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Abstract 
The global pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) has had a huge impact on public health in countries around 
the world since late 2019, seriously threatening the health of people in all coun-
tries. Necrosis of the femoral head is one of the major sequelae of coronavirus 
infection with SARS-CoV-2, but studies reporting the association between ne-
crosis of the femoral head and SARS-CoV-2 are rare. Therefore, we performed 
transcriptome analyses to investigate the common pathways and shared dif-
ferentially expressed genes (DEGs) between osteonecrosis of the femoral head 
and SARS-CoV-2, aiming to shed light on the interaction between the two con-
ditions. In this paper, we used three RNA-seq datasets (GSE74089, GSE157103, 
GSE152418) from the Gene Expression Omnibus (GEO) to obtain reciprocally 
differentially expressed genes (DEGs) between patients with osteonecrosis of 
the femoral head and SARS-CoV-2 infection, and identified a total of 36 com-
mon DEGs in these three datasets. We utilized various combinatorial statisti-
cal methods and bioinformatics tools to build a protein-protein interaction 
network (PPI), and then identified hub genes and important modules from 
this PPI network. In addition, we performed functional analysis based on on-
tology terminology and pathway analysis, and found some close associations 
between femoral head necrosis patients and SARS-CoV-2 infections. Tran-
scription factor-gene interactions and DEGs-miRNAs coregulatory networks 
were also identified in the dataset. In addition, we conducted experiments to 
verify the accuracy of the pivotal gene diagnosis by introducing a new dataset 
(GSE171110). 
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1. Introduction 

Coronaviruses are a diverse group of viruses that can infect various animals, in-
cluding humans, and can cause respiratory and digestive system complications, 
significantly impacting individuals’ well-being [1]. The first cases of a new coro-
navirus, SARS-CoV-2, were reported in late 2019. The most frequently observed 
clinical symptoms include dry cough, fever, and shortness of breath. Additionally, 
some patients may exhibit other symptoms, including sore throat, headache, mus-
cle pain, fatigue, and diarrhea, imposing a heavy burden on the health of the 
world’s population and on the economy [2] [3]. 

Studies have shown that the systemic inflammatory response caused by SARS-
CoV-2 can adversely affect the human skeletal system, with ischemic osteonecro-
sis and osteoporosis being the main skeletal sequelae [4]. Osteonecrosis has been 
frequently reported in the literature on SARS, with the majority of these cases af-
fecting the femoral head, but with a lower frequency of involvement of the knee 
joint, the humeral head, the talus, the calcaneus, the heel, and other anatomical 
sites [5]. Although prolonged and heavy use of steroids is an important factor in 
the development of ischemic osteonecrosis, it does not fully explain the develop-
ment of osteonecrosis after SARS-CoV-2 infection. In addition, bone infarction 
and ischemic necrosis of large joints and long bones have been observed after in-
fection with neocoronaviruses [6]. Therefore, the role of SARS-CoV-2 in the path-
ogenesis of ischemic osteonecrosis has aroused our research interest. 

In the current study, four datasets were used to explore the relationship between 
SARS-CoV-2 and femoral head necrosis. 

2. Methods 
2.1. Data Collection 

To determine the genetic interrelationship between SARS-CoV-2 and osteonecro-
sis of the femoral head (ONFH), we downloaded one microarray data GSE74089, 
and three RNA-seq dataset GSE157103, GSE152418 and GSE171110. For the 
training sets, we used GSE157103 and GSE152418. For the validation sets, we used 
GSE74089 and GSE171110. Figure 1 illustrates the General workflow diagram of 
this study. 

2.2. Identification of Differentially Expressed Genes (DEGs) and 
Co-Expressed Genes in ONFH and SARS-CoV-2 

Differential expression analysis was performed on the microarray and high-
throughput sequencing datasets using the “Limma” (version 3.40.6) and “DESeq2” 
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software packages, respectively. Significantly differentially expressed genes (DEGs) 
were screened in all datasets using threshold criteria (p-value < 0.05 and |logFC| > 
1.0). Volcano and heat maps were used to visualize the expression profiles of 
DEGs. Genes co-expressed were identified and visualized by Venn diagram. 
 

 
Figure 1. General workflow diagram for this study. 

2.3. GO and KEGG Enrichment Analysis 

We used KEGGrestAPI to obtain up-to-date gene annotations for the KEGG 
Pathway, and the GO annotations of the genes in the R package org.Hs.eg.db (ver-
sion 3.1.0) as the background, mapped the genes to the background set, and per-
formed the enrichment analysis using the R package clusterProfiler (version 
3.14.3) for enrichment analysis to obtain the results of gene set enrichment. A 
minimum gene set of 5 and a maximum gene set of 5000 were set, and a p value 
of <0.05 and a FDR of <0.2 were considered statistically significant.  

2.4. PPI Network Analysis and Hub Gene Identification 

PPI networks of common DEGs were constructed using the STRING database. 
Setting the minimum required interaction confidence level of 0.4 was performed 
here to generate PPI networks. The resulting networks were constructed and vis-
ualized using the open source Cytoscape (v 3.7.2) platform. The top 10 pivotal 
genes were then analyzed using the algorithms MCC, MNC, Degree, and MCODE 
analysis of the Cytohubba plugin in the Cytoscape software. 

2.5. TF Gene Interactions and TF-miRNA Co-Regulatory Networks 

The NetworkAnalyst platform was used to identify TF gene interactions with 
identified hub genes and TF-miRNA co-regulatory networks. Networks generated 
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from TF gene interactions were obtained from the ENCODE database. TF-miRNA 
co-regulatory interactions were collected from the RegNetwork repositor. Here 
Degree cutoff:1.0 was set to filter unimportant nodes to simplify the network and 
visualize it using NetworkAnalyst. 

2.6. Prediction of Drug Candidates 

We designed a drug molecule based on SARS-CoV-2 and the ONFH disease piv-
otal genes to design drug molecules using the Drug Signature Database (DSigDB), 
which consists of a set of 22,527 genes. Access to the DSigDB database was ob-
tained through the Enrichr platform. 

2.7. Datasets Validate the Diagnostic Value of Pivotal Genes 

We validated the expression levels of the hub genes with external datasets GSE74089 
and GSE171110. The ROC curves of the hub genes were then constructed and the 
area under the curve (AUC) of the pivotal genes was calculated, which indicates 
the diagnostic efficiency of the genes. The higher the value of the AUC, the higher 
the diagnostic efficiency of the genes (an AUC > 0.900 was considered to have 
accurate diagnostic prediction). p values of <0.05 were considered to be statisti-
cally significant. 

2.8. Statistical Analysis 

R 4.2.0 software and Adobe Illustrator 2022 were used for this study. Data are 
expressed as SD ± mean and were compared by using t-test or one-way ANOVA, 
respectively. Nonparametric tests were used when the data did not conform to 
normal distribution. ROC was used to assess AUC and predictive power. p values 
less than 0.05 were considered statistically significant. 

3. Results 
3.1. Differentially Expressed Genes (DEGs) and Co-Expressed 

Genes in ONFH and SARS-CoV-2 

To investigate the interconnections between ONFH and SARS-CoV-2, we searched 
the corresponding human RNA-seq datasets and microarray datasets in NCBI and 
categorized the unordered genes in the datasets SARS-CoV-2 and ONFH. Vol-
cano and heat maps were applied to reproduce DEGs visually (Figures 2(a)-(c)). 
Then we identified 35 upregulated common DEGs and 1 downregulated common 
DEGs. 

3.2. GO and KEGG Enrichment Analysis 

We performed gene ontology analyses in three categories: biological process (BP), 
cellular component (CC), and molecular function (MF), and chose the GO data-
base as the source of annotations. The first 10 GO terms for each subsection are 
shown in Figure 3. 

KEGG analysis has shown results in extracellular matrix receptor interactions, 
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epithelial cell bacterial invasion, adhesive plaques, amoebiasis, antifolate re-
sistance, carbohydrate digestion and absorption, tumor proteoglycans, small cell 
lung cancer, 5-hydroxytryptaminergic synapses, cell cycle and other pathways en-
riched (Figure 3(d)).  

 

 
Figure 2. Volcano and heat maps of DEGs in among SARS-CoV-2 and ONFH. (a) and (b) demonstrate DEGs of different datasets. 
(c) shows Venn diagrams of DEGs among SARS-CoV-2 and ONFH. 
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Figure 3. Chord diagram of results for different GO terms as well as KEEG analysis. (a), (b) and (c) respectively show biological 
process (BP), cellular component (CC), and molecular function (MF). (d) shows KEGG pathways analysis. Each chord plot 
shows the top 10 pieces of information involved in each GO, KEGG term. 

3.3. PPI Network Analysis and Hub Gene Identification 

A total of 21 nodes and 53 edges were identified in the PPI network (Figure 4). 
The top 10 important genes were also calculated based on the method MCC, MNC, 
Degree in Cytoscape combined with Cytohubba plugin (Figure 4(b)). In addition, 
one tightly connected module containing 10 nodes and 40 edges with the highest 
node score (7.0) was obtained by MCODE plugin based on PPI network. Finally, 
the hub genes were obtained by taking the intersection of the genes contained in 
the key modules with the genes derived from the MCC, MNC, and Degree algo-
rithms (Figure 4(c)).  

3.4. TF Gene Interactions and TF-miRNA Co-Regulatory Networks 

We used the NetworkAnalyst platform to identify TF gene interactions with iden-
tified hub genes and TF-miRNA co-regulatory networks. The interactions of the 
TF regulators with the hub genes are shown in Figure 5(a). Next, Figure 5(b) 
represents the interactions between miRNAs regulators and common DEGs. 

3.5. Prediction of Drug Candidates 

We identified 10 possible drug molecules by searching the transcriptome features in 
the DSigDB database and using Enrichr to extract the top 10 compounds (Figure 6).  
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Figure 4. PPI network analysis of co-expressed genes between SARS-CoV-2 and ONFH and hub gene identification 
(a) Common DEGs to construct the PPI network, (b) MCODE plugin obtained 1 tightly connected module, (c) Venn 
diagram showing 10 overlapping hub genes screened by 3 algorithms and MCODE. 

 

 
Figure 5. TFs-hub gene interactions and TF-miRNA co-regulatory network (a) Hub gene and transcription factor interactions 
diagram, hub genes represented by red circles and transcription factors represented by blue square diamonds. (b) TF-miRNA co-
regulatory network, circles represent hub genes, blue squares represent miRNAs, and pink diamonds represent transcription factors. 
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Figure 6. A predictive list of the top 10 drugs for patients with SARS-CoV-2 and ONFH. 

 

 
Figure 7. Validation of hub genes and their diagnostic genes. (a) Validation of the expression levels of 
the pivotal genes in the validation set (ONFH validation set on top, SARS-CoV-2 validation set on bot-
tom), (b) Diagnostic ROC curves of the 8 pivotal genes (SARS-CoV-2 on the left, ONFH on the right, 
AUC > 0.900 was considered to be accurate diagnostic value). 
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3.6. Datasets Validate the Diagnostic Value of Pivotal Genes 

The expression levels of the genes were validated and eight genes with consistent 
expression levels were obtained (Figure 7). The diagnostic ability of the genes ob-
tained from the above analysis was then analyzed by constructing ROC curves and 
using AUC values, the result of the SARS-CoV-2 and control groups showed 
AUC > 0.900 for CENPF, TYMS, CDKN3, MCM4, OIP5, UBE2T, DSCC1, sug-
gesting that six of the key genes may have accurate diagnostic ability in both dis-
eases. 

4. Discussion 

ONFH is a chronic bone disease that is considered one of the major complications 
following neocoronary pneumonia infection. However, the link between SARS-
CoV-2 and ONFH is poorly understood. To the best of our knowledge, little has 
been reported in bioinformatics on the key genes and pathways between SARS-
CoV-2 and ONFH; in this study, we applied a web-based database approach to 
investigate common hub genes in three RNA-seq datasets from patients with ONFH 
and SARS-CoV-2 and analyzed the associated pathways [7] [8]. 

In our study, we applied a gene ontology approach to screen 36 common DEGs. 
In order to deeply investigate the mechanisms of SARS-CoV-2. Based on the com-
mon DEGs, we performed an ontological analysis in terms of BP, MF, and CC [9]. 
In terms of biological processes, the top ten GO terms are cell cycle, tissue develop-
ment, cell migration, secretion, cell motility, cellular localization, locomotion, cell 
development, cellular or subcellular component motility, and immune response 
(Figure 3(a)). Among molecular functions, identical protein binding, molecular 
function regulator, enzyme regulator activity, protein dimerization activity, extra-
cellular matrix structural component, protein c-terminal binding, peptidase reg-
ulatory activity, enzyme inhibitor activity, small GTPase binding, and SH3 struc-
tural domain binding were the main terms (Figure 3(b)). Based on cellular com-
ponents, secretory granules, secretory vesicles, chromosomal regions, vacuolar frac-
tion, lysosomes, lysosomes, basement membrane, vacuolar lumen, transcription 
factor complexes and endoplasmic reticulum lumen are the most important terms 
(Figure 3(c)). 

PPI network analysis is the most important step in this study. In this experi-
ment, CENPF, TYMS, HMMR, CDKN3, MCM4, OIP5, PTTG1, UBE2T, FBXO5, 
and DSCC1 were identified as key genes for SARS-CoV-2 with ONFH (Figure 4). 

CENPF, as a checkpoint protein, is involved in the regulation of the cellular 
cycle [10] [11]. In addition, CENPF is involved in the regulation of apoptosis and 
apoptosis plays an important role in the pathogenesis of both SARS-CoV-2 and 
ONFH [12] [13]. Therefore, CENPF may be one of the potential therapeutic tar-
gets for SARS-CoV-2 and ONFH.  

TYMS is a key gene in the regulation of the cell cycle. Ayo et al. noted that the 
diversity of SNPs in TYMS may be associated with the risk of infection by some 
viruses [14]. At the same time, TYMS can also regulate apoptosis and angiogenesis 
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[15]. 
HMMR not only plays an important role in the regulation of apoptosis as well 

as angiogenesis, but it also mediates macrophage polarization in hypoxic environ-
ments, which, in turn, affects the inflammatory response [16]. CDKN3 is a mem-
ber of the protein phosphatase family and plays an important role in the regula-
tion of the cell cycle. Haiya et al. found that CDKN2 may be associated with the 
regulation of inflammatory vesicles [17]. It has been noted that mutations in 
MCM4 are closely associated with the development of autoinflammatory disor-
ders, which increases the risk of developing SARS-CoV-2 [18]. Furthermore, in 
osteogenesis, OIP5-AS1 overexpression promotes osteogenic differentiation and 
inhibits LPS-induced inflammation [19]. By the way, Knockdown of UBE2T re-
sults in a blockade of the cell cycle in the G2/S phase. In addition, UBE2T knock-
down increases apoptosis [19]. 

PTTG1 has the ability to promote endothelial differentiation of CD34+ CD45+ 
cells. PTTG1 regulates the endothelial differentiation of CD45+ CD3+ cells through 
activation of the VEGF-bFGF/PI34K/AKT/eNOS signaling pathway, thus achiev-
ing the role of promoting pulmonary vascular barrier repair during acute lung 
injury [20]. In addition, inhibition of PTTG1 expression suppresses the expression 
of inflammatory factors and protects the extracellular matrix through the micro-
tubule-associated protein kinase (MAPK) signaling pathway [21]. Furthermore, 
F-box protein plays a key role in a variety of cellular processes, including cell pro-
liferation, apoptosis, and angiogenesis [22]. Moreover, DSCC1 can alter the sen-
sitivity of cells to apoptosis [23]. 

Based on the above key genes, we used the NetworkAnalyst platform for iden-
tifying TF gene interactions with identified hub genes and TF-miRNA co-regula-
tory networks. From the TFs-gene and miRNA-gene interaction network analysis, 
149 transcription factors (TFs) and 44 miRNA-regulatory features have been iden-
tified to be regulated through more than one common DEGs. 

The TF-gene network consists of 159 nodes and 265 edges. The whole network 
consists of 149 TF genes and 10 key genes (Figure 5(a)). Regarding the TF-miRNA 
co-regulatory network, it includes 135 nodes and 151 edges, with a total of 53 miR-
NAs and 72 TF genes co-regulating key genes (Figure 5(b)). 

In our study, drug molecules associated with key genes were identified and 
sorted by searching drug databases (Figure 6). We identified enterolactone, which 
is often associated with inflammation. It has been suggested that enterolactone 
may ameliorate oxidative tissue damage and inflammation in some forms of acute 
lung injury [24]. Furthermore, it has been suggested that Mucuna pruriens can 
increase femoral BMD as well as femoral BMD and femoral biomechanical strength 
in a mouse model [25]. In a clinical study, Marta et al. noted that low serum tes-
tosterone levels were associated with severe SARS-CoV-2 [26]. Liu pointed out 
that testosterone can optimize lung function by increasing expiratory volume, 
lung capacity, and improving oxygen consumption and respiratory muscle con-
traction [27]. Despite the fact that there have been many relevant findings, so far 
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it is not possible to conclude on the beneficial or detrimental effects of testosterone 
on SARS-CoV-2, so more clinical trials and large-scale prospective studies are 
necessary to confirm potential associations in this regard. What is certain, how-
ever, is that testosterone can increase femoral bone density as well as muscle mass 
[28] [29]. 

Resveratrol, coumestrol, and calcitriol are also potential drugs. Resveratrol has 
excellent antioxidant, anti-inflammatory and anti-microbial properties. It can 
play a role in inhibiting the expression and activity of cyclooxygenase, regulating 
apoptosis, and inhibiting pro-inflammatory molecules by antagonizing signaling 
pathways [30] [31]. It has been noted that resveratrol and its synthetic resveratrol 
derivatives have been shown to inhibit SARS-CoV-2 replication and reduce its 
cytopathic effects [32]-[34]. In addition, resveratrol prevents femoral head necro-
sis by upregulating miR-146a and regulates osteogenic and osteoblastic differen-
tiation via Wnt/FOXO and Sirt1/NF-κB pathways [35]. 

Coumestrol can ameliorate inflammation by reducing oxidative stress through 
the activation of SIRT1 as well as apoptosis, which may be useful for SARS-CoV-
2-induced inflammatory response [36].  

In addition, we evaluated the diagnostic ability of hub genes by constructing 
ROC curves (Figure 7). After validation on the GSE74089 and GSE171110 datasets, 
8 genes with consistent expression levels were obtained (CENPF, TYMS, CDKN3, 
MCM4, OIP5, UBE2T, FBXO5, DSCC1). By constructing ROC curves and utiliz-
ing AUC values, the diagnostic efficacy of distinguishing these 8 genes for ONFH 
and control, as well as SARS-CoV-2 and control, was determined. The diagnostic 
accuracy of CENPF, TYMS, CDKN3, MCM4, UBE2T, FBXO5, and DSCC was 
higher in the ONFH and control groups, while the diagnostic accuracy of CENPF, 
TYMS, CDKN3, MCM4, OIP5, UBE2T, and DSCC1 was higher in the SARS-CoV-
2 and control groups, indicating that six key genes (CENPF, TYMS, CDKN3, 
MCM4, UBE2T, and DSCC1) may have accurate diagnostic ability in both dis-
eases. 

It has to be mentioned that there are some limitations in this study. On the one 
hand, due to the scarcity of studies exploring the relationship between ONFH and 
SARS-CoV-2, we were only able to select four datasets from the GEO database for 
the bioinformatics study, which, in turn, imposed a certain limitation on the sam-
ple size of our data. On the other hand, although this study comprehensively and 
systematically analyzed the interconnection between SARS-CoV-2 and ONFH at 
the bioinformatics level, it lacked validation at the cellular and animal levels. 
Therefore, SARS-CoV-2 and ONFH can be explored at a deeper level in future 
studies. 

5. Conclusion 

In this study, we identified 10 key genes (CENPF, TYMS, HMMR, CDKN3, MCM4, 
OIP5, PTTG1, UBE2T, FBXO5, DSCC1) between SARS-CoV-2 and ONFH. Fur-
thermore, we discussed the common biological process, analyzed TF gene inter-

https://doi.org/10.4236/jbm.2025.137013


H. N. Yang, Y. M. Zhu et al. 
 

 

DOI: 10.4236/jbm.2025.137013 178 Journal of Biosciences and Medicines 
 

actions and TF-miRNA co-regulatory networks and predicted possible target drugs. 
Moreover, the diagnostic ability of the hub genes was analyzed by using ROC with 
GSE74089 and GSE171110 as validation sets. Since there is little literature on 
SARS-CoV-2 and ONFH, this study provides value in exploring the relationship 
between SARS-CoV-2 and ONFH, and the prevention and treatment of ONFH 
after SARS-CoV-2 infection. 
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