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Abstract 
In this paper, our purpose is to establish a common fixed point result for a 
pair of self-mappings satisfying some generalized cyclic contraction type con-
ditions involving altering distance and control function with two variables in 
partial metric spaces. Moreover, we provide an example in support of our 
main result. 
 

Keywords 
Partial Metric, Cyclic Contraction, 0-Completeness, Common Fixed Point 

 

1. Introduction 

The Banach contraction principle, a cornerstone in fixed point theory, has been 
extensively generalized and applied across various branches of mathematics. 
Among these generalizations, the concept of cyclic contractions, introduced by 
Kirk et al. [1], has received significant attention. This framework, which allows 
for mappings defined over cyclically ordered subsets, differs from classical con-
tractions by not requiring continuity. Numerous fixed point results in this setting 
have followed, see [2]-[9]. 

Parallel to these developments, partial metric spaces, introduced by Matthews 
[10] in the context of denotational semantics of computation, have emerged as a 
powerful generalization of metric spaces. In partial metric spaces, the self-distance 
of a point need not be zero, a feature well-suited for modeling in computer science 
and domain theory. Matthews also established a version of the Banach contraction 
principle in this framework and introduced a class of open p-balls generating a 
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0T  topology. Since then, numerous fixed point theorems have been obtained in 
this setting, see for examples [11]-[25]. 

The integration of cyclic contractions with partial metric spaces has further en-
riched the theory, yielding fixed point results under weaker or generalized con-
tractive conditions [26]-[31]. 

A notable direction in this context is the use of altering distance functions, in-
troduced by Khan et al. [32], which provide a flexible framework for defining con-
tractions using control functions. These functions have been extensively utilized 
to establish fixed point theorems in both metric and generalized spaces [33]-[37]. 

Building upon these foundational ideas, recent works have explored fixed point 
results for cyclic mappings involving generalized control functions with two var-
iables, particularly in 0-complete partial metric spaces [5] [38]-[48]. These results 
not only unify but also extend several classical and contemporary fixed point the-
orems. 

In this paper, we contribute to this line of research by establishing a fixed point 
theorem for mappings satisfying cyclic weaker-type contraction conditions in-
volving a two-variable control function in 0-complete partial metric spaces. We 
present to demonstrate the applicability and novelty of our results. 

2. Preliminaries 

In this section, we begin with some basic facts and properties of partial metric 
spaces. 

Definition 2.1 ([10]). A partial metric on a nonempty set X  is a function 
:p X X +× →  satisfying for all , ,x y z X∈ : 
(p1) ( ) ( ) ( ), , ,p x x p y y p x y x y= = ⇔ = ; 
(p2) ( ) ( ), ,p x x p x y≤ ; 
(p3) ( ) ( ), ,p x y p y x= ; 
(p4) ( ) ( ) ( ) ( ), , , ,p x y p x z p z y p z z≤ + − . 
The pair ( ),X p  is called a partial metric space. 
Remark 2.2. If ( ), 0p x y = , then x y= . However, x y=  does not neces-

sarily imply ( ), 0p x y = . 
Example 2.3. ([10]) Let [ )0,X = ∞  and ( ) { }, max ,p x y x y= . Then ( ),X p  

is a partial metric space. 
Example 2.4. ([10]) Let [ ]{ }, : , ,X a b a b a b= ∈ ≤  and  
[ ] [ ]( ) { } { }, , , max , min ,p a b c d b d a c= − . Then ( ),X p  is a partial metric space. 

Remark 2.5. [29] Each partial metric p  on X  generates a 0T  topology pτ  
on X  which has as a base the family of open p -balls ( ){ }, : , 0pB x x X∈ >  , 
where ( ) ( ) ( ){ }, : , ,pB x y X p x y p x x= ∈ < +   for all x X∈  and 0> . If 

pU τ∈  and x U∈ , there exists 0r >  such that ( ),pB x r U⊆ . 
Remark 2.6. [29] A sequence ( )nx  converges to x  in pτ  if and only if 

( ) ( )lim , ,n np x x p x x→∞ = . 
Definition 2.7 ([10]) Let ( ),X p  be a partial metric space. 

 A sequence ( )nx  converges to x  if ( ) ( )lim , ,n np x x p x x→∞ = . 
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 ( )nx  is Cauchy if ( ),lim ,n m n mp x x→∞  exists and is finite. 
 ( ),X p  is complete if every Cauchy sequence converges to some x X∈  with 

( ) ( ),, lim ,n m n mp x x p x x→∞= . 
Definition 2.8 ([24]). 
(a) A sequence ( )nx  is 0-Cauchy if ( ),lim , 0n m n mp x x→∞ = . 
(b) ( ),X p  is 0-complete if every 0-Cauchy sequence converges to x  with 
( ), 0p x x = .  
Lemma 2.9. Let ( ),X p  be a partial metric space.  
(a) [20] [49] If ( ) ( ), , 0np x z p z z→ = , then ( ) ( ), ,np x y p z y→  for all 

y X∈ .  
(b) [24] If ( ),X p  is complete, then it is 0-complete. 
Example 2.10 ([24]). The space [ )0,X = ∞ ∩ , equipped with the partial 

metric ( ) { }, max ,p x y x y= , is 0-complete but not complete. The constant se-
quence 1nx =  is Cauchy but not 0-Cauchy. 

Remark 2.11. [29] Every closed subset of a 0-complete partial metric space is 0-
complete. 

Definition 2.12 ([1]) Let X  be a nonempty set, q∈ , and :f X X→ . A 

cyclic representation of X  w.r.t. f  is 1

q
ii

X A
=

=


, where: 

 iA  are nonempty subsets of X , 
 ( ) ( )1 2 1, , qf A A f A A⊆ ⊆ . 

Definition 2.13 ([50] [51]). 
 A coincidence point of T  and S  is x X∈  such that Tx Sx= .  
 y Tx Sx= =  is called a point of coincidence. 

Definition 2.14 ([20] [51]). Mappings , :T S X X→  are weakly compatible 
if ( ) ( )T Sx S Tx=  whenever Sx Tx= . 

Proposition 2.15 ([50] [51]). If T  and S  are weakly compatible and have a 
unique point of coincidence y , then y  is their unique common fixed point.  

Definition 2.16 ([32]). A function [ ) [ ): 0, 0,γ ∞ → ∞  is an altering distance 
function if: 
 γ  is continuous and nondecreasing, 
 ( ) 0 0t tγ = ⇔ = . 

We denote the set of altering distance functions by Γ . 
Definition 2.17 ([8]). Let ( ),X d  be a metric space. An operator :f X X→  

is a cyclic weaker ψ -contraction if: 
1) 1

m
ii

X A
=

=


 is a cyclic representation w.r.t. f ,  

2) There exists a continuous, nondecreasing [ ] [ ): 0,1 0,1ψ →  with ( ) 0tψ >  
for 0t >  and ( )0 0ψ = , such that 

( ) ( ) ( )( ) 1, , , , .i id fx fy d x y d x y x A y Aψ +≤ − ∀ ∈ ∈  

Theorem 2.18 ([8]). Every cyclic weaker ψ -contraction on a complete metric 
space has a fixed point in 1

m
ii

A
= . 

Definition 2.19 ([35]). A mapping :T X X→  is a weak C-contraction if  
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( ) ( ) ( ) ( ) ( )( )1, , , , , , ,
2

d Tx Ty d x Ty d y Tx d x Ty d y Txψ≤ + −    

where [ ) [ )2: 0, 0,ψ ∞ → ∞  is continuous and ( ), 0 0x y x yψ = ⇔ = = . 
Theorem 2.20 ([35]). Every weak C-contraction on a complete metric space 

has a unique fixed point. 
Example 2.21 ([24]). [ )0,X = ∞ ∩  with ( ) { }, max ,p x y x y=  is 0-com-

plete but not complete. 
Definition 2.22 ([21]) Let ( ),X p  be a PMS, C X⊂  and : Cϕ +→  a 

function on C . Then, the function ϕ  is called lower semi-continuous (l.s.c.) on 
C  whenever 

( ) ( ) ( ) ( ) ( )
1

lim , , liminf supinf .n n mn n m nn
p x x p x x x x xϕ ϕ ϕ

→∞ →∞ ≥≥
= ⇒ ≤ =  

In 2013, Nashine et al. [47] introduced a class of generalized control functions 
as follows: 

Let Ψ  denote the class of all functions [ ) [ )2: 0, 0,ψ ∞ → ∞  satisfying the fol-
lowing conditions: 

(a) ψ  is lower semicontinuous; 
(b) ( ), 0s tψ =  if and only if 0s t= = . 
In 2021, Mohanta and Patra [29] established the following coincidence point 

and common fixed point result for a pair of self-mappings satisfying some gener-
alized cyclic contraction type conditions involving a control function with two 
variables in partial metric spaces 

Theorem 2.22. Let ( ),X p  be a 0-complete partial metric space, q∈  and 

1 2, , , qA A A  be nonempty subsets of X . Suppose the mappings , :T f X X→  
are such that ( ) ( ) ( )1 2, , , qf A f A f A  are closed subsets of ( ),X p  and satisfy 
the following conditions: 

(C1) ( ) ( )1i iT A f A +⊆  for 1,2, ,i q=  , where 1 1qA A+ = ; 
(C2) there exists ψ ∈Ψ  such that 

( ) ( ) ( ) ( )( ), , , , ,p Tx Ty M fx fy p fx fy p fx Txψ≤ −  

for any ( ) ( ) ( )1, i ifx fy f A f A +∈ × , 1,2, ,i q=   with 1 1qA A+ = , where 

( ) ( ) ( ) ( ) ( ) ( ), ,
, max , , , , , , .

2
p fx Ty p Tx fy

M fx fy p fx fy p fx Tx p fy Ty
+ 

=  
 

 (2.1) 

Then T  and f  have a unique point of coincidence u  in ( )1

q
ii

f A
=  with 

( ), 0p u u = . Moreover, if T  and f  are weakly compatible, then T  and f  
have a unique common fixed point in ( )1

q
ii

f A
= . 

In the next section, we prove a coincidence point and common fixed point the-
orem for a pair of self-mappings on a 0-complete partial metric space, under a 
generalized contractive condition involving an altering distance function and a 
two-variable control function. This result generalizes Theorem 3.1 of [29]. 

3. Main Results 

Theorem 3.1. Let ( ),X p  be a 0-complete partial metric space, and let q∈ . 
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Suppose 1 2, , , qA A A  are nonempty subsets of X , and let , :T f X X→  be 
two mappings such that the images ( ) ( ) ( )1 2, , , qf A f A f A  are closed subsets 
of ( ),X p . Assume the following conditions are satisfied: 

(C1) ( ) ( )1i iT A f A +⊆  for all 1,2, ,i q=  , where 1 1:qA A+ = . 
(C2) There exist functions ψ ∈Ψ  and Γγ ∈  such that for all  

( ) ( ) ( )1, i ifx fy f A f A +∈ × , 1,2, ,i q=   with 1 1qA A+ = , the following inequality 
holds: 

( )( ) ( )( ) ( )( ) ( )( )( ), , , , , ,p Tx Ty M fx fy p fx fy p fx Txγ γ ψ γ γ≤ −  

where 

( ) ( ) ( ) ( ) ( ) ( ), ,
, max , , , , , , .

2
p fx Ty p Tx fy

M fx fy p fx fy p fx Tx p fy Ty
+ 

=  
 

(3.1) 

Then T  and f  have a unique point of coincidence ( )1

q
ii

u f A
=

∈


 with 
( ), 0p u u = . Furthermore, if T  and f  are weakly compatible, then u  is their 

unique common fixed point in ( )1

q
ii

f A
= .  

Proof. Let 1

q
ii

Y A
=

=


, and let 0x Y∈  be arbitrary. Then there exists  
{ }0 1, 2, ,i q∈   such that 

00 ix A∈ . Since ( ) ( )0 0 1i iT A f A +⊆ , there exists  

01 1ix A +∈  such that 1 0u Tx= . Continuing this process, we construct a sequence 
( )nx  with 1n nu Tx −= , for 1,2,3,n =  , where 

0n i nx A +∈  and :q k kA A+ = . De-
fine ( ):n nu f x= . Then ( )nn ju f A∈ , and ( ) 1n nT x u += . If ( )1, 0n np u u + =  for 
some n∈ , then 1n n nu u Tx+= = , so 1nu +  is a point of coincidence of T  and 
f . Assume ( )1, 0n np u u + >  for all n∈ . Since ( ), 0s tψ >  for 0s t+ >  and 
( ) 0tγ >  for 0t > , we have:  

 ( )( ) ( )( )( )1 1, , , 0, .n n n np u u p u u nψ γ γ+ + > ∀ ∈  (3.2) 

For each n∈ , there exists { }1, 2, ,i q∈   such that ( )1 1,n n i ix x A A+ +∈ × , so 
( ) ( ) ( )1 1,n n i iu u f A f A+ +∈ × . Applying (C2): 

 

( )( ) ( )( )
( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )( )

1 2 1

1 1

1 1 1

, ,

, , , ,

, , , , ,

n n n n

n n n n n n

n n n n n n

p u u p Tx Tx

M u u p u u p u Tx

M u u p u u p u u

γ γ

γ ψ γ γ

γ ψ γ γ

+ + +

+ +

+ + +

=

≤ −

= −

 (3.3) 

where 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ){ }

1

1 1
1 1 1

1 1 2
1 1 2

1 1 2

,

, ,
max , , , , , ,

2

, ,
max , , , ,

2

max , , , .

n n

n n n n
n n n n n n

n n n n
n n n n

n n n n

M u u

p u Tx p Tx u
p u u p u Tx p u Tx

p u u p u u
p u u p u u

p u u p u u

+

+ +
+ + +

+ + +
+ + +

+ + +

 + =  
  
 + ≤  
  

≤

 

So, 

( ) ( ) ( ){ }1 1 1 2, max , , , .n n n n n nM u u p u u p u u+ + + +≤  
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Since γ  is non-decreasing, it preserves inequalities and commutes with the 
maximum operator due to its monotonicity. Thus, we obtain:  

 
( )( ) ( ) ( ){ }( )

( )( ) ( )( ){ }
1 1 1 2

1 1 2

, max , , ,

max , , , .

n n n n n n

n n n n

M u u p u u p u u

p u u p u u

γ γ

γ γ

+ + + +

+ + +

≤

=
 (3.4) 

Let ( )( )1: ,n n na p u uγ += . Then from (3.3) using (3.4), we obtain: 

 { } ( )1 1max , , .n n n n na a a a aψ+ +≤ −  (3.5) 

If { }1 1max ,n n na a a+ += , then: 

( )1 1 1, ,n n n n na a a a aψ+ + +≤ − <  

a contradiction. Thus { }1max ,n n na a a+ = , and (3.5) becomes:  

 ( )1 , .n n n n na a a a aψ+ ≤ − <  (3.6) 

Hence, the sequence { }na  is decreasing and bounded below by zero, and thus 
converges to some limit 0L ≥ . Taking the limit in (3.6) and using the continuity 
of ψ , we obtain:  

( ) ( )lim , , ,n nn
L L a a L L Lψ ψ

→∞
≤ − ≤ −  

which implies ( ), 0L Lψ = , and hence 0L = . Therefore, 

 ( )( )1lim , 0.n nn
p u uγ +→∞

=  (3.7) 

Since γ  is continuous and ( ) 0tγ =  if and only if 0t = , it follows from (3.7) 
that  

 ( )1lim , 0.n nn
p u u +→∞

=  (3.8) 

To show that the sequence ( )nu  is 0-Cauchy, suppose the contrary. Then 
there exists 0>  and subsequences ( )imu  and ( )inu  with i in m i> >  such 
that: 

 ( ) ( )1, and , .
i i i im n m np u u p u u −≥ <   (3.9) 

Using conditions (3.9), and property (p4), we obtain:  

( )
( ) ( ) ( )

( )
1 1 1 1

1

,

, , ,

, ,

i i

i i i i i i

i i

m n

m n n n n n

n n

p u u

p u u p u u p u u

p u u

− − − −

−

≤

≤ + −

< +





 

which implies: 

( ) ( )1, , .
i i i im n n np u u p u u−≤ < +   

Taking the limit as i →∞  and using condition (3.8), we get:  

 ( )lim , .
i im ni

p u u
→∞

=   (3.10) 

Note that for each i , there exists { }1,2, ,ir q∈   such that  
( )1 modi i in m r q− + ≡ . Hence, for large i , 

i im rx −  and 
inx  lie in different, con-
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secutively indexed sets jA  and 1jA +  (modulo q ). Thus,  

( ) ( ) ( )1, .
i i im r n j ju u f A f A− +∈ ×  

Using condition (C2), we get: 

 
( )( ) ( )( )

( )( ) ( )( ) ( )( )( )
1 1, ,

, , , , ,

i i i i i i

i i i i i i i i i i

m r n m r n

m r n m r n m r m r

p u u p Tx Tx

M u u p u u p u Tx

γ γ

γ ψ γ γ

− + + −

− − − −

=

≤ −
 (3.11) 

where 

 

( ) ( ) ( ) ( )

( ) ( )

, max , , , , , ,

, ,
.

2

i i i i i i i i i i i i

i i i i i i

m r n m r n m r m r n n

m r n m r n

M u u p u u p u Tx p u Tx

p u Tx p Tx u

− − − −

− −

= 


+ 



 (3.12) 

We now show: 

 ( )lim , 0.
i i im r mi

p u u−→∞
=  (3.13) 

By repeated use of (p4), we have:  

( ) ( ) ( )
1 1

1 1
0 0

, , , .
i

i i i i i i i i i i i

r q

m r m m r l m r l m r l m r l
l l

p u u p u u p u u
− −

− − + − + + − + − + +
= =

≤ ≤∑ ∑  

Taking the limit and using (3.8), we obtain (3.13). From (p4), we also have:  

( ) ( ) ( ) ( )
( ) ( )

, , , ,

, , .
i i i i i i i i i i

i i i i i

m r n m r m m n m m

m r m m n

p u u p u u p u u p u u

p u u p u u

− −

−

≤ + −

≤ +
 

Hence, 

 ( )limsup , .
i i im r n

i
p u u−

→∞
≤   (3.14) 

Also, 

( ) ( ) ( ) ( ), , , , ,
i i i i i i i i i i i im n n m r m r m m r m rp u u p u u p u u p u u− − − −≤ ≤ + −  

which implies 

( )limsup , ,
i i im r n

i
p u u−

→∞
≤ ≤   

and hence 

 ( )lim , .
i i im r ni

p u u−→∞
=   (3.15) 

Using similar arguments and (3.8), we also derive:  

 ( )1lim , ,
i i in m ri

p u u+ −→∞
=   (3.16) 

 ( )1lim , ,
i i in m ri

p u u − +→∞
=   (3.17) 

 ( )1 1lim , .
i i in m ri

p u u+ − +→∞
=   (3.18) 
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From (3.12) and the limits above, we have: 

 ( )lim , .
i i im r ni

M u u−→∞
=   (3.19) 

Now take the limit in (3.1), and apply the continuity of γ  and the lower sem-
icontinuity of ψ , we get: 

( ) ( ) ( )( ),0 ,γ γ ψ γ≤ −    

which implies: 

( )( ),0 0.ψ γ ≤  

But by assumption, ( ), 0s tψ >  for 0s t+ > , so:  

( ) 0 0,γ = ⇒ =   

a contradiction. Hence, ( )nu  is a 0-Cauchy sequence in ( )f Y . Since  
( ) ( )1

q
ii

f Y f A
=

=


 and ( )f Y  is closed in the 0-complete space ( ),X p , it fol-
lows that ( )f Y  is 0-complete. So, ( )nu  converges to a point ( )u f Y∈  such 
that: 

 ( ) ( )lim , , 0.nn
f gx u p u u

→∞
= =  (3.20) 

We now prove: 

 ( )
1

.
q

i
i

u f A
=

∈


 (3.21) 

As 
00 ix A∈ , by (C1), the sequence ( )00( )nq n iu f A≥ ⊆ . Since ( )0i

f A  is closed, 
by (3.20), ( )0i

u f A∈ . By (C1), ( ) ( )01 10nq in
u f A+ +≥

⊆ . Repeating this for q  
steps (modulo q ), we obtain:  

( ) ( ) ( ) ( )
0 0 01

1
.

q

i i i q i
i

u f A f A f A f A+ +
=

∈ ∩ ∩ ∩ =



 

Now we show that u  is a point of coincidence of T  and f . Since 
( )u f Y∈ , there exists t Y∈  such that ( )u f t= . Let n ix A∈  for some 

{ }1, 2, ,i q∈  . Then, since ( )1

q
ii

u f A
=

∈


, we have  

( )( ) ( ) ( ) ( )1, , ,n n i if t u u u f A f A−= ∈ ×  

where 0 : qA A= . Applying condition (C2), we get an inequality involving the 
mappings. Now choose z X∈  such that ( )f z u= . We claim that ( )T z u= . 
For each n∈ , apply condition (C2) with x z=  and ny x= :  

 

( )( ) ( )( )
( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )( )

1, ,

, , , ,

, , , , .

n n

n n

n n

p Tz u p Tz Tx

M fz fx p fz fx p fz Tz

M u u p u u p u Tz

γ γ

γ ψ γ γ

γ ψ γ γ

+ =

≤ −

= −

 (3.22) 

As n →∞ , we have ( ), 0np u u → , so by continuity of γ ,  

( )( ) ( )( ) ( )( ) ( )( ), 0 and , , , 0.n np u u M u u p u fz p u uγ γ γ γ→ → = =  

Taking the upper limit as n →∞  in inequality (3.22), and using Lemma 2.9 
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and the lower semicontinuity of γ , we obtain:  

( )( ) ( )( ) ( )( )( ), , 0, , .p Tz u p u Tz p u Tzγ γ ψ γ≤ −  

Suppose ( ), 0p Tz u > . Then ( )( ), 0p u Tzγ > , and by the assumption on ψ , 
we have ( )( )( )0, , 0p u Tzψ γ > . This leads to: 

( )( ) ( )( ) ( )( ), , , ,p Tz u p u Tz p Tz uγ γ γ< =  

a contradiction. Hence, ( ), 0p Tz u = , so ( ) ( )T z u f z= = . Therefore, u  is a 
point of coincidence of T  and f , with ( )1

q
ii

u f A
=

∈


 and ( ), 0p u u = . To 
prove uniqueness, assume that there exists another point of coincidence 

( )1

q
ii

v f A
=

∈


 with ( ), 0p v v = . Then there exists w X∈  such that  
( ) ( )v f w T w= = . Since both ( )iu f A∈  and ( )1iv f A +∈  for some i , apply-

ing (C2) yields:  

( )( ) ( )( )
( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( )

, ,

, , , ,

, , , ,

, , ,0 .

p u v p Tz Tw

M fz fw p fz fw p fz Tz

M u v p u v p u u

p u v p u v

γ γ

γ ψ γ γ

γ ψ γ γ

γ ψ γ

=

≤ −

= −

= −

 

Hence, ( )( )( ), ,0 0p u vψ γ ≤ , which implies ( )( )( ), ,0 0p u vψ γ = . By the prop-
erties of ψ , this gives ( )( ), 0p u vγ = , and thus ( ), 0p u v = , implying u v= . 
Therefore, T  and f  have a unique point of coincidence ( )1

q
ii

u f A
=

∈


 with 
( ), 0p u u = . Finally, if T  and f  are weakly compatible, then by Proposition 

(2.15), they have a unique common fixed point in ( )1

q
ii

f A
= .             □ 

Remark 3.2. If we take ( )t tγ =  in Theorem 3.1, we recover Theorem 3.1 of 
[29]. Moreover, Corollaries 3.2 through 3.7 follow directly as special cases of The-
orem (0.23).  

Remark 3.3. If we set g I=  and ( )t tγ =  in Theorem 3.1, we obtain Theo-
rem 13 of [47]. Furthermore, as a special case of Corollary 3.6, several classical 
fixed point results in partial metric spaces can be deduced, including the Matthews 
version of Banach’s contraction principle [10]. 

The following example illustrates the importance of using an altering distance 
function γ  in fixed point theory within partial metric spaces. Specifically, we 
show that a fixed point result may fail under a standard contraction but holds 
when modified with a suitable altering function. 

Example 3.4. Let [ ]0,1X =  be equipped with the partial metric  
( ) { }, max ,p x y x y= . Define the subsets: 

[ ] [ ]1 20,0.6 , 0.4,1 ,A A= =  

and the mappings , :T f X X→  as follows: 

1

2

0.4 , ,
10 .

, ,
15

x x A
Tx fx x

x x A

 + ∈= =
 ∈

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Let the altering distance functions be ( ) 3t tγ =  and ( ),
8

s ts tψ +
= . 

Verification of Conditions. We observe that Condition (C1) (Cyclic Represen-
tation) is satisfied. The images of the sets under T  satisfy:  

( ) [ ] [ ]1 20.4,0.46 0.4,1 ,T A A= ⊆ =  

( ) [ ] [ ]2 1
0.4 1, 0.0267,0.0667 0,0.6 .
15 15

T A A = ≈ ⊆ =  
 

Next we show that for all 1x A∈ , 2y A∈ , the contractive condition  

 ( )( ) ( )( ) ( )( ) ( )( )( ), , , , ,p Tx Ty M fx fy p fx fy p fx Txγ γ ψ γ γ≤ −  (3.23) 

is satisfied, where 

( ) ( ) ( ) ( ) ( ) ( ), ,
, max , , , , , , .

2
p fx Ty p Tx fy

M fx fy p fx fy p fx Tx p fy Ty
+ 

=  
 

 

Key Observations. 
1) For 1x A∈ , [ ]0.4,0.46Tx∈ ; for 2y A∈ , [ ]0.0267,0.0667Ty∈ . 
2) Since Tx Ty> , we have:  

( ) ( )( ) ( )3, , .p Tx Ty Tx p Tx Ty Txγ= ⇒ =  

3) Lower bound estimate for M :  

{ }{ }max max , , , as .M x Tx y y Ty≥ >  

Analytical Verification. 

Case 1: If 0.4
10
xx ≤ +  (i.e., 4 0.4444

9
x ≤ ≈ ), then { }max ,x Tx Tx= , so:  

{ } { }( ) ( ) ( )3 3
3 ,

max , and RHS max , .
8

p x y Tx
M Tx y Tx y

+  ≥ ≥ −  

Case 2: If 4
9

x > , then { }max ,x Tx x= , and:  

{ } { }( ) ( ) 3 3
3 ,

max , , RHS max , .
8

p x y x
M x y x y

+  ≥ ≥ −  

Case 3: Take critical values 0.5x y= = :  
0.50.4 0.05 0.45, 0.0333,
15

Tx Ty= + = = ≈  

( ) ( )( ) 3, 0.45, , 0.45 0.091125,p Tx Ty p Tx Tyγ= = =  

{ } ( ) 3max 0.5,0.5,0.5,0.5 0.5, 0.5 0.125,M Mγ= = = =  

0.125 0.125 0.03125, RHS 0.125 0.03125 0.09375,
8

ψ +
= = = − =  

( )( ) ( ), 0.091125 0.09375 inequality satisfied .p Tx Tyγ⇒ = <  

Next we show that the contractive condition (3.23) fails to hold at 0.6x y= =  
with ( )t tγ = . Let 0.6x y= = . Then: 
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0.6 0.60.4 0.46, 0.04,
10 15

Tx Ty= + = = =  

( ) ( )( ), 0.46, , 0.46,p Tx Ty p Tx Tyγ= =  

{ } ( )max 0.6,0.6,0.6,0.6 0.6, 0.6,M Mγ= = =  

0.6 0.6 0.15, RHS 0.6 0.15 0.45,
8

ψ +
= = = − =  

( )( ) ( ), 0.46 0.45 inequality fails .p Tx Tyγ⇒ = >  

Finally, the unique common fixed point of T  and f  is 4
9

z = . 

4. Conclusions and Open Questions 

In this paper, we established a common fixed point theorem for generalized cyclic 
contraction pairs in 0-complete partial metric spaces, incorporating altering dis-
tance functions ( γ ) and control functions (ψ ). Our results extend and unify sev-
eral existing theorems, including those of [29] and [47]. The introduction of non-
linear altering distance functions (e.g., ( ) 3t tγ = ) allows for fixed point results in 
cases where traditional linear contractions fail, as demonstrated in Example 3.4. 

Future research could explore: 
1) Weaker Contraction Conditions: Can the assumptions on ψ  or γ  be re-

laxed?  
2) Multivalued Mappings: Do analogous results hold for set-valued cyclic con-

tractions? 
This study contributes to the broader landscape of fixed point theory, offering 

a more flexible framework for analyzing cyclic mappings in generalized metric 
spaces. 
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