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ABSTRACT 

We study projectile motion with air resistance quadratic in speed. We consider three regimes of approximation: 
low-angle trajectory where the horizontal velocity, u, is assumed to be much larger than the vertical velocity w; 
high-angle trajectory where w u ; and split-angle trajectory where w u . Closed form solutions for the range in 
the first regime are obtained in terms of the Lambert W function. The approximation is simple and accurate for low 
angle ballistics problems when compared to measured data. In addition, we find a surprising behavior that the range in 
this approximation is symmetric about / 4 , although the trajectories are asymmetric. We also give simple and prac-
tical formulas for accurate evaluations of the Lambert W function. 
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1. Introduction 

In a previous paper on projectile motion with air resis-
tance linear in speed, we presented closed form solutions 
for the range in terms of the Lambert W function [1]. 
Amid the growing list of problems that benefited from 
using the W function [2–7], one question naturally arises 
as to whether a similar approach exists if air resistance is 
quadratic in speed, the more realistic case in practice. 

We have studied this problem and found that solutions 
exist for low-angle trajectories using the W function. In 
this paper, we report our findings, starting with an over-
view of the regimes of approximation in Section 2. We 
focus on the low-angle regime in Section 3 and discuss 
the dynamics, which leads to a remarkable property that 
the range is symmetric about / 4 , even in the presence 
of air resistance. For completeness, high-angle and split- 
angle regimes are briefly discussed in Section 4 and 5, 
respectively, followed by a comparison with observed 
data and discussions in Section 6. To make the W func-
tion easily accessible, in the Appendix we give simple 
and practical formulas for the accurate evaluation of this 
function. 

2. Regimes of Approximation 

We assume the net force F


, including air resistance and 

gravity on the projectile of mass, m, to be F 


 mbvv


 

mgj


. This leads to the equations of motion as 

, ,
du dw

bvu buw g
dt dt

             (1) 

where b is the drag coefficient with the dimensions m-1. 
The components of the velocity are v ui wj 

 
, with 

/u dx dt  and /w dy dt , where x and y are the usual 

horizontal and vertical positions of the projectile. The 
initial position of the projectile is at the origin. Through-
out the paper, we use the following notations for fre-
quently occurring terms: 

u0, w0 = initial horizontal and vertical velocities; 

R0 = 0 02u w

g
= range with no air resistance;      

0 0
0

2u w
b bR

g
                (2) 

To our knowledge, closed form solutions to (1) are 
known only for special initial conditions, not for arbitrary 
initial conditions [8]. The difficulty is with the coupling 

of u and w in the speed 2 2v u w   which makes the 
problem inseparable. Further approximations are neces-
sary to solve (1) analytically. 
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We consider three approximations aimed at linearizing 
the speed according to the relative magnitudes of u and w: 
low-angle trajectory (LAT) approximation, u w ; high- 
angle trajectory (HAT) approximation, w u ; and 

split-angle trajectory (SAT) approximation, u w , as, 

 

2 2

 ,

,

2  ,

u if u w LAT

v u w w if w u HAT

u or w if u w SAT


   








   (3) 

Each of the approximations will be discussed below, 
with the emphasis on LAT that is important in practice 
and in ballistics. 

3. Low-Angle Trajectory (LAT) Approximation 

3.1 The Trajectory 

We assume in this case the horizontal velocity is on av-
erage much greater than the vertical velocity, u w . 
This will be the case if the firing angle is small, a case 
also discussed by Parker [9]. Here the speed may be ap-
proximated as v u  according to (3), so that the equa-
tions of motion in the LAT approximation are 

2 , .
du dw

bu buw g
dt dt

              (4) 

One can solve for u first, after which w, x, and y can be 
obtained. Hereafter, we will omit non-essential interme-
diate steps. The solutions may be verified by substitution 
into the equations of motion. The solutions are 

0 0
0

/ 2 1
, , ,

1 1 2

u w gt
u w gt a bu

at at


   

 
  (5) 

2
0

1 1 1
ln(1+ ), ln(1+ ) .

2 4 2

g gt
x at y w at gt

b a a a
      
 

 

(6) 

Equation 6 gives the trajectory in the LAT approximation. 
The trajectories computed from (6) are plotted in Fig-

ure 1 for three angles: 20o, 45o, and 70o. The initial speed 
is 9.8 m/s for all angles. The drag coefficient is 

10.1b m . 
For comparison, we also show the trajectory from 

ideal projectile motion with no air resistance and the tra-
jectory from the solutions with the full 2v  air resistance, 
Equation 1. We will simply refer to the former as the 
ideal motion, and the latter as the full solution. 

The full solution is carried out by numerically inte-
grating the equations of motion with the full 2v  resis-
tance (1), using the Runge-Kutta method. (The two 
curves labeled HAT and SAT in Figure 1 are discussed 
in Sections 4 and 5.) 

The agreement between the LAT approximation and 

the full solution is good at 20o (nearly indistinguishable in 
Figure 1(a)), and it becomes worse for larger angles. This 
is as expected since the assumption was that LAT is valid 
only at small angles. The range is much reduced compared 
to the ideal motion. Air resistance introduces in the trajec-
tories a well-known backward-forward asymmetry. The 
ascending part of the trajectory is shallower and longer, 
and the descending part is steeper and shorter. 
 

 

 

 

 

Figure 1. The trajectories for an initial speed of 0 9.8m/sv   
and drag coefficient 10.1mb   at three firing angles, 20o 
(a), 45o (b), and 70o (c). The labeled curves are (see text): 
Full (thick solid line) - the numerical solution with the full 

2v  resistance; LAT (solid line); HAT (dashed line, see Sec-
tion 4); SAT (dash-dotted line, see Section 5), Ideal (dotted 
line) - motion without air resistance 
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3.2 The Range and Height in Comparison with 
Measurements 

To find the range of the projectile we eliminate t from (6) 
to obtain 

 0 2
0

exp(2 ) 1 .
2 4

g x g
y w bx

a u a
     
 

      (7) 

The range, R, is the value of x when 0.y   It satisfies 

 0 2
0

exp(2 ) 1 0.
2 4

g R g
w bR

a u a
     
 

      (8) 

This is a transcendental equation that until now had been 
customarily solved numerically or graphically [9]. But as 
we reported [1], equations of this type can also be solved 
analytically, with the results written in closed form in 
terms of the Lambert W function. 

The Lambert W function [10] is defined, for a given 
value z, as the (inverse) function satisfying 

    exp .W z W z z             (9) 

Our discussions below refer closely to the properties 
of this relatively “new” function. For readers unfamiliar 
with this function, we give a brief review in the Appen-
dix. There the reader will also find some practical for-
mulas for evaluating W. 

To solve for the range R in terms of W, (8) needs to be 
rearranged in the form of (9) such that the multiplicative 
prefactor to the exponential,  W z , is the same as the 

exponent. This can be achieved by following the steps in 
[1]. The result is 

1 1 1 1
2 exp 2 exp ,

1 1 1 1
bR bR

   
     
                   

(10) 
with defined in (2). We identify from (9) and (10) that 

   1 1 1
2 ,or ,

1 2 1

1 1
exp

1 1

W z bR R W z
b

z

 

 

   
            

 
     

 (11) 

This is the closed form expression for the range, R, in 
the LAT approximation. 

The height, H, can be obtained by maximizing y in (7), 
and is given by 

 0

0

1
ln 1+ 1 .

2

w
H

bu

 


 
  

 
      (12) 

We compare in Table 1 measured range and height 
data with calculations from Equations 11 and 12 for fir-
ing angles less than one degree. (The details of the cal-
culations are given in the next subsection.) 

Table 1 shows that the measured data [11] and the cal-
culations agree well once the firing angle is above about 
10 minutes of arc. The discrepancy between measure-
ment and theory is due to the uncertainty in the value b 
(see Table 1 caption), and not the approximation itself. 
Because the largest angle is still less than 1, higher order 
corrections are negligible. The relative error for the 
height is usually much larger than the relative error for 
the range. This is probably due to the difficulty in accu-
rately measuring the relatively small height in this case. 

The large errors in height and in range at the two small-
est angles need not cause concern. It is due to the combi-
nation of exceeding difficulty in determining the small 
angle and the small height at the same time. Note that the 
diameter of the projectile and the height are of the same 
order of magnitude here. Overall, this example shows that 
if a reasonable b can be obtained, the LAT approximation 
should work well for low angle ballistics problems. 

3.3 Analytic Properties of the Range 

3.3.1 The Symmetry of Range in Firing Angle 
The analytic Formula 11 enables us to immediately draw 
several surprising conclusions on the general properties 
of the range, R. Since z is a function of  which depends 
on the product  0 0 02u w sin  ( 0  is the firing angle), 

we conclude that i) the range R is symmetric about / 4 , 
that is to say, two firing angles 1  and 2  will lead to 

the same range if 1 1 / 2     (see the LAT curves in 

 

Table 1. Measured and calculated results for a projectile of mass m = 9.7 g, diameter d = 0.76 cm, and muzzle velocity 823 m/s. 
The measured data are taken from [11]. Results are calculated from the LAT approximation (11,12). The drag coefficient b = 
1.05x10-3 m-1 is determined from 2 /b C d m , where C = 0.15 is the recommended value [11], and  = 1.2 kg/m3 is the air 
density 

Firing Angle (min)  2 5 8 12 16 20 26 33 40 49 

Measured 91 183 274 366 457 549 640 732 823 914 

Calculated 76 177 265 367 456 534 636 738 826 923 Range, R (m) 

Error, % 16 3.3 3.3 0.27 0.22 2.7 0.63 0.82 0.36 0.98 

Measured 0.02 0.1 0.19 0.33 0.61 1.0 1.5 2.3 3.2 4.5 

Calculated 0.011 0.068 0.17 0.36 0.62 0.93 1.5 2.3 3.2 4.5 Height (m) 

Error, % 45 32 11 9.1 1.6 7.0 0.0 9.5 3.2 2.2  



Analytic Approximations of Projectile Motion with Quadratic Air Resistance 

Copyright © 2010 SciRes                                                                                 JSSM 

101

Figures 1(a) and (c)); and ii) because W(z) is a mono-
tonic function, the maximum range occurs at / 4  [12]. 
Remarkably, these properties i) and ii) with air resistance 
in the LAT approximation are exactly the same as for 
ideal projectile motion without air resistance. 

Given initial conditions 0u  and 0w , the range, R, 

can be computed from (11). Since z is negative and W(z) 
is multi-valued (see Appendix) for 0z＜ , we have a 

choice of the branches 0W  or 1W . Comparing z in (11) 

and (9) we identify one trivial solution, namely the pri-
mary branch, 

 0

1

1
W z


 


              (13) 

This solution, although mathematically correct, is un-
physical because it gives a zero range when substituted 
into (11). The physical choice must be 1W . We note 

that for linear resistance [1] the choices were the opposite, 
where 0W  was the physical solution and 1W  the un-

physical one. 
The range, R, calculated from (11) using 1W  is 

shown in Figure 2 as a function of the firing angle. It 
clearly demonstrates that R is symmetric about, and 
maximum at, / 4 . Also shown in Figure 2, for com-
parison, are the ranges for ideal projectile motion with no 
air resistance and with the full 2v  resistance. 

Unlike the LAT case, the range of the full solution in 
Figure 2 is not symmetric about / 4 . It reaches maxi-
mum at an angle below / 4 , a fact that is well known.  
 
 

 

Figure 2. The range of projectile motion as a function of the 
firing angle 0 . The initial speed is 0v = 9.8 m/s and the 

drag coefficient is b = 0.1 m-1. The LAT approximation 
(solid line) is maximum at and symmetric about / 4 , as is 
the ideal motion (dash-dotted line). The range with the full 

2v  resistance (dashed line) peaks before / 4 , and is 
asymmetric 

The LAT range is in good agreement with the full solu-
tion for low firing angles as expected, up to around 

/ 6 . Compared to the ideal case, the maximum ranges 
in the LAT and the full solutions are substantially re-
duced, by about 40% for this particular set of parameters. 

We note that the LAT approximation produces asym-
metric trajectories (Figure 1) but symmetric ranges. The 
physical reason can be traced to two factors influencing 
the range: the time of flight and the average horizontal 
velocity, as discussed below. 

3.3.2 The Time of Flight and the Average Velocity 
The average horizontal velocity, u , and the time of 

flight, T, are related by 

.R u T                (14) 

The time of flight T can be obtained from (6) by set-
ting x R , at t T . Together with (11), this gives 

   
0 0

exp 1 1 1 1
exp 1 .

2 1

bR
T W z

bu bu 
                

 

(15) 

The average horizontal velocity can be expressed from 
(14) and (15) as 

   
1

0 1 1 1
1 exp 1 .

2 1 2 1

u
u W z W z

 


                      

(16) 

Quantitatively, as the firing angle increases, the time 
of flight T increases, but the average horizontal velocity 

u  decreases. However, before / 4 , the increase in T 

is more than the decrease in u  so that the range as 

governed by (14), increases. After / 4 , however, the 
opposite happens so that the range decreases. The sym-
metric range is a result of the balance between T and u . 

3.3.3 The Range for Small and Large Air Resistance 
In the limit of small air resistance, 0b  , the dimen-
sionless parameter  will be small, 0  . The argu-

ment z to the W in (11) approaches 1/z e  , and 

  1W z    (see Appendix). Using the properties of 

W(z) and after some algebra (we leave the details as an 
exercise to the interested reader), the first order correc-
tion to the range, R, in (9) is 

0 0 0

2 2
1 1 , 0,

3 3
R R R bR b          

   
   (17) 

where 0R  is the range of ideal projectile motion, 0b  . 

For large air resistance, 1b  and 1  . As 

  , 1/z    according to (11). Using the as-
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ymptotic expressions for    1 0 ln /W z z ln z    

(see Appendix), we have from (11) 

 0
ln

with , 1.
2

lnR
R b

 



      (18) 

It is interesting to compare the scaling behavior with our 
earlier study [1] for linear resistance, where we found the 
range to scale as 1/ b , the inverse of the resistance. For 

quadratic resistance, (18) indicates  ln ln /R b b b . 

This shows that the logarithm term is characteristic of the 
quadratic resistance. 

4. High-Angle Trajectory (HAT)  
Approximation 

When the firing angle is large (close to / 2 ), we ex-
pect that, on average, the vertical velocity w will be 
much larger than the horizontal velocity, w u . The 

speed is approximated as v w  from (3). The equa-

tions of motion in the HAT approximation are 

, .
du dw

b w u b w w g
dt dt

         (19) 

The solutions are broken into two parts because of |w|. In 
the ascending part of the trajectory, the solutions are 

   0 cos
, tan , .

cos

u g
u w bg

t b


  

 
   


 (20) 

0 cos
ln tan tan

4 2 2 4 2

u
x

     


               
 

   1
0

1
In cos / cos , with tan / .y t b gw

b
        

(21) 
The time it takes to reach the top is /t   . With the 

values of u, w, x, y in (20,21) at the top as the initial con-
dition for the descending trajectory, the solutions for de-
scent are 

 
 

 
 

exp 1 exp 2
0cos , ,

1 exp 2 1 exp 2

g
u u w

b

 


 
  

  
   

 (22) 

 

 

10

2
0

cos
tan ln tan / 2

4 4

2 1 /1
ln .

1 exp 2

tu
x e

b g
y

b

   







          
           

(23) 

The time  starts from zero (at the top) in (22, 23). 
The trajectories in the HAT approximation are shown 

in Figure 1 The best agreement with the full solution is 

seen at the highest angle 70o, consistent with the under-
lying assumptions. We note that the agreement is consid-
erably worse descending than ascending (Figure 1, 70o 
(c)). The reason is that near the top, 0w  , and the va-
lidity of the HAT approximation breaks down, causing  
the large discrepancy while falling back down. By con-
trast, the LAT approximation (Figure 1, 20o (a)) is valid 
globally as long as the firing angle is small, giving a 
much better agreement on both parts of the trajectory. 

5. Split-Angle Trajectory (SAT) Approximation 

In Sections 3 and 4 we discussed low and high angle tra-
jectories. To be complete, we consider in this section the 
split angle / 4 , between the LAT and HAT ap-
proximations. We assume u w . and take the symmet-

ric approach: setting 2v u  in the horizontal direc-

tion and 2v w  in the vertical direction. The equa-

tions of motion read 

22 , 2 .
du dw

bu b w w g
dt dt

         (24) 

Note that upon replacing 2b b  in (24), /du dt  
is the same as that in (4) of LAT, and /dw dt  is the 
same as that in (19) of HAT. The solutions for u, x will 
be the same as those in (5,6), and the solutions for w, y 
will be the same as for w, y in (21,23), so they will not be 
repeated here. 

Similarly, the trajectories can be computed as before 

(with b replaced by 2b , of course). They are also 
shown in Figure 1 at the same angles with the same pa-
rameters. Here, we see the best agreement with the full 
solution at 45o as it should. But, unlike the LAT or HAT 
curves, where after certain point in time (just before 
reaching the top) the differences keep increasing, the 
SAT curve crosses the full solution during the course of 
motion. This is due to the balance of the horizontal and 
vertical resistance forces. 

Because of this balance, the SAT behaviors are inter-
estingly different at low versus high angles. At 20o (Fig-
ure 1(a)), the SAT curve is “squeezed” horizontally in 
comparison with the full solution, resulting in a shorter 
range and a higher height. This is because for low angles 
where u w＞ , the horizontal resistance is over-estimated 
in the equations of motion (24). Conversely, at 70o (Fig-
ure 1(c)), the SAT curve is compressed vertically, caus-
ing a lower height but a longer range. The reason is 
similarly due to the over-estimation of the resistance in 
the vertical direction. As a result, curve crossing occurs. 

6. Conclusions 

In summary, we have presented a detailed discussion of 
projectile motion with quadratic air resistance in three 
approximations. Our focus was on the low-angle trajec-
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tory approximation where we found closed form solu-
tions for the range and the time of flight in terms of the 
secondary branch of the Lambert W function, 1W . The 

approximation is simple and accurate for low angle bal-
listics problems. 

Various analytic properties were readily analyzed with 
these solutions. Together with projectile motion with 
linear air resistance [1,5], the example studied here 
serves two educational purposes: i) It is possible to in-
troduce the use of special functions in physics at early 
undergraduate levels in a familiar, more realistic problem; 
and ii) It represents a good complimentary case where 
the physical solution required the secondary branch, 1W , 

rather than the principal branch 0W  as in the case of 

linear air resistance. 
One interesting and closely-related question remains 

open, i.e., whether both branches of W might be required 
simultaneously in a physical solution, say when the air 
resistance contains both linear and quadratic terms, 

2av bv  , under some forms of approximation, pre-

sumably. 
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Appendix 

1. The Lambert W function 

In this appendix, we briefly summarize some relevant 
elements of the Lambert W function. The reader can find 
an extensive review in [10]. In lieu of the growing inter-
est in this function in the physics community [2–7], we 
also present several practical formulas for the evaluation 
of the W function. 

The Lambert W function as defined by (9) is generally 
complex-valued. For our purpose we are interested in the 
real-valued W(x), namely the principal branch 0W , and 

the secondary branch 1W . The two branches are shown 
in Figure 3. 

The behaviors of 0W  and 1W  for small and large x are  

     2
0 1 00 0 ln , ln .

ln ln

x x
W x x x W x W x

x x



            
   

(A.1) 

2. Evaluation of W 

During the course of our study, we were unable to find in 
the literature simple and practical algebraic expressions 
for evaluating W over the whole range, and for embed-
ding it in our code. We therefore devised several readily 
usable approximate formulas given here for this purpose. 
It should give the interested reader a good starting point 
in using this function. 

W is not (yet) available on a calculator like some ele-
mentary functions. It is debatable whether it should be 
elevated to the status of an elementary function. (See [13] 
for an enchanting account.) However, one can easily im-
plement it on a programmable calculator with the formu-
las given here. The accuracy is at least 8 digits, in fact it 
is usually much better.  

 

 

Figure 3. The Lambert W function for real argument x. The 
two real branches are the principal branch 0W  (solid line), 

and the secondary branch 1W  (dashed line). The branch 

point is at 1x e   where 1W    

1) W in the Regular Regions 
We first give the formulas optimized in the regular re-
gions. Owing to space limitations, we will explain the 
methods used elsewhere [14]. The general form of the 
expressions is 

   0, 1 rW x C rP              (A.2) 

where C is a constant and  rP  is the Padé approxi-

mant defined as 

 
2 3 4

0 1 2 3 4
2 3 4

1 2 3 4

r .
1

a a r a r a r a r
P

b r b r b r b r

   


   
    (A.3) 

The expansion variable, r, is related to the independent 
variable, x. We give in Table 2 the constant C, the vari-
able r, and the coefficients ia  and ib . To utilize the ta-

ble, locate which function and region to use, then evalu-
ate (A.2) with the corresponding C, r, ia , and ib . 

2) W in the Asymptotic Regions 
Both 0W  and 1W  have the same form in the asymp-

totic regions 
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     

   

  

(A.4) 

This expression (A.4) should be used for 0W  in the re-

gion  2.2,x   and for 1W  in  0.12,x   . Note 

that it is the subtle difference in p, namely,  ln / lnx x  

for 0W  and  ln / ln -x x    for 1W  that automatically 

selects the correct branch. 

3) W with a Little Programming 
If the reader wishes to calculate W with arbitrary preci-
sion, one can use Newton’s rule [15] which, for a given x, 
is the root, w, to    exp 0f w w w x   . The root- 

finding process is as follows: Starting with an initial 
guess, 1w , the successive iterations, nw , approach rap-

idly to the true value as 

 2

1

exp
, 1, 2,3...

1
n n

n
n

w x w
w n

w

 
 


    (A.5) 

It only remains to determine the initial guess, 1w . One 

way to choose 1w  is 
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Table 2. The approximate formulas for the evaluation of W with (A.2) and (A.3). Spaces are inserted in the coefficients for 
readability. For optimal precision, all the digits should be used 

Function 0W  1W  

Region 1, 0.16x e     0.16,0.32x    0.32, 2.2x  1, 0.12x e    

Const. C -1 0 0.3906 4638 -1 

Variable r  2ln ex   x   ln 3x   2ln ex   

0a  1 1 0.2809 0993 -1 

1a  -0.8040 7820 4.674 4173 0.1116 7016 -0.8178 4020 

2a  0.2802 9706 6.577 4227 0.0 3529 1013 -0.2889 3422 

3a  -0.0 4785 3103 2.730 6731 0.00 5498 1613 -0.0 5003 8980 

4a  0.00 3355 7735 0.1057 7423 0.000 4245 7974 -0.00 3566 1458 

1b  -0.4707 4486 5.674 4173 0.1389 8485 0.4845 0686 

2b  0.0 9560 4321 10.75 1840 0.0 7995 0768 0.0 9965 4140 

3b  -0.00 6612 4586 7.637 5538 0.00 4515 2166 0.00 7066 1014 

4b  0.7961 1402x10-5 1.539 0142 0.000 6368 7954 0.5596 5023x 10-5 
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  
 
  

＜

＜ ＜

＜

     (A.6) 

It can be shown [14] that (A.5) with the seed from (A.6) 
always converges to the correct branch 0W  or 1W . The  

convergence is fast, usually to machine accuracy in a few 
iterations. 

Summarizing, accurate values for 0W  and 1W  over 

all regions of x can be found by using Table 2 plus (A.4) 
for fixed precision (8 digits or better), or (A.5) and (A.6) 
for arbitrary precision. 

 


