the 
performance of the corresponding training model is. 

4.2. Results 

In our experiments, we take three modeling methods: 
MLP network model, RBF network model and TSK 
fuzzy system model. All three models have four input 
nodes representing the four influential process variables 
(concentrations of lactose, casein hydrolysate and tri-
ammonium citrate, and inoculum size) and one output 
node representing the EPS yield (g/l) at the end of batch. 
The process data for modeling are generated by carrying 
out a number of fermentation runs under various input 
conditions. Here we collect 54 sample data as shown in 
Table 1, each sample data represents a pair of model 
inputs (fermentation conditions) and a single output (EPS 
concentration). For MLP network model, RBF neural 
network model and TSK fuzzy system model, these 54 
sample data will be partitioned into a training set (45 
samples) and a testing set (9 samples) [7]. The training 
set is utilized to adjust the parameters of all three models 
and the testing set is used to evaluate the prediction ac-
curacy. The EPS yield comparisons of the sample data 
and predicted ones in the testing set obtained by using 
MSE-criterion based models and entropy-criterion based 
models are illustrated in Figures 2-4. a L, T, C and I in 
the table represented for Lactose/(g/l), Triammonium 
citrate/(g/l), Casein hydrolysate/(g/l), Inoculum size/(vol%), 
respectively. 

In fact, due to the extremely complexity of both the 
fermentation mechanism and the limitation of the ex-
perimental condition, experimental data may inevitably 

contain noise. Hence, how to enhance robustness of the 
fermentation process modeling is very important. In or-
der to compare the robustness between MSE-criterion 
based models and entropy-criterion based models, we 
add Gaussian white noise (G(0, 1 )) to the training 

sample set, where 1 (0,0.20)  [8]. In Tables 2-4, we 

list the corresponding performance index for the testing 
set with 11 different Gaussian white noises. 

4.3. MLP Network Modeling 

Multi-Layer Perceptron (MLP) network [21] is one of 
the most widely utilized paradigms in the fermentation 
process modeling, because it is very simple, general and 
matured. In the network training procedure, the tangent 
sigmoid activation function and linear combination 
function are used for computing the outputs of the hid-
den and output nodes, respectively. When developing an 
appropriate MLP model, we must carefully select the 
number of hidden nodes and then use Back- propagation 
procedure (BP procedure) [22] to adjust the model pa-
rameters. Here the MLP network model contains 15 
hidden nodes, and its architecture is illustrated in Figure 
1(a). The experimental results about EPS fermentation 
data from Lactobacillus are illustrated in Table 2. 

4.4. RBF Network Modeling 

Another widely utilized modeling method is Radial Ba-
sis Function (RBF) neural network [23], Just like MLP 
network, RBF network is essentially a feed-forward 
network. However, RBF network utilizes radial basis 
functions as its activation functions in the hidden layer. 
In our experiments, the number of hidden nodes is fixed 
to be 13, and the RBF network’s architecture can be seen 
in Figure 1(b). The experimental results about EPS fer-
mentation data are illustrated in Table 3. 

4.5. TSK Fuzzy System Modeling 

Takagi-Sugeno-Kang (TSK) fuzzy system [24] has been 
widely applied, due to its strong capability in learning, 
universal approximation and handling with matural lin-
guistics with fuzzy rules acquried from the skilled worker 
and/or experts. In our experiments, the number of the 
fuzzy rules is fixed to be 8, and the architecture of the 
TSK fuzzy system can be seen in Figure 1(c). The ex-
perimental results about EPS fermentation data are illus-
trated in Table 4. 

As it can be seen from Tables 2, 3 and 4, the predic-
tion accuracies of these three modeling methods with the 
proposed entropy-criterion based objective function are 
obviously higher than these methods with MSE-criterion 
based objective function. This fact means that the pro-
posed objective function is very suitable for the EPS 
fermentation process modeling. 
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Figures 5-7 are generated from Tables 2-4. In Fig-
ures 5-7, X-axis denotes the added noise corresponded 
(see the second column in Tables 2-4), and Y-axis de-
notes the testing performance index. Dotted lines corre-
spond to the testing performance indices of MSE-based 
criterion (see the third column in Tables 2-4), while real 
lines correspond to the testing performance indices of 
these modeling methods with entropy-based criterion 
(see the fourth column in Tables 2-4). 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 1. (a) Architecture of MLP network; (b) Architecture of 
RBF neural µnetwork; (c) Architecture of TSK fuzzy system. 

 
Figure 2. Comparison of EPS yield prediction using MLP 
network model. 
 

 

Figure 3. Comparison of EPS yield prediction using RBF 
model. 
 

 

Figure 4. Comparison of EPS yield prediction using fuzzy 
system model. 
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Table 1. EPS fermentation data. 

Factors and levels Factors and levels 
No. 

L T C I 
EPS No. 

L T C I 
EPS 

1 8 0 2 1.5 2.29  0.41 28 20 0.3 5 1 1.90  0.44 

2 8 0.2 8 3.5 3.43  0.12 29 8 0.2 4 3.5 2.68  0.42 

3 25 0 4 1.5 5.16  0.73 30 8 0 4 2 2.65  0.45 

4 8 0.2 2 2 2.38  0.62 31 8 0.2 2 1.5 2.51  0.66 

5 25 0.2 2 2 4.51  0.37 32 4 0.2 8 2 1.99  0.07 

6 25 0.2 8 2 5.32  0.12 33 25 0 4 3.5 5.04  0.16 

7 20 0.2 8 1 1.64  0.18 34 40 0.2 4 1 1.88  0.05 

8 4 0.2 4 1.5 1.54  0.04 35 2 0.2 4 1 0.65  0.46 

9 25 0.2 4 2 5.20  0.24 36 8 0.2 8 2 3.55  0.40 

10 25 0 8 1.5 5.66  0.76 37 8 0.2 4 1 1.20  0.05 

11 8 0 4 1.5 2.80  0.01 38 20 0.2 4 1 1.70  0.18 

12 20 0.1 5 1 1.80  0.50 39 25 0 2 3.5 4.61  0.73 

13 10 0.2 4 1 1.35  0.64 40 4 0 8 1.5 2.26  0.48 

14 4 0 4 1.5 1.43  0.15 41 4 0.2 8 3.5 2.17  0.39 

15 25 0.2 4 1.5 5.22  0.57 42 20 0.2 1 1 0.80  0.69 

16 4 0 2 2 0.98  0.58 43 4 0 2 3.5 1.02  0.34 

17 8 0.2 4 1.5 2.91  0.32 44 25 0 2 2 4.90  0.57 

18 8 0.2 8 1.5 3.79  0.53 45 4 0.2 2 3.5 1.11  0.21 

19 4 0.2 2 1.5 1.08  0.42 46 20 0.2 5 1 1.95  0.26 

20 4 0.2 4 1 0.80  0.51 47 20 0.2 3 1 1.40  0.13 

21 25 0 4 2 5.40  0.12 48 4 0.2 8 1.5 1.98  0.79 

22 4 0 4 2 1.59  0.34 49 4 0.2 4 2 1.60  0.73 

23 25 0 8 3.5 5.13  0.30 50 4 0.2 4 3.5 2.53  0.28 

24 8 0 2 2 2.59  0.59 51 25 0.2 2 3.5 5.04  0.69 

25 8 0 4 3.5 2.87  0.47 52 4 0 8 3.5 2.25  0.12 

26 8 0 8 3.5 3.78  0.52 53 20 0.4 5 1 1.86  0.26 

27 4 0 8 2 2.21  0.71 54 25 0 8 2 5.64  0.66 

 
Table 2. The results about MLP network modeling with 
MSE-criterion and entropy-criterion. 

Performance index J  
No. Noise 

MSE-criterion Entropy-criterion

1 0.00 0.8621 0.7730 

2 0.02 0.9101 0.8160 

3 0.04 0.9940 0.7988 

4 0.06 1.1855 0.8487 

5 0.08 1.0616 0.8502 

6 0.10 1.2130 0.8501 

7 0.12 1.3540 0.8511 

8 0.14 1.4107 0.8565 

9 0.16 1.3558 0.8676 

10 0.18 1.5425 0.9117 

11 0.20 1.5924 0.9188 

Table 3. The results about RBF network modeling with 
MSE-criterion and entropy-criterion. 

Performance index J 
No. Noise 

MSE-criterion Entropy-criterion 

1 0.00 0.8724 0.7223 

2 0.02 0.9279 0.7291 

3 0.04 0.9375 0.7441 

4 0.06 0.9637 0.7572 

5 0.08 0.9970 0.7522 

6 0.10 0.9718 0.7779 

7 0.12 1.0933 0.7753 

8 0.14 1.1369 0.7868 

9 0.16 1.1793 0.7914 

10 0.18 1.2189 0.7999 

11 0.20 1.2413 0.8051 
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Table 4. The results about fuzzy system modeling with 
MSE-criterion and entropy-criterion. 

Performance index J 
No. Noise 

MSE-criterion Entropy-criterion

1 0.00 0.8810 0.6889 

2 0.02 1.0852 0.7446 

3 0.04 1.1616 0.7641 

4 0.06 1.2195 0.8051 

5 0.08 1.2237 0.8170 

6 0.10 1.2531 0.8124 

7 0.12 1.2330 0.8235 

8 0.14 1.2689 0.8201 

9 0.16 1.2680 0.8390 

10 0.18 1.2798 0.8771 

11 0.20 1.3141 0.8733 

 
From Figures 5-7, it is easy to observe that the three 

curves corresponding to these three modeling methods 
with MSE-criterion objective function are always re-
spectively over the curves of these three modeling 
methods with entropy-criterion based objective function. 
In addition, with the increases of the noise, the curves of 
predicted performance indices in Figures 5-7, corre-
sponding to the MSE-criterion based modeling methods, 
have dramatic changes, which mean that the prediction 
accuracy is deteriorated greatly with the increasing of 
noise, while the curves corresponding to entropy-criterion 
based modeling methods in these figures are very 
smooth. Therefore the experimental results obviously 
demonstrate that the entropy-criterion based modeling 
 

 

Figure 5. Comparison of testing performance indices of 
MSE-criterion and entropy-criterion based MLP network mod-
eling method. 

 

Figure 6. Comparison of testing performance indices of 
MSE-criterion and entropy-criterion based RBF modeling 
method. 
 

 

Figure 7. Comparison of testing performance indices of 
MSE-criterion and entropy-criterion based fuzzy system mod-
eling method. 
 
methods have a better generalization and robustness than 
the MSE-criterion based modeling methods in the EPS 
fermentation process modeling. 

4.6. Statistical Results for the Obtained  
Performance Indices 

In view of the mean and standard variance of EPS pro-
duction obtained from the above experiments as the 
output of the training samples, we can see from Table 1 
that the standard variance is not little, therefore, it is 
necessary for us to observe the performance of the above 
three modeling methods from the statistical viewpoint. 
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In this experiment, we keep the same inputs in the train-
ing set as above, however, add noise to the correspond-
ing outputs. The added noise has the mean zero and the 
same standard variance as derived from the experimental 
data. In order to keep the experimental results fair, we 
run each sample data 50 times, and then take their means 
and standard variances of the performance indices J for 
the corresponding modeling methods. Table 5 lists the 
obtained results. 

We can clearly see from Table 5 that, both the means 
and standard variances of the outputs of these three 
modeling methods with entropy-criterion are always 
lower than the ones with MSE-criterion. This fact con-
firms our claims again that the proposed entropy- criterion 
based modeling methods possess the favorable capability 
in approximation, generalization and robustness. 

5. DISCUSSION 

When studying fermentation process modeling of EPS 
from Lactobacillus, we must consider two factors. One is 
the collected data corrupted by noise, due to the shortage 
of apparatus and the limitation of experimental condi-
tions. The other is the comparatively weak generaliza-
tion and robustness capability of current MSE-criterion 
based modeling methods. In this work, the EPS fermen-
tation process modeling methods with entropy-criterion 
based objective function are addressed. When it is used 
in MLP network modeling, RBF modeling and TSK 
fuzzy system modeling for EPS fermentation from Lac-
tobacillus, our experimental results demonstrate that three 
modeling methods with entropy-criterion are less sensi-
tive to noise and have better generalization abilities and 
robustnesses than three modeling methods with MSE- 
criterion. Because the proposed objective function is de-
rived from the Parzen window desity estimator and rela-
tive entropy, and considers the whole distribution struc-
ture of the training set in the parameter’s learning proc-
ess, which is different from previous study. The results 
obtained in this study are very useful in modeling EPS 
fermentation process, and the entropy- criterion based 
modeling methods can also be efficiently applied to 
other fermentation processes. 
 
Table 5. Statistical results of the performance index J of three 
modeling methods. 

Modeling meth-
ods 

J of MLP net-
work 

J of RBF net-
work 

J of TSK fuzzy 
system 

MSE-criterion 1.3663 ± 0.2577 1.3893 ± 0.1684 1.1197 ± 0.1807

Entropy-criterion 1.1165 ± 0.1363 0.9998 ± 0.1119 0.9240 ± 0.1210
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