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Abstract 
This paper explores the foundational and advanced aspects of A∞ -algebras. 
We present a comprehensive study of A∞ -algebras and their homology, em-
phasizing the construction of long exact sequences in simplicial homology and 
their implications for short exact sequences of A∞ -algebras. Furthermore, we 
investigate the trace and inclusion maps in matrix A∞ -algebras, proving their 
mutual invertibility and highlighting their role in preserving homological 
properties. These results underscore the utility of A∞ -algebras in simplifying 
complex algebraic systems while maintaining essential structural invariants. 
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1. Introduction 

The concept of A∞ -algebras (or strongly homotopy associative algebras) and the 
associated structures such as A∞ -modules have evolved significantly since their 
inception. The journey began with Jim Stasheff, who introduced the idea of A∞ -
spaces within the context of homotopy theory. Stasheff created these structures to 
describe spaces equipped with homotopy associative multiplications, thereby lay-
ing the groundwork for A∞ -algebras [1]. This breakthrough not only expanded 
our understanding of spaces with relaxed associativity conditions but also opened 
doors to developing algebraic structures that capture higher homotopy invariants. 

In the 1990s, the study of A∞ -algebras gained renewed attention, especially due 
to their applications in theoretical physics and geometry. At the 1994 Interna-
tional Congress of Mathematicians, Maxim Kontsevich introduced the concept of 
categorical mirror symmetry—a revolutionary idea that highlighted the im-
portance of A∞ -structures in understanding dualities between geometric and al-
gebraic objects. Around the same time, Bernhard Keller extended the use of A∞ -
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algebras to noncommutative algebra and representation theory, showing their 
utility in derived categories and homological properties of algebras. Keller’s work 
demonstrated that A∞ -structures were not just theoretical constructs but practi-
cal tools for analyzing complex algebraic systems. 

The development of these ideas continued into the early 2000s, with contribu-
tions from S. V. Lapin. Lapin explored multiplicative A∞ -structures within the 
framework of spectral sequences, connecting fibrations and their homotopy prop-
erties to differential algebraic structures. Simultaneously, the Hochschild complex 
became an essential tool for studying the algebraic aspects of A∞ -algebras. J. P. 
Serre’s foundational work explored the role of Hochschild homology and coho-
mology in understanding both algebraic and quantum structures, while Lapin’s 
subsequent research offered insights into cyclic homology and simplicial realiza-
tions of spaces. These efforts revealed the deep connections between homological 
invariants, algebraic operations, and topological structures. 

In the following decade, significant advancements were made in the study of 
A∞ -modules over A∞ -algebras. Alaa Hassan Noreldeen Mohamed provided a 

rigorous treatment of the homology of chain complexes endowed with A∞ -struc-
tures. Mohamed demonstrated that the homology ( )*H A  of a differential alge-
bra naturally admits a graded D∞ -algebra structure, while graded A∞ -module 
structures and morphisms emerge in ( )*H M , the homology of associated mod-
ules. These results showed that the framework of A∞ -algebras offers a natural 
generalization of classical differential algebraic systems, allowing for a systematic 
study of higher homotopy invariants [2] and [3]. 

The study of A∞ -algebras has proven to be an indispensable tool for under-
standing homotopy properties, spectral sequences, and algebraic operations. 
Concepts such as Massey products, Hochschild homology, and graded modules 
have emerged as powerful techniques for analyzing these structures. In this pa-
per, we delve deeper into the study of A∞ -algebras and their role in homology 
algebra. 

2. Homology Theory of A∞ -Algebras 

In this section, we delve into the foundational concepts and definitions pertinent 
to the homology theory of A∞ -algebras. We start by defining the basic structures 
of A∞ -algebras, followed by an exploration of their simple homology ([4] [5] and 
[6]). 

2.1. Definitions of Algebra and Graded Spaces 

An algebra over a field R  is a linear vector space X  equipped with a multipli-
cation function :T X X X× → , denoted by ( ),v u vu . The operation T  is 
distributive and linear in both variables, satisfying the following for all , ,v u w X∈  
and Rα ∈ : 

( ) ( ),w v u wv wu v u w vw uw+ = + + = + , and ( ) ( ) ( )vu v u v uα α α= = . 

To extend this concept to graded vector spaces, consider a vector space X  in-
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dexed by a set I . The I -graded vector space is defined as i I iX X∈= ⊕ , where 
each iX  is a vector space. Elements ix X∈  are called homogeneous elements 
of degree i , denoted by deg x i=  or x i=  [7]. 

The tensor product of vector spaces X  and Y  over a field F  is the vector 
space X Y⊗ , with a basis consisting of symbols { }| ,i lx y i I l L⊗ ∈ ∈ . A bilinear 
map :R X Y M× →  induces a unique linear map :R X Y M′ ⊗ → , satisfying 
R R φ′=  , where φ  is the canonical inclusion map [8]. 

2.2. Graded Algebras and Tensor Algebras 

A graded algebra M  over a field R  is defined as i I iM M∈= ⊕ , with a multi-
plication map satisfying ( )deg deg degmn m n= + . From a vector space M , the 
tensor algebra ( )T M  is constructed as: 

( ) 2 3T M R M M M⊗ ⊗= ⊕ ⊕ ⊕ ⊕  

This algebra is naturally graded, with multiplication defined via the tensor 
product [9]. 

2.3. Differential Graded Algebras (DGAs) 

A differential graded algebra (DGA) is a graded algebra M  equipped with a de-
gree +1 chain map :d M M→ , satisfying 2 0d =  and the Leibniz rule: 

( ) ( ) ( ) ( )1 md mn d m n md n= + − , for all ,m n M∈ . 
If ( )1 m nmn nm= − , the DGA is commutative [10]. 

2.4. A∞ -Algebras 

An A∞ -algebra over a field RR is a graded vector space p
p ZA A∈= ⊕  equipped 

with homogeneous maps : n
nr A A⊗ →  of degree 2 n− , satisfying the Stasheff 

identities ( )SL n : 

( ) ( )1 0m st m t
q sr id r id+ ⊗ ⊗∑ − ⊗ ⊗ =  

where the sum is taken over all decompositions n m s t= + + , with , 0m t ≥  and 
1s ≥ . The first few identities ensure differential properties, derivations, and asso-

ciativity up to homotopy [11] and [12]. 

2.5. Morphisms and Quasi-Isomorphisms 

A morphism :h A B→  between A∞ -algebras is a family of graded maps 
: n

nh A B⊗ →  of degree 1 n− , satisfying specific compatibility conditions. If 1h  
induces an isomorphism at the homology level, h  is called a quasi-isomorphism. 
Two A∞ -algebras are quasi-isomorphic if there exists a quasi-isomorphism be-
tween them [13]. 

A minimal model of an A∞ -algebra is a representative with 1 0r = , facilitating 
the study of its homotopy properties and equivalence classes. 

3. Main Result 

The next theorem establishes the existence of a long exact sequence in simplicial 
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homology for a short exact sequence of A∞ -algebras. This result is crucial be-
cause it allows us to analyze how homological properties are preserved and trans-
ferred across components in exact sequences of A∞ -algebras. By connecting the 
homology of the algebra A , its extension B , and the quotient C , this se-
quence becomes a powerful tool for decomposing complex homological struc-
tures. In the following, we will denote the simplicial homology of any algebra X  
by ( )nHH X . 

Theorem 2.1 
If there is a short exact sequence 0 0A B C→ → → →  for DGAs of A∞ -al-

gebras over a field such that B A C= ⊕ , then the following long exact sequence 
of simplicial homology holds: 

( ) ( ) ( ) ( )
( ) ( )

1

1 1 .
n n n n

n n

HH A HH B HH C HH A

HH B HH C
−

− −

→ → → →

→ → →





 

Proof: 
Short Exact Sequence Setup: 
Consider the exact sequence 0 0A B C→ → → → , where A  and C  are 

A∞ -algebras, and B  is their direct sum A C⊕ . This ensures that any element 
in B  can be uniquely written as a pair ( ),a c  with a A∈  and c C∈ . 

Construction of Associated Tensor Algebra: 
Let  TB  denote the tensor algebra associated with B , and let  AB  be the 

ideal in TB . The short exact sequence of DGAs 0 0AB TB B→ → → →  pro-
vides a framework to analyze homology. 

Deriving Long Exact Sequences: 
Using the homological properties of DGAs, we derive the first long exact se-

quence (Cartan & Eilenberg 1956): 

 
( ) ( ) ( ) ( )
( ) ( )

1

1 1 .
n n n n

n n

HH AB HH TB HH B HH AB

HH TB HH B
−

− −

→ → → →

→ → →





 (1) 

Similarly, the short exact sequence 0 0K TB C→ → → →  yields: 

 
( ) ( ) ( ) ( )
( ) ( )

1

1 1 .
n n n n

n n

HH K HH TB HH C HH K

HH TB HH C
−

− −

→ → → →

→ → →





 (2) 

Identifying Relationships between Components: 
From (1) and (2), we observe that: 
In (1) we have ( ) ( ) ( )1n n nHH TB HH B HH AB−→ → , then we get  

( ) ( )1n nHH B HH AB−≅ . Similarly, in (2) we have  
( ) ( ) ( )1n n nHH TB HH C HH K−→ → . So ( )nHH C  is equivalence for ( )nHH B , 

then ( ) ( )1n nHH B HH K−≅ : 

 ( ) ( ) ( ) ( )1 1, .n n n nHH B HH AB HH B HH K− −≅ ≅  (3) 

Substituting into the short exact sequence 0 0AB K A→ → → → , we derive: 

 
( ) ( ) ( ) ( )
( ) ( )

1

1 1 .
n n n n

n n

HH AB HH K HH A HH AB

HH K HH A
−

− −

→ → → →

→ → →





 (4) 
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Combining Results: 
Using (3) and (4), we link ( ) ( ),n nHH A HH B , and ( )nHH C  to construct the 

desired long exact sequence: 

( ) ( ) ( ) ( )
( ) ( )

1

1 1 .
n n n n

n n

HH A HH B HH C HH A

HH B HH C
−

− −

→ → → →

→ → →





 

This completes the proof. 
The following theorem introduces the trace map, a homomorphism that sim-

plifies the study of homology in matrix DGAs. The trace map relates the Hochschild 
homology of a matrix algebra ( )mM L  to that of the underlying algebra L , 
showing they are isomorphic. This result is foundational in reducing the complex-
ity of calculations, as it implies that the homology of a matrix algebra retains the 
same structure as the base algebra. 

Theorem 2.2 
If L  is an A∞ -DGA over a module k , and ( )mM L  is the DGA of matrices 

over L , then for all 0n ≥  and 1m ≥ , the trace map: 

( )( ) ( )* : n m nTr HH M L HH L→  

is an isomorphism. 
Proof: 
Matrix Representation in A∞ -Algebras: 
Let ( )mM L  denote the algebra of m m×  matrices over L . The trace map 

*Tr  acts as a homomorphism that collapses matrix structures into their diagonal 
elements, preserving the homological relationships. 

Short Exact Sequence in Simplicial Context: 
Define a short exact sequence of 2Z -complexes: 

( )( ) ( )( ) ( )( )[ ]*0 2 0m m mC M L M L M L→ →Λ →Λ − → , 

where ( )( )[ ]2mM LΛ −  shifts the degree by −2, i.e.  
( )( ) ( )( ) 2m mn n

M L M L
−

Λ →Λ . The associated long exact sequence in simplicial 
homology is: 

( )( )( ) ( )( )( )
( )( )[ ]( )

*2, 2,

2, 2 .

n m n m

n m

H Z C M L H Z M L

H Z M L

→ → Λ

→ Λ − →





 

Connecting Homology Groups: 
Let Tr  denote the homomorphism between ( )( )( )n mH M LΛ  and ( )( )nH LΛ . 

By definition: 

( )( )( ) ( )( ) ( )( ) ( ), .n m n n nH M L HH Mm L H L HH LΛ = Λ =  

The trace map ( )( ) ( )* : n m nTr HH M L HH L→  ensures a natural isomorphism 
between these groups. 

Conclusion: 
The trace map acts as a projection of matrix components onto their correspond-

ing elements in L , making *Tr  bijective and hence an isomorphism. 
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In the following, the inclusion map plays a complementary role to the trace map. 
This theorem demonstrates that embedding an A∞ -algebra L  into a matrix al-
gebra ( )mM L  preserves homological properties. The isomorphism established 
by the inclusion map confirms that the algebraic structure of L  is fully retained 
within the matrix algebra, ensuring consistency between the two representations. 

Theorem 2.3: Inclusion Map for A∞ -Algebras 
If L  is a DGA over K , and ( )mM L  is the DGA of matrices over L , then 

for all 0n ≥  and 1m ≥ , the inclusion map: 

( ) ( )( ): n n minc HH L HH M L→  

is an isomorphism. 
Proof: 
Embedding of Elements: 
The inclusion map inc  embeds elements of L  into ( )mM L  by represent-

ing them as diagonal matrices. This process preserves the additive and multipli-
cative structure of the algebra. 

Exact Sequence Setup: 
Using the same short exact sequence as in Theorem 2.2, we derive the associated 

long exact sequence. By naturality, the inclusion map inc  respects the homolog-
ical structure. 

Conclusion: 
The map inc  is the inverse of the trace map Tr , completing the isomorphism 

between ( )nHH L  and ( )( )n mHH M L . 
In following theorem, we delve deeper into the relationship between trace and 

inclusion maps by proving that they are inverses of each other. This result high-
lights the duality between these two operations, ensuring that one can seamlessly 
move between the homology of  L I⊗  and ( ) ( )m mM L M I⊗ . This is a key re-
sult for applications where matrix algebras are used to model or simplify complex 
algebraic systems. 

Theorem 2.4: Trace and Inclusion Maps as Inverses 
Statement: 
If L  is an A∞ -algebra, and I  is H -unital over K , then the trace and in-

clusion maps: 

( ) ( ) ( )( ): n ntr HH L I HH Mm L Mm I⊗ → ⊗ , 

( ) ( )( ) ( ): n ninc HH Mm L Mm I HH L I⊗ → ⊗ , 

are inverses of each other. 
Proof: 
Commutative Diagram Construction: 
Using the following commutative diagram: 

( )0 ,mI M I→ → →  

( )0 ,mI M I+ +→ → →  
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where I+  is the unital extension of I , we observe that the rows are exact. 
Morita Invariance: 
Morita invariance ensures that the trace and inclusion maps are isomorphisms 

for ( )mM L  and ( )mM I . Consequently, tr inc  and inc tr  are identity maps. 
Conclusion: 
The trace map tr  and inclusion map inc  are mutually inverse, establishing 

a one-to-one correspondence. 

4. Conclusion 

The study of A∞ -algebras continues to provide profound insights into homolog-
ical and algebraic structures. Our exploration establishes key results, including the 
construction of long exact sequences for simplicial homology and the isomor-
phism between the homology of matrix A∞ -algebras and their underlying alge-
bras via trace and inclusion maps. These findings affirm the robustness of A∞ -
algebra frameworks in decomposing and analyzing complex algebraic and homo-
logical systems. By demonstrating the interplay between trace and inclusion maps 
as inverses, this research bridges the gap between theoretical constructs and prac-
tical algebraic applications. The results offer a versatile toolkit for advancing the 
study of homotopy invariants, spectral sequences, and higher algebraic structures, 
paving the way for future developments in both mathematics and theoretical 
physics. 
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