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Abstract 
In any military operation, reliable logistics is essential to maintaining a com-
bat-effective force. Without the continual resupply of ammunition, food, 
and other materiel, forces cannot sustain their operations. Currently, logis-
tics routes are made manually based on the judgment of individual logisti-
cians. To automate this process, we develop two models that incorporate 
Geographic Information System (GIS) data to generate distributed logistics 
networks between two locations. These models build upon existing approaches 
to non-military transportation problems. The first model, the Route Selec-
tion Algorithm (RSA), modifies the K  Shortest Paths algorithm and em-
ploys a Mixed Integer Linear Program (MILP) to generate multiple routes 
that minimize tactical risk while maximizing route dissimilarity. The second 
model, the Route Generation Algorithm (RGA), iteratively determines the 
optimal path and then applies a penalty factor to previously used arcs, dis-
couraging their selection in future routes to enable route dissimilarity. Both 
models return multiple dissimilar routes with minimized risk that provide 
commanders with several viable resupply options. After a small-scale model 
comparison of 100 simulated scenarios, our results indicate that the RSA 
produces routes with lower risk, while the RGA generates routes with higher 
dissimilarity and has a lower runtime. These models serve as initial formu-
lations that can be further refined into a robust, comprehensive risk-avoid-
ance model to be used by military logisticians. This paper introduces a novel 
comparison between two routing algorithms and presents an innovative 
method for quantifying the risks posed by enemy forces and weapons sys-
tems in military transportation problems. 
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1. Introduction 

One of the key tenets of success in military operations is establishing reliable, ro-
bust, and secure logistics, defined as “the processes, resources, and systems in-
volved in generating, transporting, sustaining, and redeploying or reallocating 
materiel and personnel.” [1] During conflict, reliable logistics enables armies in 
combat to be resupplied and allows them to continue conducting operations. Con-
versely, unreliable logistics will force an army to halt their operations, even when 
opportunities to easily advance are present. Given the criticality of logistics, we 
want to evaluate the way the US Army currently creates logistics networks to de-
termine if they can be improved. 

1.1. Current US Army Logistics 

Currently, US Army logistics networks follow a fairly standardized methodology. 
Materiel will arrive at an Aerial Port of Debarkation (APOD) or Sea Port of De-
barkation (SPOD), where it is under the control of the Theater Sustainment Com-
mand (TSC) [2]. From there, the materiel is transported to a Central Receiving 
and Shipping Point (CRSP), run by a sustainment brigade, where it is temporarily 
stored before being moved closer to the supported unit [3]. After that, the materiel 
is then moved to a Combat Sustainment Support Battalion (CSSB), a battalion 
within the sustainment brigade, which stores the materiel until requested [3]. Once 
the materiel is requested, it is sent to a Brigade Support Battalion (BSB), which is 
a battalion within the supported Brigade Combat Team (BCT), located at the 
BCT’s Brigade Support Area (BSA) [4]. The flow of materiel from an APOD or 
SPOD to a BSB is shown below in Figure 1. Collocated within the BSA is an ele-
ment from the Forward Support Company (FSC) of the supported battalion [2]. 
These locations are called the Field Train Command Posts (FTCP) [4]. Upon re-
quest, the FSCs will then send the materiel from the FTCP to a Combat Train 
Command Post (CTCP), where the rest of the FSC is located, which typically 
serves as the main supply point for the supported battalion [4]. Finally, the mate-
riel is then moved from the CTCP to the Logistics Resupply Point (LRP), where 
each individual supported company can receive the necessary equipment and dis-
tribute it as needed. [4] The flow of materiel from a CSSB to the LRP is illustrated 
in Figure 2. This is the typical process as described in Army doctrine; however, it 
is possible that the true flow will differ slightly. Depending on the commander’s 
needs, it is possible that materiel could be moved to multiple CTCPs or CSSBs 
before being moved to a subordinate unit, or several steps in this process could be 
skipped entirely [5]. 

Problem Statement 
Currently, the risk of an enemy exploiting a logistics route between two logistics 

nodes is evaluated through human intuition [5]. Typically, for routes between two 
locations that contain a large amount of throughput, there will exist between three 
and five possible routes, one of which is selected for use daily based off the current 
risk posed by enemy forces. The selected route, if no significant changes to the 
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risk level occur, does not need to change every day. However, this method of min-
imizing the risk posed by certain routes relies on human intuition and estimation, 
which can be fallible or lead to suboptimal results. 

 

 
Figure 1. This graphic shows the flow of materiel from the APOD/SPOD to a BSB [4]. 

 

 
Figure 2. This graphic shows the flow of materiel from a CSSB to the LRP [9]. 

 
We propose that we automate the process used to create logistics routes to com-

prehensively account for enemy locations and time constraints. These routes would 
account for the risk posed by enemy forces in the area, create spatially dissimilar 
routes to ensure diverse route options, and meet mission time constraints. This 
would ensure more accurate estimations of risk for the transportation of materiel 
in a contested environment and free up valuable time for logisticians to refocus 
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on other matters, such as managing and compiling supply requests for different 
units. 

1.2. Literature Review 

To better understand this problem, it is necessary to explore current research and 
similar applications in transportation problems. Such problems focus on the use 
of different algorithms to generate routes in a particular environment, which will 
optimize according to different objectives, such as time or distance. Multiple ap-
proaches have been used to model similar problems that involve minimizing ob-
jectives in routing. 

A model from Dadkar et al. uses a two-stage formulation to minimize exposure 
to toxic waste in rail travel [6]. First, a K  shortest path (KSP) heuristic is used 
to identify routes that minimize a combined time and risk metric. Second, a mixed 
integer linear program (MILP) is used to select a dissimilar subset. A different 
model from Chang et al. uses a similar approach but deals with stochastic travel 
times. This model calculates the expected travel time and selects routes with a 
specified precision [7]. Another paper from Liu et al. uses a heuristic algorithm 
instead of an MILP to create routes that optimize a combined shortest time and 
dissimilarity metric [8]. Another model from Kang et al. incorporates Value at 
Risk (VAR) into a KSP routing model for hazardous waste transportation [9]. 

Additionally, Xie et al. explores a similar problem, where they determine the 
most cost effective set of rail yards to open to transfer toxic waste [10]. In this 
model, they create Origin-Destination (OD) segments between two rail yards, and 
then use a MILP to select the subset of OD pairs to minimize the cost and number 
of rail transfers. A similar paper from Wan and Lo uses a MILP to create OD pairs 
between nodes in a civilian rail network with multiple constraints [11]. Further-
more, a different model from Kendall et al. creates land routes to avoid a station-
ary enemy location [12]. In this model, a soldier moves to an objective by either 
walking, crouching, or crawling, and must avoid audio and visual detection from 
a stationary enemy. They calculate the probability of detection resulting from trav-
ersing along each pair of arcs, and then use an MILP to identify the route that 
minimizes the risk of detection. 

There are other papers in the literature that have looked at similar problems. 
Erkut and Verter attempt to find dissimilar routes for hazardous waste transpor-
tation [13]. Their work examines multiple algorithms to determine which method 
produces the best routes while considering urban and rural areas, factors that may 
be worth exploring for future work. Their study also highlights the challenge of 
modeling transport risk, as different risk models often result in different optimal 
routes. This is an important consideration for military logistics, where the quan-
tification of risk can directly impact route selection and operational security. 

Thyagarajan et al. explore methods to determine dissimilar paths for military 
aircraft during mission entry, with the aim of avoiding mission detection [14]. 
Their work generates a network based on geographic information and then ap-
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plies p-dispersion heuristics and the tabu search procedure to find a set of dissim-
ilar routes. The focus on route dispersion aligns with risk mitigation strategies in 
military logistics, where reducing predictability can be critical for mission success. 

2. Materials and Methods 

We create two different models and compare their performances across various 
metrics. One approach, which we will call the Route Selection Algorithm (RSA), is 
based on the model by Dadkar et al. We first use Yen’s Algorithm to identify many 
possible routes to minimize the risk posed by enemy forces and then use an MILP 
to select a subset of dissimilar routes to return to the user [6]. The second approach, 
which we will call the Route Generation Algorithm (RGA), is based on Hu and 
Chiu’s model. It will use Dijkstra’s algorithm to identify the optimal route accord-
ing to a preference index, and then apply a penalty to any arc previously used [15]. 

These two approaches represent novel use cases for the previous uses in both 
models. The original work in the model by Dadkar et al. focused on mitigating 
exposing surrounding populations to toxic waste transported via rail while bal-
ancing transit time [6]. The original work in Hu and Chiu’s model focused on 
minimizing transit time and route similarity in a civilian transportation context 
[15]. Both of these models were focused on civilian and commercial applications 
of these approaches. Our work is unique from these original models by incorpo-
rating the risk posed by enemy forces to serve as an additional factor to consider. 
The modifications we introduce in our RSA and RGA models introduce this new 
factor, creating a military application for these approaches. 

2.1. Risk Modeling 

Both approaches require us to quantify the risk posed by enemy forces and enemy 
spotters. To model this, we first define risk as the probability that enemy actions 
prevent friendly forces from traversing a route or arc due to sufficient damage. 
We assume that enemies need to have both visual observation and that their weap-
ons be within the maximum effective range of a node or arc to pose this risk; hav-
ing one without the other would prevent coordinated fires, and thus be ineffective 
in impacting friendly travel. 

First, we need to determine the risk posed at each individual node. To do this, 
we need to calculate the probability of an enemy visually detecting or accurately 
targeting a friendly force at each node. For both cases, we use EQN 1 shown below. 
( )iP D  represents the probability that friendly forces at node i  are detected, 

and ( )iP K  represents the probability that friendly forces at node i  are accu-
rately targeted by a weapons system. M  is the maximum range of the spotter or 
weapons system, and id  is the distance from the node to a given enemy weapon 
or spotter. This is a logistic curve, and we make several assumptions: there is a 
99% accuracy rate at the minimum distance, a 50% accuracy rate at half the max-
imum distance, and a 1% accuracy rate at the maximum range. This parametriza-
tion is intended to be somewhat arbitrary. There are too many factors, such as the 
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type of weapons system, weather, and visibility due to the time of day that would 
influence the ability of a weapons system to accurately target or an observer to 
observe friendly locations. Therefore, we choose to make a standardized equation 
and apply it to all types of weapons systems and observers. This is intended to act 
as a stand in; a more accurate model for a specific enemy weapons system could 
easily be substituted if available. 

For each node i , we calculate ( )iP D  and ( )iP K . It should be noted that 
each arc does not contain just two nodes; each arc is broken up into roughly equi-
distant segments by internal nodes to capture the non-linearity of the arcs. The 
output of this equation is a value between 0 and 1. A 0 represents the enemy spot-
ter or weapons system is out of range, and cannot observe or target friendly forces, 
and a 1 represents extremely close proximity to enemy forces, which would almost 
guarantee an engagement. 

 ( ) ( ) ( )2ln 99
2

1,

1 e
i

i i Md
M

P D P K
 − 
 

=

+

 (1) 

Following this, we need to calculate the probability of detection or accurate tar-
geting from all enemy forces at a single node. To accomplish this, we calculate 
( )nP D  and ( )nP K , which represent the probability that at least one enemy will 

observe or accurately target the friendly force located at node n . These are de-
picted below in Equation (2) and (3) below. In these equations, s  represents all 
enemy observers with a nonzero value of ( )iP D  at node n , and e  represents 
all enemy weapons systems with a nonzero value of ( )iP K  at node n . These 
equations allow us to calculate the probability that there will be accurate targeting 
or detection from all possible enemy spotters or weapons systems at node n . This 
allows us to condense the individual probabilities from all enemy elements into 
two single probabilities for each node. 

 ( ) ( )( )
1

1 1
s

n i
i

P D P D
=

= − −∏  (2) 

 ( ) ( )( )
1

1 1
e

n i
i

P K P K
=

= − −∏  (3) 

Finally, we calculate the probability that an enemy force will both detect and 
accurately target friendly forces along a given arc. This is shown below in Equation 
(4). There, ,x yR  is the probability that the enemy force will successfully target a 
friendly force traveling along the arc contained by nodes x  and y . In this equa-
tion, n  represents all the nodes within that arc. ,x yR  will take a value between 
0 and 1, where 0 represents a completely safe route, while 1 represents an ex-
tremely high chance of destruction due to enemy actions. 

 ( ) ( ) ( )( ),
1

1 1
n

x y n n
i

P R P D P K
=

= − − ⋅∏  (4) 

2.2. RSA Model Formulation 

Below, we outline the three-step process in the RSA (Route Selection Algorithm) 
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model, which we base off the model created by Dadkar et al. [6]. First, we use a 
modification of an existing KSP algorithm to generate K  routes that minimize 
exposure to enemy risk. Then, we quantify the dissimilarity between each pair of 
routes. Finally, we use an MILP to minimize the maximum similarity between the 
N  returned routes to ensure spatial dissimilarity between selected routes. This 
process is shown below in Figure 3. 

Route Identification 
For our RSA model, we first implement a KSP algorithm to generate many dif-

ferent viable routes. A KSP algorithm will find the K  best routes in a given net-
work, not just the best route. One common KSP algorithm is Yen’s K  shortest 
path algorithm [16]. This algorithm was first created in 1971 by Dr. Jin Yen and 
has since been adapted to many different applications within vehicle transporta-
tion problems [16]. This algorithm works by iterating through Dijkstra’s algo-
rithm multiple times. First, it finds the most optimal route. It then sequentially 
splits this route at a node. The first segment of the route is untouched. The second 
route is removed from the network, and Dijkstra’s algorithm is used to calculate 
the optimal route from the end of the first segment to the destination. This process 
runs sequentially until the K  best routes have been identified. 

In our model, we make two substantial changes. First, we minimize according 
to the risk posed by the route, not the time it takes to traverse it. Second, we im-
plement a user-defined time constraint, which is not present in Yen’s Algorithm 
[16]. This allows the commander to limit the total travel time for each generated 
route, simulating an operational time constraint. This algorithm will create K  
candidate routes, where K  is a hyperparameter. 

Dissimilarity Index Calculation 
Once we generate K  candidate routes, we need to define a way to compare 

the dissimilarity of each pair of routes. This is accomplished below in Equation 
(5), where r  and *r  represent two different routes, ( )L r  represents the length 
of route r , and ( )*L r r∩  represents the length of all arcs contained in both r  
and *r  [17]. The output of ( )*,S r r  is a similarity index between 0 and 1, 
where 0 indicates routes with no shared segments and 1 indicates identical routes. 
This metric is calculated for each possible pair of routes generated from the KSP 
algorithm. 

 ( )

( )
( )

( )
( )

* *

*
*,

2

L r r L r r
L r L r

S r r

∩ ∩
+

=  (5) 

 
Figure 3. This graphic shows the process used in the RSA model. 
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Selecting Dissimilar Routes 
Finally, we select a subset of N  routes based on the calculated similarity met-

rics. To do this, we use a MILP to minimize the maximum similarity between any 
two selected routes. First, we define the variable rx  below in Equation (6). This 
models whether a route is selected to be returned to the user. 

 
1 if route is in the final subset of routes,
0 otherwise.r

r
x 
= 


 (6) 

Next, we define the MILP in Equations (7), (8), and (9) below. In Equation (7), 
we minimize s , which represents the largest similarity index between any two 
selected routes. In Equation (8), we select a total of N  routes to return to the 
user. In Equation (9), we ensure that the value of s  is the largest shared similar-
ity index between any two selected routes. This ensures that all N  routes have a 
baseline level of dissimilarity with the selected other routes. This prevents a sce-
nario where certain returned routes are very dissimilar, while others are extremely 
similar, and ensures a diverse network of routes are returned. 
 Minimize s  (7) 

 subject to r
r

x N=∑  (8) 

 ( )( )*
* *, 1 , ,r r

S r r x x s r r+ − ≤ ∀  (9) 

2.3. RGA Model Formulation  

Below, we will outline the process used in our RGA model. We base this approach 
on a model by Hu and Chiu, where they generate spatially dissimilar routes that 
minimize travel time in an interstate system [15]. In this algorithm, they use Dijks-
tra’s algorithm to first find the route that minimizes the time traveled between two 
nodes [15]. Then, they apply a penalty term to each arc contained in that route 
and recalculate the optimal route between the same start and end notes [15]. Un-
like Yen’s Algorithm, this algorithm does not remove any arcs from the network; 
instead, it just penalizes previously used arcs. This creates routes that tend to be 
suboptimal, but these routes are much more dissimilar than those created in Yen’s 
Algorithm. Additionally, the runtime for this algorithm is substantially lower. 

This model does not require a three-step process like the RSA model; rather, we 
generate a certain number of routes initially that do not require further selection. 
To generate each route, we use Dijkstra’s algorithm and minimize according to a 
preference index, which we define as risk. We then apply a penalty factor to each 
arc that is used to generate subsequent routes. This process is shown below in 
Figure 4. 

RGA Route Generation 
For our RGA model, we first create a preference index. After each iteration, we 

apply a penalty factor to the preference index to indicate that the arc is less 
preferable in order to reduce similarity among generated routes. The risk index 
cannot be used because the preference index needs to be modified once an arc is  
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Figure 4. This graphic shows the process used in the RGA model. 

 
used; we want to prevent the risk index from being directly modified to ensure 
that it reflects the risk posed purely by enemy forces. As a result, we set the initial 
values of the preference index equal to the values of the risk index; this ensures 
that we account for the risk when generating the routes, while ensuring that we 
do not modify the risk index values directly. 

Following that, we need to identify the penalty factor, α . This is a value greater 
than 0, and if an arc is used, the preference index for that arc is multiplied by 
( )1 α+  to induce a penalty for using the arc in subsequent routes. If an arc has a 
risk value of 0, we assign it a preference index of 0.01. This is because if it remains 
at 0, then any penalty factor will not change the preference index; this would elim-
inate the intent of penalizing reused arcs. 

For this model, we generate routes through a cyclic process as depicted in Fig-
ure 4. First, we find a route that minimizes according to the preferred metric by 
using Dijkstra’s algorithm. We then update all preference indices that have been 
used in the route by the penalty factor. This is repeated N  times to generate a 
total of N  routes. 

2.4. Dataset Used 

For our dataset, we use publicly available data from Open Street Maps. This data 
represents an approximately 10 km by 10km road network in the town of Britburg, 
Germany and some of the surrounding countryside. This is intended to be a sam-
ple use case in a relatively small environment. In total, this area contains 1609 
road arcs and 1314 road nodes. Additionally, we assume that each enemy weapon 
systems has a range of 5 km and each enemy observer has a range of 1.6 km. We 
do not consider the impact of buildings or terrain on these ranges. 

2.5. Hyperparameter Value Selection  

Before these two algorithms can be compared, we first must select values for the 
hyperparameters in each model. For RSA, we need to choose a value of K , or the 
number of routes returned by the KSP algorithm. For RGA, we need to choose a 
value of α , the penalty factor. We base the selection of these hyperparameters de-
pend on the metrics for the returned routes from each model. This means that we 
examine how the mean similarity scores, mean risk scores, and mean routing algo-
rithm run times vary across the returned N  routes for each different hyperparam-
eter value to determine which values of K  and α  to use in our final model. 
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Each scenario has 4 random enemy locations, 2 random spotter locations, and 
return 3 final routes. Additionally, for each iteration within the scenario, the route 
start and end location remain the same. These are kept constant to prevent any 
confounding variables from obscuring the results from the different hyperparam-
eter values. We test out a total of 10 different values of both K  and α  for 10 
trials each, for a total of 100 trials per model. 

RSA 
For the RSA model, we need to identify a value of K  to use. We first explore 

how varying K will impact the mean similarity of the N  selected routes. For 
clarity, it should be noted that we only examine returned routes, not all K  
routes generated by the KSP algorithm. The results of our simulation are shown 
in Figure 5; as the value of K  increases, the mean similarity score for all routes 
decreases. This indicates that the routes become more dissimilar as the value of 
K  increases, which is ideal; we want to ensure that the final routes are dissimilar. 

 

 
Figure 5. This figure shows the mean similarity scores for different values of K. 

 
Additionally, we explore how the mean route risk score changes as K  increases. 

The results from our simulation are shown below in Figure 6; as the value of K  
increases, the mean risk score for the N  selected routes marginally increase. At 

5K = , the mean risk score is 12.82, while at 50K =  it is 13.05. It should be 
noted that the vertical axis does not start at 0; it starts at 12.5 to highlight the slight 
increase in risk from each increase in K . This indicates that as the value of K  
increases, the final routes incur slightly more risk. This is not ideal, as risk should 
be avoided, but the magnitude of change is much less compared to the change in 
mean similarity scores. 

Furthermore, as the value of K  increases, the overall runtime of the route 
identification algorithm also increases. This is shown below in Figure 7. The mean 
runtime appears to increase linearly as the value of K  increases. This is because 
a higher value of K  will explore more possible routes, which increases the over-
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all runtime. This is not ideal; a longer runtime will cause the user to wait longer 
for the results. 

 

 
Figure 6. This figure shows the mean risk scores for different values of K. 

 

 
Figure 7. This figure shows the mean routing algorithm runtimes for different values of K. 

 
Based on these results, we choose to use a value of 50K = . This is because this 

hyperparameter value will generate enough diversity in the routes while not hav-
ing an unreasonable runtime. In Figure 5, the average mean similarity score de-
creases from around 0.8 at 5K =  to under 0.6 at 50K = . In Figure 6, the mean 
risk score increases from 12.82 to 13.05 as K  increases from 5 to 50. In Figure 
7, the mean runtime increased from around 4 seconds at 5K =  to 74 seconds at 

50K = . This means that a large value of K  is needed to ensure we have suffi-
ciently diverse routes; a smaller value would result in routes that are just too sim-
ilar. Additionally, 74 seconds is unlikely to threaten mission completion as it is 
unlikely to significantly delay mission planning. Though there is a slight increase 
in risk, this is not significant enough to outweigh the benefits of increased route 
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dissimilarity. Therefore, we choose a value of 50K =  because it will maximize 
the dissimilarity of our candidate routes among the values of K  we examine. 

RGA 
To identify the best value of α , we explore the effect of different values of α  

on the mean route similarity, mean route risk scores, and mean routing algorithm 
runtime. First, we explore the relationship between α  and the mean similarity 
score. The results are shown below in Figure 8. This indicates that as the value of 
α  increases, the mean similarity score decreases; this is ideal for our model. 

 

 
Figure 8. This figure shows the relationship between α  and the mean similarity score. 
 

Additionally, we explore the relationship between α  and the mean risk score 
of the chosen routes. The results are shown below in Figure 9. This indicates that 
as the value of α  increases, the mean risk score of the chosen routes appears to 
increase linearly. This is not ideal, as we want to avoid risk as much as possible. 

 

 
Figure 9. This figure shows the relationship between α  and the mean risk score. 
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Furthermore, we explore the relationship between α  and the mean routing 
runtime. The results are shown below in Figure 10. This indicates that as the value 
of α  increases, the mean routing runtime generally decreases; however, the de-
crease is so slight, that it does not appear to be significant because they only vary 
by several hundredths of a second. Since the change is so small, this does not sig-
nificantly affect our model. 

 

 
Figure 10. This figure shows the relationship between α  and the mean routing runtime. 
 

Based on these results, we choose to use an α  value of 0.6. This is because it 
appears to balance the dissimilarity and risk score of the routes created. Based on 
Figure 8, the mean similarity score will vary between 0.5 and less than 0.1. At 

0.6α = , the mean similarity score is approximately 0.15. In Figure 9, the mean 
risk score varies between 13 and 20; at 0.6α = , this score is approximately 17. In 
Figure 10, the mean routing runtime did not significantly change over different 
values of α . Given we want to achieve a low mean similarity score and a low 
mean risk score, 0.6α =  appears to be an appropriate balance between these 
two competing factors. 

3. Model Comparison 

To evaluate our different approaches, we need to determine how each model com-
pares in terms of runtime, mean similarity, and mean risk. First, we run 100 sim-
ulations on both models using publicly available GIS data. Each scenario has 2 
randomly placed enemy weapon systems, 4 randomly placed enemy observers, 
and returns the 3N =  routes with the lowest risk scores. For the 100 iterations, 
the route start and end location remain the same. Next, we examine and collect 
the results from each model. Furthermore, the same preprocessing and risk cal-
culation methods are used for both models. All scenarios used a K  value of 50 
for the RSA model, and α  of 0.6 for the RGA model. Finally, we compare these 
results for statistical significance and form our final conclusions. 
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3.1. RSA Results 

The results of the RSA model are shown in the appropriate row in Table 1. This 
indicates that the mean route risk score, out of all N  selected routes, is 18.15. 
The mean similarity score between selected routes is 0.536. The mean total 
runtime for each iteration is 72.99 seconds. Finally, the mean routing runtime, or 
the mean runtime of just the route generation and route selection parts of the 
model, but not any preprocessing, is 62.00 seconds. An example output is shown 
below in Figure 11. In this image, the black lines represent the existing road net-
work, the red circles represent the radius of the enemy weapon systems, the blue 
circles represent the range of the enemy spotters, and the pink circles represent 
the start and end nodes. The chosen routes are shown in green, purple, and or-
ange. 

 

 
Figure 11. This figure shows a sample output of the RSA model. It is sample 95 from our 
100 random scenarios. 

 
Table 1. The above contains summary statistics from both models. 

Model Mean Risk Score 
Mean Similarity 

Score 
Mean Total 

Runtime 
Mean Routing 

Runtime 

RSA 18.15 0.536 72.99 (s) 62.00 (s) 

RGA 22.58 0.135 12.97 (s) 0.467 (s) 

3.2. RGA Results 

The results of the RGA model are shown in the appropriate row in Table 1. This 
shows that the mean route risk score, out of all generated routes, is 22.58. The 
mean similarity score between selected routes is 0.135. The mean total runtime 
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for each iteration is 12.97 seconds. Finally, the mean routing runtime, or the mean 
runtime of just generating the three routes without preprocessing, is 0.467 sec-
onds. An example output is shown below in Figure 12. The colors and shapes 
represent the same values shown in Figure 11. 

 

 
Figure 12. This figure shows a sample output of the RGA model. It is iteration 95 from our 
100 random scenarios. 

3.3. Model Comparison Analysis 

To better understand the true difference between the results of the RSA and RGA 
models, we will conduct t-tests to determine if the difference in mean risk scores 
and mean similarity scores are statistically significant. 

First, we examine the mean risk scores. A boxplot of the different mean risk scores 
between the models is shown below in Figure 13. Based on the plot, there appears 
to be a difference in the mean risk score between these models; the RGA Model has 
generally higher scores than the RSA model. This observation is validated with a 
Welch’s two-sample t-test on these mean risk scores. The results return a p-value of 
3.62 × 10−6, which indicates that there is very strong evidence to suggest that the 
different means observed between these two models are statistically significant. Ad-
ditionally, we calculate the 95% confidence interval for the true difference in the 
mean risk scores between the RGA and RSA models to be (2.60, 6.26). This repre-
sents we are 95% confident that the true difference in the mean risk scores between 
models is within that confidence interval. This further indicates that these two mod-
els will result in statistically significantly different mean risk scores, with the RGA 
model creating routes with a higher risk than the RSA models. 

Next, we examine the mean similarity scores. A boxplot of the mean similarity 
scores between the two models is shown below in Figure 14. Based on the results,  

https://doi.org/10.4236/ajor.2025.154007


J. R. Hernon et al. 
 

 

DOI: 10.4236/ajor.2025.154007 140 American Journal of Operations Research 
 

 
Figure 13. This boxplot compares the mean risk scores between the RSA and RGA models. 

 

 
Figure 14. This boxplot compares the mean similarity scores between the RSA and RGA 
models. 
 
the values in the RGA model appear to be significantly smaller than those in the 
RSA model. We further test this with a Welch’s two-sample t-test to determine if 
the mean similarity scores are different between the models. The results give a p-
value of 2.2 × 10−16, which indicates there is overwhelming evidence to suggest 
these two models have different means. Furthermore, we calculate the 95% confi-
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dence interval for the mean similarity score for the true difference in means to be 
(−0.441, −0.362). This indicates that the mean similarity score for the mean simi-
larity score for the RGA is significantly lower than the score for the RSA model. 

The difference in the mean routing runtime is likewise substantial. As depicted 
in Table 1, the mean routing runtime for the RSA model is 62.00 seconds, while 
it is 0.467 seconds for the RGA model. This indicates that the RGA is significantly 
less complex than the RSA model. 

4. Discussion  

Both models proved capable of successfully generating routes that minimized ex-
posure to the areas where the enemy could both detect and effectively engage 
friendly forces. Additionally, the models generated routes that were dissimilar 
from each other to ensure route diversity. There were relatively low similarity 
scores, especially for the RGA model, which indicates that each generated route 
had substantial differences from the other generated routes. 

Additionally, the results from the model comparison indicate that, although 
both models can generate the necessary routes, there exists a trade off between the 
models. The results of the t-tests indicate that the RGA model produces routes 
with a lower similarity, a quicker runtime, and higher risk. Likewise, the RSA 
model produces routes with a higher mean similarity score and runtime, but gen-
erates routes with a lower mean risk score. These differences do not indicate one 
model is exclusively “better” than the other, but rather indicate that the different 
models would be better for different uses. If a solution was needed very quickly, 
such as on a handheld tablet used to create new routes while under enemy fire, 
then the RGA model would be a better option. In the event where computation 
time is not an issue and the user prioritizes minimizing risk over dissimilarity, 
then the RSA model would be better. The right model choice depends entirely on 
the needs of the user in their specific situation. In the deliberate preliminary plan-
ning for an operation, there would be enough time to utilize the RSA model to 
ensure that the selected routes minimize as much risk as possible; if only 62 sec-
onds are needed, then this would easily fall within a normal mission planning 
timeline. However, in the event that a decision must be made extremely quickly 
due to imminent enemy actions, then the RGA model would give an immediate 
answer to the user. Thus, our work provides multiple models that successful gen-
erate multiple routes for different situational needs. 

Furthermore, it should be noted that the difference in routing times can be ex-
plained by the differing time complexities of the shortest path algorithms used in 
each model. In our RSA algorithm, Yen’s algorithm is used, which has a time com-
plexity shown in EQN 10, where K  is the number of paths generated, N  is 
the number of nodes in the network, and M  is the number of arcs in the net-
work [18]. In our RGA algorithm, Dijkstra’s algorithm is used, which has a time 
complexity shown in EQN 11 [19]. This indicates that if the number of nodes in 
the network increases, then the time complexity will increase by an additional fac-
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tor of N  in the RSA model, resulting in it having a much longer runtime. Addi-
tionally, the number of nodes and arcs in the network will determine how these 
models scale in different environments, not the spatial size of the environment 
itself. It is possible to have a spatially larger area that has fewer nodes and arcs 
compared to the current one, which will result in both algorithms being completed 
in a quicker time. This could be achieved by limiting the arcs included in the da-
taset, such as only examining arcs that represent roads that can handle the pres-
sure by large military vehicles. 

 ( )( )logO KN M N N+  (10) 

 ( )logO M N N+  (11) 

5. Conclusions 

Ultimately, our models can help address and automate a key planning task for 
military logistics. Route planning for military logistics is vital to ensuring opera-
tional success because it ensures that the necessary materiel will arrive reliably. A 
review of relevant work revealed several applications of dissimilar path routing, 
but none specifically addressed military logistics. We decided to create multiple 
models that generate routes that minimize the risk posed by enemy actions, can 
meet a time constraint, and maximize the dissimilarity between the routes. For 
risk, we calculated the probability that an enemy could detect and destroy forces 
along an arc. To create the routes, we used two approaches. Our RSA model used 
a KSP algorithm to generate many viable routes that minimizes risk subject to a 
time constraint. It then calculated how dissimilar each route was from each other, 
and finally a mixed integer linear program to maximize the dissimilarity between 
the selected routes. Our RGA model applied a penalty factor and iterated through 
several times to identify multiple routes to serve as a network. We determined the 
RSA model results in routes that incur less risk, and that the RGA model results 
in more dissimilar routes and has a shorter runtime. 

The results of this work will allow commanders to automate the route plan-
ning process for military logistics. Rather than developing multiple route op-
tions by hand, without a systematic method, these models could be used by log-
isticians to quickly create and identify multiple possible routes between two lo-
cations. These routes will avoid areas where enemy forces pose a risk, thus in-
creasing the likelihood of supplies being delivered to the final destination. Ad-
ditionally, the dissimilar routes will ensure that, if any unplanned changes occur 
to the operational environment such as damaged roads or enemy movements 
occur, there will likely be another unaffected route that can still be used. An-
other possible use case is to send multiple convoys along each selected route. 
Due to the dissimilarity of the routes, this would reduce the probability that an 
entire supply convoy would be destroyed; it is more probable that the supplies 
on at least one or two of the routes will make it to the final destination compared 
to sending a single convoy. This approach will create more optimal routes, save 
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planners a substantial amount of time, and allow for more distribution among 
resupply operations. 

Future work on this topic will focus on increasing the fidelity of both models, 
as they both currently are an initial prototype and several significant improve-
ments can be made. Incorporating elevation data will allow us to better model the 
speeds that the arcs can be traversed and the range of the spotters and enemy 
weapons systems. This addition would likely reduce the risk levels posed by enemy 
forces when major terrain features are present. Since enemy small arms or observ-
ers could not effectively target friendly forces if their line of sight was broken by a 
terrain feature, such as a hill, then this would reduce the maximum range the weap-
ons system or observer is effective. This would allow nodes that would otherwise 
have a probability of observation or effective fire on the other side of the terrain 
feature to no longer have these probabilities. Such a change should reduce the 
overall risk of the routes created by reducing the resulting risk indices among such 
nodes, and allow the routes to possibly utilize these locations to their advantage. 
Additional work includes reexamining the destruction and detection functions to 
make them more accurately reflect current operations and testing these models in 
varied environments. This will allow us to better understand the limitations of 
each model when there are more arcs and nodes and different numbers of enemy 
forces and spotters. Furthermore, these models could incorporate mobile enemies 
to account for roaming foot patrols, enemy convoys, and enemy UAS capabilities. 
This would increase the fidelity of our model by better capturing the change in 
risk over time due to enemy movement, and possibly allow for better routes to be 
created partway through a mission. Finally, rail and riverine travel methods can 
be incorporated to ensure we account for all possible modes of transportation 
available. 
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