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ABSTRACT 

This paper presents the results of exact solutions and numerical simulations of strongly-conductive and 
weakly-conductive magnetic fluid flows. The equations of magnetohydrodynamic (MHD) flows with different conductiv-
ity coefficients, which are independent of viscosity of fluids, are investigated in a horizontal rectangular channel under 
a magnetic field. The exact solutions are derived and the contours of exact solutions of the flow for magnetic induction 
modes are compared with numerical solutions. Also, two classes of variational functions on the flow and magnetic in-
duction are discussed for different conductivity coefficients through the derived numerical solutions. The known results 
of the phenomenology of magnetohydrodynamics in a square channel with two perfectly conducting Hartmann-walls 
are just special cases of our results of magnetic fluid. 
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1. Introduction 

The first classical study of electro-magnetic channel flow 
was carried out by Hartmann in the 1930s [1]. Hart-
mann’s well-known exact solution can be applied to very 
closely related problems in magneto-hydrodynamics 
(MHD) to appreciably simplify physical problems and 
give insights into new physical phenomena. 

In magnetic fluids, the fluid dynamic phenolmena with 
magnetic induction create new difficulties for the solu-
tion of the problems under consideration. The classical 
Hartmann flow can be further generalized to include ar-
bitrary electric energy extraction from or addition to the 
flow. In general, classical MHD flows are dealt with us-
ing the exact solution of the Couette flow which is pre-
sented when the magnetic Prandtl number is unity [1]. 

 The exact solutions of appropriately simplified 
physical problems provide estimates for the approximate 
solutions of complex problems. In view of its physical 
importance, the flow in a channel with a considerable 
length, rectangular, two-dimensional, and unidirectional 
cross section, which is assumed steady, pressure-driven 

of an incompressible Newtonian liquid, is the simplest 
case to be considered. In such a flow, taking into account 
the symmetrical planes 0y  and 0z  and an exact 

solution is obtained by using the separation of variables. 
The solution indicates that, when the width-to-height 
ratio increases, the velocity contours become flatter away 
from the two vertical walls and that the flow away from 
the two walls is approximately one-dimensional (the de-
pendence of  on  is weak) [2]. xu y

If all walls are electrically insulating, 0w , Shercliff 

(1953) has investigated principle sketch of the phenome-
nology of Magnetohydrodynamics (MHD) channel flow of 
rectangular cross-section with Hartmann walls and side 
walls [3]. For perfectly conducting Hartmann walls, 

 , Hunt (1965) gave velocity profile and current 
paths for different Hartmann number. They found that the 
current density is nearly constant in most of channel cross 
sections, the velocity distribution is flat, and the thickness 
of the side layers decreases with increasing intensity of , 
i.e. increasing Hartmann number [3]. Recently, Carletto, 
Bossis and Ceber defined the ratio magnetic energy of two 
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aligned dipoles to the thermal energy , 

and their theory well predicts the experimental results in a 
constant unidirectional field [4]. Further results can be 
found in reference [5]. 

kTHa /2
0

22
0 

Other flow configurations in basic MHD may include 
Hele-Shaw cells. Wen et al. [6,7] were motivated to visu-
alize the macroscopic magnetic flow fields in a square 
Hele-Shaw cell with shadow graphs for the first time, 
taking advantage of its small thickness and correspond-
ing short optical depth. Examples of applications of 
MHD include the chemical distillatory processes, design 
of heat exchangers, channel type solar energy collectors 
and thermo-protection systems. Hence, the effects of 
combined magnetic forces due to the variations of mag-
netic fields on the laminar flow in horizontal rectangular 
channels are important in practice [8–10]. 

In the present study, we consider the characteristics of 
magnetic fluids in a horizontal rectangular channel under 
the magnetic fields and use the flow equations with a 
conductivity coefficient. The exact solutions of the 
strongly-conductive and weakly-conductive magnetic 
fluids are considered using the series expansion tech-
nique in order to obtain the relationship between the flow 
and magnetic induction. Also, a quadratic function on 
flow and magnetic induction is studied to verify the 
characteristic of flow field using the obtained solutions. 

2. The Exact Solution of the Magnetic Fluid 
Equations 

The configuration of the flow geometry is illustrated in 
Figure 1. The problem considered in this study is an in-
compressible steady flow in the positive x-direction with 
a magnetic field applied in the positive z-direction. The 
cross-section of the channel is given by the flow region 
2  and 2  while the channel length is 2 c . The system 
of basic magnetic fluid equations is given as follows [5] 

a b

0U                   (1) 
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Figure 1. Illustration of flows in a rectangular channel 

The Maxwell’s equations in their usual form 

,
t




B
E ,

0K
e E      (3) B 

with the relation equations and the Ohm’s law given as 

0 0( mμ μ )   B H M H             (4) 

)σ( BUEj                        (5) 

where 
0  is the permeability of free space, m is the 

magnetic susceptibility (H/m),  is the conductivity, 
is the magnetic induction,  is the magnetic field 

(A/m), and  is the magnetization (A/m). 
B H

M
We choose the x  axis such that the velocity vector 

of the fluid is )0,0,xuU (  and from the continuity 

Equation (1), we have . We also choose ),( zyuxux 
bBB  0 = , where  is a constant repre-

senting magnetic induction. 

)0B,0,( xb 0B

Applying the Maxwell’s equation 0 B  and 
0/x  xb , we have . To simplify our 

presentations, the following assumptions are made for 
related variables: 

),( zybb xx 

0)0,,( xuU ,            (6) )(0, zy j,jj

)(0 zy E,E,E ,    (7) )0(0 0x B,,b bBB

),0,( 0x HHH                      (8) 

),0,( 0x MMM ,          (9) )0,0,( xFF

And 0 E , Equation (3) is satisfied. As there is no 
excess charge in the fluid, then, by using (5), j  is ob-

tained as follows 

    )),((0,)0( z0xyzy EBuEj,j,  j

)
μ

1
,

μ

1
(0,

00 y

b

z

b xx








              (10) 

z

E

y

E yz







                        (11) 

The magnetic fluid boundary conditions considered 
here are 

0xb at by  ,  az 
0xu at by  ,  az 

We shall also assume that all quantities are independ-
ent of time t , that is to say, the fluid we consider here is 
in a steady state. 

2.1 The Strongly-Conductive Fluid 

The magnetic fluid is called strongly-conductive if the 
term )( HM   appears [8]. Under the condition of 

strongly conductive, the coefficient is much )( HM 
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larger than the Kelvin force density  so that 

 is considered while  is neglected. Us-

ing the steady-state assumption, i.e., , Equation 
(2) can be written as follows 

HM )( 

0/  t

BJ HM )( 

x

fp

z

u

y

u


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(
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



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2
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x

0y
2 ) Bj
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(12) 

xzbj
y

p



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                        (13) 

xybj
z

p



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                       (14) 

where . Note that Sutton and Sherman 

[1] gave an incorrect result in their equation (10.85) 
which should be the above Equation (14). 

22/1 xmHpp 

For Hartmann flow, it is feasible to replace  by yE

0xBuK  for a simple model, then =yj )- xx uu(Kσ 0B  

where 
a

xa

1
( , )u y z

p(
4

b

x b
u

ab  
   dydz

xfx  /)

.  

The axial pressure gradient  is taken 

to be K

0x

 if the gravitational field is neglected, and 

, where  is 

the viscosity of magnetic fluid. Combining Equations 
(12)–(14) yields 

/ f x
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1
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then Equations (15) and (16) are reduced to 
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where the Hartmann number  is defined as 

1
0

 aBHa .  

The solution for  is obtained by expressing 1u K  

over the range  as a cosine Fourier series, bb  y 
n

0

n 0

4 ( 1) (2n 1)
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2

y

b


K

2n 1

k 



 

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where  is a constant. The solution for  is then 

written 
0k 1u

2 n

1 3 3
n 0

16 ( 1)
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(21) 
where  and  are given as 1m 2m

1 2 2 1 2 2

1, 2

(2n 1) π

2
a aH b b H a

m
ab

        

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  (22) 

It should be pointed out that the solution for  is 

just the same function as  in which  and  are 

displaced by  and , respectively, which are given 

by 

2u

2m1u

4

1m

3m m

1 2 2 1 2 2

3, 4
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a aH b b H a
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(23) 

2.2 The Weakly-Conductive Fluid 

If the fluid is weakly-conductive and the field  is not 
time-dependent, the term  will disappear as 

shown in equations (104) [8]. Considering Equation (2) 
through (4) and making use of the assumptions men-
tioned above, the following relations are obtained, 

E
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)( Bj
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Replacing  with yE 0K Bux , we have  = yj 0 (K xB u  

)x- u  as well as in Subsection 2.1. Then, as the axial 

pressure gradient xfp x  /)(  is taken to be K , 

where 
n

0
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where  is a constant. Let 0k
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1
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Thus, the solution of Equation (28) for  as in (17) 

is also obtained 
1u
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2.4 The Solutions, Flow Field and Discussions 1 2m z m z
2 1

1 2

e sin e sin (2 n 1)π
] cos

sin ( ) 2

hm a hm a y

h m m a b

 



  (29) 

In the present study, the flow fields and their associated 
functions are presented in the flow region with 1a , 

1b

0

. Since  ranges from 10 to 100 in most practi-
cal problems, the initial magnetic induction is taken to be 

aH

10B (kg.s-2.A-1), (H/m), 7
0 104   50aH  and 

the constant 100 k . 

where  and  are as follows 1m 2m

2 2 2 2 2

1, 2

(2n 1) π

2
a aH b H b a

m
ab

   
        (30) 

Note that the solution for  is the same function as 

 in which  and  are given as follows 
2u

1u 1m 2m Figure 2 depicts the solutions for 02.0 , 0.2 and 

1.0, where  1  is the conductivity coefficient. 

The velocity contours are displayed in Figure 2(a) for 
different values of the conductivity coefficient. It is 
shown that the velocity gradients become larger gradu-
ally near four vertical walls as the conductivity coeffi-
cient increases for different magnetic fluids. On the con-
trary, in the region of (0,0), the velocity gradients lower 
gradually as the conductivity coefficient increases. For 
the case of a constant Hartmann number, the magnetic 
fluid are shown in Figure 2(b) for different values of the 
conductivity coefficient, and as indicated, the strength of  

2 2 2 2 2

3, 4

(2n 1) π

2
a aH b H b a

m
ab
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        (31) 

For a weak-conductive fluid, its solution is simply the 
solution of the conductive fluid with a conductive coeffi-

cient 0.11     (for 00  ). We find that 

 1  2)m00 (1  m   which is obviously 

independent of the fluid viscosity.  

2.3 Unidirectional Two Dimensional Flow  
without a Magnetic Field 

magnetic induction dampens horizontal away from the 
plane 0z  and the walls 1z  as the conductivity 
coefficient increases. On the contrary, near the 
walls 1y , the magnetic induction becomes gradually 

low as the conductivity coefficient increases. For con-
ductivity coefficient 02.0 , the flow contours are 
similar to those in the reference[10] for the magnetic 
Rayleigh number 0.0Ram  and the Rayleigh num-
ber 0001，Ra . Our analysis shows that the flow field 
changes with different conductivity coefficients. 

Here we only consider a unidirectional two dimensional 
flow without a magnetic field, so that , Equa-

tions (18) and (19) are reduced to 
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The boundary conditions are as follows 

0x 



y

u
 at                      (33) by 

0



z

ux  at az                       (34) Figure 3 shows the velocity fields for steady, unidi-
rectional flows in a rectangular channel and K  is a co-
sine Fourier series of  and conductivity coefficient y

0 . The velocity contours are similar to those given by 
Papanastasiou et al. for the width-to-height ratio 1:1 [2]. 

0xu  at , by  az                   (35) 

In order to obtain an exact solution of Equation (32), 
comparing with our above results, we have 

In Figures 4(a) and 4(b), the development of the ve-
locity profile in y and  directions are shown for 

various values of the conductivity coefficient 

z
 . For the 

symmetry, we only consider two cases: (a) by 0 , 

aza  ; and (b) az 0

y

, . Several in-
teresting observations are readily made from the results. 
The cooperate process of and 

byb 

z  is shown in the 
above analysis.  In order to clearly show the 
self-governed process of and y z , the contours of the 

velocity versus coordinate , and the velocity versus 
coordinate  are given. It is clear that the velocity gra-
dients increase quickly near the boundary walls 

y
z

az   
and by   as   is increased. On the other hand, the 
exact solutions are multiple hyper-cosine functions of , 
and cosine functions of . Therefore, the velocity gra-
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where  is a constant. The problem consisting Equa-

tion (32) and its conditions are solved similarly using the 
separation of variables, which has the solution as follows 
[9] 
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Figure 2. The distribution of flow field and magnetic induction. (a) Velocity contours ; (b) Magnetic induction distributions xu

xb ; and (c) The velocity composition function F . (1) , 50aH 020. ; (2) , 50aH 20. ; and (3) , 50aH 01.  

 
dient is larger near the boundary walls  than that 

near the boundary walls 
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For a given Hartmann number, comparing Figure 2 of 
this paper with Figures 3.2, 3.3 and 3.4 of Reference [3], 
current density distribution magnetic fluid and magneto-
hydrodynamics (MHD) are the same. Comparing Figure 
2 of this paper with Figure 3.1 of Reference [3], the ve-
locity profile of the phenomenology is also same for 
magnetic fluid and MHD. Of course, magnetic fluid 
and MHD have different equations and formulations of 
the Hartmann number. For magnetic fluid, the constitu- 
tive equation is MHB   , the Hartmann number 

1
0B  aHa

 and conductivity coefficient   are 

introduced in our work. The flow and magnetic induction 
Figure 3. Velocity field with a cosine Fourier series K  of 

 for conductive coefficient y 0  
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(1)                                (2)                               (3) 

Figure 4. The development of the velocity profile (a) The vs y-axis; (b)  vs z-axis. (1) , xu xu 50aH 02.0 ; (2) 

,50aH 2.0 ; (3) , 50aH 0.1  

 
change with different  . Differently, in MHD, Shercliff 

and Hunt considered the induction equation 
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    V B B B  and used only the linear con-

stitutive equation H  with Hartmann number 

 /0LBHa  . They gave velocity profile and current 
paths for different Hartmann number. 

3. Two Class of Variational Functions on the 
Flow and Magnetic Induction 

For many years the variation techniques have been effec-
tively applied to problems in the theory of elasticity. 
However, they are rarely used in fluid dynamic problems. 
The great utility in elasticity problems are due to the fact 
that they can be conveniently applied to linear problems. 
This, of course, explains why they are not frequently 
used in fluid dynamics since most such problems are 
nonlinear [10,11]. 

For the conductive fluid problems of the type being 
considered here, we recall the governing Equations (15) 

and (16) which are linear for and  and the varia-

tion technique may be tried. Firstly, consider the follow-
ing integral [12] 
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where F  is some given function of , ,xu xb  . Clearly, 
the value of the integral depends on the choice of the 
functions ),,( zyux , ),,( zybx  and  . Now, let us 

pose the following   problem: to obtain functions , 

 and 
xu

xb   to minimize the value of I . As is well 
known from variational calculus, the necessary condi-
tions that ,  and xu xb   for minimized I  are the 
Euler equations: 

0)()( 

















xx b

F

yu

F

yy

F
        (40) 

0)()( 

















xx b

F

zu

F

zz

F
        (41) 

0)()( 

















xx b

F

u

FF


        (42) 

3.1 Decomposition and Composition Functions 
on the Flow and Magnetic Induction 

Simply, let the parameters be fixed at  , then 
],[ aas  [ , ]b b  . According to  and  in the 

Equation (17), we only considered the function of , 

and 

1u 2u

xu

xb   in order to minimize the special function as 
follows 
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where where ),,( ),,( zyuu xx   and ),,( zybb xx 

y

 are con-

sidered as the function of , z  and 
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, ,  and a byb za    . 
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2/)~
xbc , then x a bu u u  . The expressions of  and 

 are called the velocity decompositions of the mag-

netic induction 

au

bu

xb  and the flow field xu  with a vari-

able coefficient c~  of the flow and the magnetic induc-

tion, where c~ 1
0( )μ   . From Figure 5, it is easy to 

show that , , and / 2a xu u / 2b xu u F 2 / 2 xu  

as , where 0xb  F  is the velocity composition of the 

flow field and the magnetic induction. 
It is also easy to know that ),,( zyFF   has the 

same variation characteristic as the following function 
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The differential of F
~

 on   is given by 
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It is obvious that λF
~

 is a nonlinear function of  , 

and is very complex to study the variation characteristics 

of F
~

 by using the method of mathematical analysis. 
With Equation (45), the variation characteristics of the 

function F
~

 is determined by flow and magnetic induc-
tion as a function of  . 

3.2 A Total Energy Variational Function on the 
Flow and Magnetic Induction  

Based on the above analysis of Equation (17), let 

1 xu u  xbc~ , 2 xu u  xbc~  with ~c 1
0(μ )  , we 

call xbc~  the velocity of magnetic fluid flow, which is 

equivalence to the velocity of magnetic fluid flow 
evoked by magnetic force. A total energy function is 
defined by 

21 eee  = 2

2

1
xu + 2)~(

2

1
xbc           (46) 

where  is the kinetic energy,  is the magnetic en-

ergy.  
1e 2e

By the calculus of variations, we have 
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Figure 5. The sketch map of the composition function F of 
flow and magnetic induction 

As  and b  are nonlinear functions of xu x  , it is 

very complex to study the variational characteristics of 

e  by using the method of mathematical analysis. 

3.3 Numerical Calculations and Discussions 

As seen in Figures 2(a) and 2(c), in a region of (0,0), the 
contour of the function F  is more similar to that of the 
flow for 02.0 . Furthermore, the gradient of flow 
which is larger than that of magnetic induction, the dis-
tribution value of F  is largely affected depending on 
the flow. On the contrary, for 0.1 , the gradient of 
magnetic induction is larger than that of flow as F  is 
largely affected depending upon the gradient of the 
magnetic induction. 

It is observed that the difference of flow and magnetic 
induction are almost the same for 2.0  in a region of 
(0,0), where the distribution of the function F  is de-
termined by the gradients of both the magnetic induction 
and the flow in this region. Furthermore, near 1y  

and 1z  for any  , the difference of flow is acute 
singularly and the function F  is also changed singu-
larly. It is noted that F  has only one limit point for 

2.0 , and F has two limit points for 2.0 . 
As seen in Figure 6, the gradient of the total energy is 

decided by the kinetic energy in the region (0,0) for dif-
ferent values of  , and near  and 1y 1z  for 

02.0 . That is to say, the gradient of the magnetic 
energy is very large near 1z  for 02.0 , and its 
value is very small which does not affect the gradient of 
the total energy. Then, the gradient of the total energy 
will be affected by the magnetic energy near 1z  for 

2.0  and it will be affected by the magnetic energy 
near 1y  and 1z  for 0.1 . 

4. Concluding Remarks 

1) For magnetic fluid of this work and Magnetohydro-
dynamics (MHD) of Reference [3], the constitutive equa- 

ux ub
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Figure 6. Illustration of energy function (a) The kinetic energy ; (b) The magnetic energy ; and (c) The total energy . 

(1) , 
1e 2e e

50aH 02.0 ; (2) , 50aH 2.0 ; (3) , 50aH 0.1  

 
tions are different, the Hartmann numbers are also dif-
ferent. For magnetic fluid, conductivity coefficient   
is an important coefficient to analyze the flow and the 
current. For MHD, Hartmann number a  is the con-
trolling coefficient, Shercliff and Hunt studied velocity 
profile and current paths for different Hartmann num-
ber [3–5]. 

H

2) For conductivity coefficient 0 , the velocity 
contours for steady unidirectional flow is shown in a rec-
tangular channel with K  a cosine Fourier series function 
of . Our result is in agreement with published findings. y

3) A velocity decomposition and composition function 

F , and a total energy variational function , on the flow 
and magnetic induction are considered. The variational 
characteristics of 

e

F  are analyzed only using the charac-
teristics of the resultant flow field and the magnetic induc-
tion, and the number of its limit points changes as   
changes. It is shown in numerical simulations that the gra-
dient of total energy  is affected by the kinetic energy 
and the magnetic energy as 

e
  changes. 

4) Theoretically, the strongly-conductive and weakly- 
conductive magnetic fluid flows are studied on different 
conductivity coefficients which are independent of fluid 
iscosity in a horizontal rectangular channel. v     
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Table 1. Nomenclature  

a  channel length aH  
Hatmann number 

b  channel height K  dimensionless variable 0/ BuE xy  

c  channel width 0k  
constant 

B  magnetic induction M  magnetization (A/m) 

0B  
initial magnetic filed 0M  

initial magnetization 

xb  
magnetic induction of x -direction xM  

magnetization of x -direction 

c~  ~tcoefficien c 1
0( )μ    

xu  
velocity of x -direction 

E electric field with respect to Lab. xu  
average velocity 

e  total energy 1u  
first exact solution 

1e
 

kinetic energy 2u  
second exact solution 

2e  
magnetic energy m

 
the magnetic susceptibility 

F  velocity composition function 0
 

the magnetic susceptibility 

F force on a particle   conductivity 

H  magnetic field(A/m)   viscosity of fluid 

0H  
initial magnetic field   the correctional viscosity of fluid 

xH  
magnetic field of x -direction   conductive coefficient  1  
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