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Abstract 
Natural resource inventories often aim to acquire desired information in the 
least amount of time while minimizing costs. Within Minnesota, USA due to 
access issues and costs, in particular for management inventories, often few 
field-based sampling points can be established. Additionally, inventories con-
ducted to establish timber sales are often of stands that contain low value tim-
ber and that consequently have low sale rates. Thus, in these cases, the cost of 
establishing enough field-based sampling points to meet some desired statisti-
cal level of precision is not justified. Therefore, alternative inventory methods, 
such as the use of remotely sensed data including LiDAR, are being examined.  
This study examined the ability of two methods to estimate VBAR, where vol-
ume and basal area are stand-level values. The first method is to use a constant 
VBAR across all conditions of a cover type. A second method is to estimate 
VBAR by cover type using various combinations of plot age, site index, and 
basal area per hectare. Data was obtained from national inventory plots as part 
of the US Department of Agriculture, Forest Service, Forest Inventory and 
Analysis program. Although LiDAR is not actually used during this assess-
ment, results can be used to infer about the bias, precision, and accuracy asso-
ciated with using LiDAR determined tree heights to predict diameter and then 
to estimate stand densities to ultimately estimate volume per hectare. Results 
showed that basal area per hectare is not a consistently useful variable to esti-
mate VBARs. Site index and stand age are better predictors. Based on inference 
from this study, at the current time, it appears that the use of LiDAR to ulti-
mately estimate volume per hectare looks most promising for those conditions 
that require less accuracy and precision in estimates, such as for management 
plan inventories and for appraisals of low value timber. 
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1. Introduction 

Natural resource inventories aim to acquire desired information in the least 
amount of time while minimizing costs. Many forest inventories and most timber 
sale appraisals in Minnesota, USA use on-the-ground variable-radius approaches 
(Burkhart et al., 2019, Chapter 12; Shiver & Borders, 1996, Chapter 4). However, 
in particular for inventories conducted for management planning purposes, often 
few sampling points can be established due to access issues and labor costs. Addi-
tionally, inventories conducted to establish timber sales are often in stands that 
contain low value timber and that consequently have low sale rates. Hence, in 
these cases, the cost of establishing enough sampling points to meet some desired 
statistical level of precision was not justified. For example, the Minnesota Depart-
ment of Natural Resources Division of Forestry (DoF), a large government for-
estland holding agency (around 1.11 million ha of timberland), used a fixed min-
imum number of points for a particular sized stand in the late 2010’s (Table 1), 
regardless of cover type, when conducting variable-radius management plan in-
ventories using a 10 basal area factor (BAF) (2.296 BAF metric) prism. Beyond 
that, due to rising salaries and fringe benefit costs (e.g. health insurance and re-
tirement benefits), the DoF was experiencing staffing issues.   
 
Table 1. Minimum number of plots/points to install when using a 10 BAF (2.296 BAF 
metric) prism and measuring volume on every tree as implemented by the Minnesota 
(USA) Department of Natural Resources (DNR) Division of Forestry (DoF) during inven-
tories conducted for management purposes. 

Acres Hectares Number of Points 

1 - 10 0.4047 - 4.0469 3 

11 - 20 4.4515 - 8.0937 4 

21 - 40 8.4984 - 16.1874 5 

41 - 80 16.5921 - 32.3749 6 

81 - 120 32.7796 - 48.5623 7 

121 - 160 48.9670 - 64.7498 8 

161 - 200 65.1544 - 80.9372 9 

201 - 240 81.3419 - 97.1246 10 

241+ 97.5293 
Add one plot for every additional 40-acre 

increase in stand size. 

 
Therefore, the DoF was looking at inventory alternatives, such as using aerial 

photography and LiDAR to either supplement on-the-ground variable-radius ap-
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proaches or replace them. The DoF used aerial photographs to conduct regenera-
tion surveys of Aspen (Populus spp.) and Black Spruce (Picea mariana (Mill.) 
B.S.P.) stands. LiDAR looks like a promising remotely sensed method that will 
provide sufficient data to conduct management inventories and likely even pro-
vide enough detail to conduct appraisals of lower value timber (Hummel et al., 
2011; Watt et al., 2013; St. Peter et al., 2021; Brown et al., 2022). For the purposes 
of management, management plan inventories can be of lower intensity than tim-
ber appraisal inventories, because less precise information is needed. Inventory 
estimated variables such as basal area per hectare and quadratic mean diameter 
can be used to gain some idea of what forested stands may need to be thinned over 
the next planning interval and those two variables plus average tree height can be 
used to gain some idea of habitat characteristics for wildlife management pur-
poses. Lower value timber, for example, are the majority of Tamarack (Larix 
laricina (Du Roi) K. Koch) stands and sites of other more valuable species located 
far from likely markets, resulting in greater transportation costs by loggers and 
hence lower stumpage revenues. Currently, Aspen stands located in far western 
Minnesota, USA have low sale rates because of relatively lower productivity levels 
and high transportation costs to mills. The majority of these stands will be sold 
exclusively as pulpwood, perhaps with some relatively more valuable bolts. Thus, 
due to DoF staffing issues and high ground-based inventory costs relative to the 
purpose of the inventory and the value of the timber, the DoF did not want to 
allocate substantial financial and logistical resources to conduct inventories of 
these difficult access and lower saleable sites. However, as the state agency, they 
were tasked by law to manage and conduct timber sales on these sites. Thus, Li-
DAR estimates perhaps would be advantageous on these sites. 

Some believe on-the-ground plots or points provide better inventories than re-
motely sensed data. However, in fact, in certain situations remotely sensed inven-
tories may be superior (Hummel et al., 2011; Watt et al., 2013; Brown et al., 2022). 
For example, timber cruises conducted using plots or points only directly measure 
a portion of a population or area of interest (or stand), a sample cruise. LiDAR 
can theoretically measure every tree in a stand. Most field inventories have low 
levels of precision since few plots can be established because of costs and some-
times access issues, similarly mentioned by Brown et al. (2022). For stands where 
most, and if not all, timber is being sold for pulpwood, LiDAR data will likely be 
sufficient. However, for stands that contain a variety of product classes (e.g. pulp-
wood, bolt, veneer, poles, and sawlog), currently, LiDAR will likely be inferior 
compared to many field based inventories. At this time, LiDAR does not have the 
ability to merchandize trees, at least at a satisfactory level. 

Several studies have found that larger spatial scale LiDAR-based forest inven-
tories are at a minimum comparable in costs to ground-based, or on-the-ground, 
inventories (Hummel et al., 2011; Kepler, 2019; Arney & Corrao, 2021). This is 
often particularly true as the area of interest increases in size because of economies 
of scale (Hummel et al., 2011; White et al., 2016; Kepler, 2019). LiDAR-based in-
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ventories also have the advantage of providing information across the entire area 
of interest unlike individual ground-based stand exams that often only directly 
measure a small portion of the area of interest. Plus, ground-based inventories 
over large areas often require greater time lengths relative to LiDAR-based forest 
inventories (Kepler, 2019; Arney & Corrao, 2021). One disadvantage currently 
about LiDAR data, particularly in reference to conducting an up-to-date inven-
tory of an individual stand, is that available data may be a few months old or even 
years old; whereas a ground-based inventory can more easily collect data today 
for that individual stand. 

To conduct an inventory using LiDAR, individual trees would be identified us-
ing an algorithm and their heights (H) would be estimated using computer tech-
niques. The diameter (D) of each identified tree would then be estimated using a 
H-D equation developed using field-collected independent data. Currently, the H-
D equation would need to be generalized across species within a cover type be-
cause of the difficulty in determining individual tree species in a timely and effi-
cient manner at a large spatial scale using LiDAR. The combination of the com-
puter-generated H from LiDAR, satellite imagery, aerial photography, or another 
remotely sensed source of data, and the predicted tree D, would allow for domi-
nant height and an average stand-level per hectare value of basal area to be calcu-
lated, where tree density per hectare (acre) would be estimated using the remotely 
sensed data. Dominant height if desired would ultimately lead to an estimate of 
site index, the species selected based on the cover type. If age was desired, hope-
fully, it could be obtained from previous inventory data. This stand-level per hec-
tare information would then be used to estimate volume per hectare. 

Currently, individual tree volume equations cannot be used adequately because 
of the difficulty in determining species when using LiDAR. Hence, average VBAR, 
or volume-basal area ratio (Burkhart et al., 2019: pp. 276-277; Shiver & Borders, 
1996: pp. 99-103) relationships at the per hectare (acre) by cover type level is a 
viable alternative. 

VBARs are the amount of a product (e.g. merchantable volume measured in 
cords) per square meter (foot) of basal area at some D along the tree stem, in this 
case 1.372 m (4.5 feet) above the ground, referred to as dbh, or diameter at breast 
height, in the USA. Based on predicted Ds using the H-D equation, basal area per 
hectare would be calculated from an estimate of tree density per hectare using the 
remotely sensed inventory data and then the previously developed VBAR from 
research data would be used to estimate volume per hectare. VBAR could be for 
individual trees or on a per hectare (acre) basis though. If for the stand as a whole, 
LiDAR would also be used to estimate trees per hectare (acre). 

This study examines the ability of two methods to estimate VBAR, where vol-
ume and basal area are per hectare (acre) values, with the ultimate aim of predict-
ing volume per hectare (acre). The first method (Method One) is to use a constant 
VBAR across all conditions of a cover type. A second method (Method Two) is to 
estimate VBARs using regression analysis within a cover type. Regressors include 
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plot age as reported within the US Department of Agriculture (USDA), Forest 
Service, Forest Inventory and Analysis (FIA) database, site index (base age 50) as 
reported by FIA, and basal area per acre (hectare) as reported by FIA. Predicted 
VBARs along with observed basal areas per acre (hectare) will be used to predict 
volume per acre (hectare), which will then be converted to volume per hectare, of 
an independent validation dataset to see which of the two methods produces the 
best predictions. Although LiDAR is not actually used during this assessment, re-
sults can be used to infer about the bias, precision, and accuracy associated with 
using LiDAR determined tree heights (H) to predict diameter (D) and then to 
estimate stand densities to ultimately estimate volume per hectare. 

2. Material and Methods 

The data used in model development were obtained from USDA, Forest Service, 
Forest Inventory and Analysis (FIA) annual surveys completed between 2008 and 
2012 (EVAL_GRP = 272012 within the FIA POP_EVAL_GRP table). Survey data 
were obtained from all regions of Minnesota, USA but only using those plots clas-
sified as being located on state lands (OWNCD = 31). Data were obtained from 
the FIA database website (O’Connell et al., 2013; USDA Forest Service, 2013). 

The DoF has a database entitled Forest Inventory Module (FIM) that contains 
estimates of basal area per acre and cords per acre from inventories conducted by 
DoF personnel. However, estimates of volumes contained within trees is based 
upon visual estimates of merchantable stem length. If inventories were actually 
operationally conducted using LiDAR, the independent data source used to esti-
mate the VBAR component would likely be FIA data, not FIM data. FIA protocol 
dictates that D and H of every tree within a plot be actually measured, not visually 
estimated.  

2.1. FIA Sampling Protocol 

Plots are clusters of four points arranged such that point 1 is central, with points 
2 through 4 located 36.576 m (120 ft) from point 1 at azimuths of 0, 120, and 240 
degrees (Bechtold & Scott, 2005). Each cluster point is surrounded by a 7.315 m 
(24.0 ft) fixed-radius subplot where trees 12.700 cm (5.0 in.) dbh and larger are 
measured. Combined, the four subplots total approximately 0.0672 ha (1/6th 
acre). Each subplot contains a 2.073 m (6.8 ft) fixed-radius microplot where sap-
lings (2.540 to 12.446 cm dbh) (1.0 to 4.9 in.) are measured. The four microplots 
total approximately an area of 0.0054 ha (1/75th acre). Condition classes are as-
signed to differentiate conditions occurring on a plot and a subplot can have more 
than one condition class. A condition class differentiates stands based on variables 
that FIA monitors, such as cover type, ownership, stand density. 

In most states FIA is collected at a single-intensity level and hence plots are 
located roughly every 2428.12 ha (6000 acres). However, Minnesota, USA is on a 
double-intensity data collection level and hence plots are located roughly every 
1214.06 ha (3000 acres). FIA monitors which plots are single-intensity and which 
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plots are double-intensity. This is useful because we can use one group as a model 
development dataset (double-intensity plots) and the second group as a model 
validation dataset (single-intensity). 

2.2. Data Used 

Merchantable volume as defined by FIA (VOLCFNET within the FIA Tree table, 
O’Connell et al., 2013) was used as the dependent variable. Essentially, this is the 
merchantable volume of trees with dbh’s of 12.700 cm (5.0 in.) and greater, from 
a 0.305 m (1 ft) stump to a minimum 10.160 cm (4.0 in.) top diameter outside 
bark (DOB). These specifications are basically the same as those used by the DoF 
during management inventories. VOLCFNET from FIA was converted to cords 
by dividing VOLCFNET by 79 (Gevorkiantz & Olsen, 1955). 

FIA forest type codes (FORTYPCD within the FIA Condition table, O’Connell 
et al., 2013) were mapped to currently used DoF cover types as found on the FIA 
Evalidator tool (Miles, 2013). Only living trees were included (STATUSCD = 1 in 
the FIA Tree table, O’Connell et al., 2013), all tree classes were included (hence 
TREECLCD within the FIA Tree table (O’Connell et al., 2013) was not used to 
filter the data), and FIA timberland was used (hence SITECLCD, O’Connell et al., 
2013 from 1 to 6 in the FIA Condition table). Only those plots where all four sub-
plots were defined as the same condition class (CONDID = 1 in the FIA Condition 
table) were used. Table 2 presents summary data for the plots used to calculate 
VBAR (double-intensity, INTENSITY = 2 in the FIA Plotsnap table) and Table 3 
summarizes those plots used to test or validate predictive ability (single-intensity, 
INTENSITY = 1 in the FIA Plotsnap table) by cover type. 

2.3. Estimating VBAR 

As mentioned earlier, FIA plots within Minnesota, USA are collected at a double-
intensity. Hence, rather than an FIA plot being located roughly every 2428.12 ha 
(6000 acres), a plot is located roughly every 1214.06 ha (3000 acres). For the pur-
poses of this paper, the double-intensity plots can be used to estimate the VBAR 
(model development) while the single-intensity plots will provide an independent 
set of plots to predict volumes (model validation) using the estimated VBAR from 
the double-intensity plots. 

The first method to estimate VBAR only estimates a single VBAR value of a 
cover type using all available plots (Method One). The second method (Method 
Two) uses equations to predict the VBAR as a function of plot age, site index (base 
age 50), and basal area per acre (hectare) by cover type. For this study, VBAR was 
defined simply as the standing merchantable volume in cords divided by the total 
basal area (square feet) of a plot. Basal area included all trees, but volume was only 
calculated using those trees considered merchantable. Currently, it will be nearly 
impossible for LiDAR to distinguish between non-merchantable and merchanta-
ble basal area. Additionally, when calculating VBAR all species were pooled within 
a FIA plot. Although theoretically possible to use species-specific VBARS within 
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the same cover type, it will be difficult using current LiDAR methods to identify 
the species of trees to enough precision justifying the use of different VBARs by 
species within a plot. 
 

Table 2. Mean, maximum, minimum, and standard deviation of the observations used to estimate Volume-Basal Area Ratios 
(VBAR) (FIA INTENSITY = 2, VBAR estimation dataset). VBARs are quantified in cords but are independent of the unit of area 
(whether hectares or acres). Where: LH is Lowland Hardwood, BP is Balsam Poplar, NH is Northern Hardwood, BF is Balsam Fir, 
BSL is Black Spruce Lowland, NWC is Northern White Cedar, and RPP is Red Pine Plantation. 

VBAR estimation dataset 

Cover  Volume-basal area ratio (VBAR) Cords Per Ha Basal Area Per Ha (sq m) 

Type n Mean Max Min Std dev Mean Max Min Std dev Mean Max Min Std dev 

LH 33 0.1756 0.2592 0.0556 0.0501 36.7 77.0 2.9 22.2 19.1 32.5 1.5 9.5 

Aspen 114 0.1371 0.3004 0.0012 0.0824 25.5 114.3 0.3 24.0 15.8 40.3 0.2 8.9 

Birch 21 0.1411 0.2332 0.0466 0.0647 23.3 69.1 1.2 18.7 14.1 27.5 2.1 7.1 

BP 17 0.1193 0.2195 0.0380 0.0569 17.9 59.1 0.3 17.0 13.1 27.7 0.4 8.5 

NH 35 0.2037 0.2866 0.1005 0.0532 54.3 99.6 10.4 28.5 23.7 36.8 6.2 9.2 

Oak 23 0.2061 0.3298 0.1154 0.0536 56.3 128.9 7.1 32.7 24.3 45.8 3.8 9.1 

BF 7 0.1246 0.1936 0.0380 0.0524 26.8 86.0 7.8 27.4 19.7 51.7 6.9 15.0 

BSL 58 0.0711 0.2286 0.0019 0.0595 14.7 101.0 0.3 18.9 16.3 41.1 0.9 8.9 

Tamarack 67 0.1124 0.2396 0.0031 0.0633 19.7 48.3 0.3 15.3 16.0 37.8 0.5 9.0 

NWC 34 0.1389 0.2300 0.0405 0.0476 41.0 120.4 4.1 24.9 27.7 69.2 3.1 13.2 

RPP 7 0.2095 0.2431 0.1463 0.0328 63.1 117.8 19.8 29.9 27.1 46.2 12.6 10.5 

 
VBAR estimation dataset 

Cover  Plot Age (years) Site index (m, base age 50) 

Type n Mean Max Min Std dev Mean Max Min Std dev 

LH 33 80 128 35 27 16.4 23.5 10.7 3.7 

Aspen 114 36 109 1 22 20.0 29.0 12.8 3.4 

Birch 21 56 100 15 24 15.6 22.6 9.1 3.5 

BP 17 39 107 6 27 18.7 26.8 13.4 3.5 

NH 35 66 126 3 29 19.2 25.6 11.6 3.2 

Oak 23 70 128 1 25 18.3 25.6 11.6 3.8 

BF 7 78 171 1 65 15.3 21.6 6.7 6.3 

BSL 58 74 128 34 25 10.1 18.3 6.1 3.0 

Tamarack 67 73 181 4 35 12.2 23.8 6.4 3.9 

NWC 34 101 195 35 38 9.3 15.2 4.9 3.1 

RPP 7 45 109 15 31 20.2 24.7 16.2 3.2 
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Table 3. Mean, maximum, minimum, and standard deviation of the observations used to validate predictions (FIA INTENSITY = 
1, Validation Dataset). VBARs are quantified in cords but are independent of the unit of area (whether hectares or acres). Where: 
LH is Lowland Hardwood, BP is Balsam Poplar, NH is Northern Hardwood, BF is Balsam Fir, BSL is Black Spruce Lowland, NWC 
is Northern White Cedar, and RPP is Red Pine Plantation. 

Validation Dataset 

Cover  Volume-basal area ratio (VBAR) Cords Per Ha Basal Area Per Ha (sq m) 

Type n Mean Max Min Std dev Mean Max Min Std dev Mean Max Min Std dev 

LH 17 0.1607 0.3101 0.0264 0.0608 41.4 175.2 1.0 38.1 21.0 52.5 3.4 11.2 

Aspen 111 0.1375 0.2840 0.0022 0.0744 26.5 109.2 0.3 25.3 16.0 39.3 0.2 9.3 

Birch 23 0.1583 0.2677 0.0467 0.0581 30.4 63.9 1.2 18.2 16.8 31.0 2.2 8.4 

BP 16 0.1438 0.2383 0.0451 0.0640 23.1 91.0 0.9 22.4 12.9 35.5 0.6 8.0 

NH 24 0.1886 0.2671 0.0046 0.0597 46.2 84.2 1.0 26.7 22.1 33.1 1.6 9.3 

Oak 23 0.2206 0.3099 0.0854 0.0559 66.8 149.0 11.1 40.8 26.3 45.6 6.5 11.1 

BF 11 0.1365 0.2150 0.0724 0.0467 22.6 64.2 4.7 16.0 15.1 27.8 6.0 7.5 

BSL 67 0.0819 0.2201 0.0038 0.0647 16.0 69.8 0.3 18.0 15.0 34.9 0.2 8.9 

Tamarack 56 0.1253 0.2635 0.0097 0.0770 20.1 93.2 0.4 19.5 15.1 39.0 0.2 10.5 

NWC 32 0.1351 0.2024 0.0643 0.0338 52.1 99.4 15.5 20.0 36.2 56.4 11.7 11.4 

RPP 6 0.2065 0.2913 0.1192 0.0610 63.3 99.1 7.9 33.5 27.8 49.0 6.2 14.9 

 
Validation Dataset 

Cover  Plot Age (years) Site index (m, base age 50) 

Type n Mean Max Min Std dev Mean Max Min Std dev 

LH 17 75 143 1 30 15.1 24.1 11.0 3.5 

Aspen 111 38 115 2 22 18.7 25.6 8.8 3.5 

Birch 23 59 86 20 20 16.6 23.5 9.4 3.5 

BP 16 38 75 1 22 18.0 31.1 12.8 4.4 

NH 24 71 210 1 42 17.2 24.1 11.6 3.0 

Oak 23 72 127 2 32 19.1 25.0 10.7 4.0 

BF 11 56 112 20 29 14.0 19.8 10.7 3.2 

BSL 67 77 152 17 29 10.8 18.3 6.1 3.0 

Tamarack 56 73 170 19 34 12.5 24.4 6.7 3.7 

NWC 32 100 147 52 26 8.8 17.7 4.6 3.1 

RPP 6 42 76 24 19 16.5 20.4 12.5 3.5 

 
For this analysis, the Lowland Hardwood, Aspen, Birch (Betula papyrifera var. 

papyrifera), Balsam Poplar (Populus balsamifera L.), Northern Hardwood, Oak 
(Quercus spp.), Balsam Fir (Abies balsamea (L.) Mill.), Black Spruce Lowland 
(BSL), Tamarack, Northern White Cedar (Thuja occidentalis L., NWC), and Red 
Pine Plantation (Pinus resinosa Aiton, RPP) cover types were examined. The Jack 
Pine (Pinus banksiana Lamb.), Red Pine Natural, White Pine (Pinus strobus L.), 
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and White Spruce (Picea glauca (Moench) Voss) cover types did not have suffi-
cient numbers of plots for analysis. For Jack Pine and White Spruce cover types, 
even when combining both natural and planted sources together, sample sizes 
were still low. Balsam Fir did not have a single equation with a positive Adjusted 
R2 and hence was excluded for Method Two (e.g. regression equations). For RPP, 
only those plots considered plantations by FIA (STDORGCD = 1 in the FIA Con-
dition table) were used, these plots have sufficient evidence to be classified as plan-
tations. All statistical analyses were carried out using the SAS program, Version 
9.4 (SAS Institute Inc., 2004). 

2.4. Using Regression Analysis to Estimate VBAR 

Equations (1) to (5) were used to estimate VBAR as a function of site variables 
that would be easily obtainable from most stand inventory databases: 

 31 2
0VBAR Age SI BA εbb bb= +  (1) 

 1 2
0VBAR Age SI εb bb= +  (2) 

 31
0VBAR Age BA εbbb= +  (3) 

 32
0VBAR SI BA εbbb= +  (4) 

 3
0VBAR BA εbb= +  (5) 

where: 
VBAR—volume (cords) -basal area ratio, 
Age—plot age,  
SI—site index (feet, base age 50), 
BA—square feet of basal area per acre,  
b0, b1, b2, b3—parameters to be estimated, and 
ε—random error where it is assumed ε ~N(0, σ2I). 
Equations (1) to (5) were fit using English units. Table 4 presents parameter 

estimates and model fitting results for Equations (1) to (5). In many cases param-
eter estimates are not significant at the 0.10 level and Adj. R2s are low. However, 
in some cases solid Adj. R2s were observed. 
 

Table 4. Parameter estimates of Equations (1) to (5) used to predict the Volume-Basal Area Ratio (VBAR) by cover type when using 
reported FIA diameter at breast height, dbh. dbh occurs at 4.5 feet above the ground (1.372 m). Bold parameter estimates are not 
significant at a 0.10 alpha level. Where: SI is site index (feet, base age 50), BA is basal area per acre (square feet), L is Lowland, N is 
Northern, BSL is Black Spruce Lowland, NWC is Northern White Cedar, and RPP is Red Pine Plantation. b1 corresponds to age, b2 
corresponds to site index, and b3 corresponds to basal area per acre. Parameter estimates are in English units. 

Equation (1)       

   Age SI BA  

Cover Type n b0 b1 b2 b3 Adj. R2 

L Hardwood 33 0.0059090 0.3218131 0.5552649 −0.0495698 0.2489 

Aspen 114 0.0003118 0.7128529 0.8658865 −0.0182708 0.3650 

Birch 21 0.0004825 0.5943290 0.7772666 0.0666207 0.3992 

Balsam Poplar 17 0.0063668 0.4962834 0.1752198 0.1175991 0.2401 
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Continued 

N Hardwood 35 0.0054965 0.1360530 0.5816599 0.1441795 0.2211 

Oak 23 0.0084692 −0.0826879 0.5578109 0.2711941 0.3576 

BSL 58 0.0000134 0.4287372 1.6382199 0.2366949 0.3948 

Tamarack 67 0.0025864 0.3448830 0.7630315 −0.1154368 0.1082 

NWC 34 0.0445850 0.0248504 0.3997938 −0.0702739 0.0874 

RPP 7 0.0133986 0.1342196 0.4461077 0.0826445 0.5234 

Equation (2)       

Cover Type n b0 b1 b2 b3 Adj. R2 

LH 33 0.0064464 0.2921510 0.5133406 - 0.2549 

Aspen 114 0.0002998 0.7122718 0.8569956 - 0.3704 

Birch 21 0.0004153 0.6222646 0.8554330 - 0.4243 

Balsam Poplar 17 0.0339744 0.4438009 −0.0816194 - 0.2007 

NH 35 0.0070330 0.1676521 0.6506907 - 0.1929 

Oak 23 0.0144051 −0.0062102 0.6569744 - 0.2201 

BSL 58 0.0000330 0.3960857 1.7075334 - 0.3878 

Tamarack 67 0.0028158 0.2663198 0.7021056 - 0.1047 

NWC 34 0.0413945 −0.0214659 0.3870237 - 0.1078 

RPP 7 0.0150956 0.1724377 0.4774092 - 0.6134 

Equation (3)       

Cover Type n b0 b1 b2 b3 Adj. R2 

LH 33 0.0591165 0.2582616 - −0.0073560 0.0535 

Aspen 114 0.0147218 0.6020661 - 0.0257976 0.3116 

Birch 21 0.0111580 0.4700085 - 0.1673884 0.2652 

Balsam Poplar 17 0.0136870 0.4871792 - 0.1132881 0.2908 

NH 35 0.0641597 0.0553472 - 0.2037628 0.1117 

Oak 23 0.0582950 −0.1239666 - 0.3835598 0.1738 

BSL 58 0.0037789 −0.0635438 - 0.7492343 0.0947 

Tamarack 67 - - - - - 

NWC 34 - - - - - 

RPP 7 0.0700424 0.0963454 - 0.1573628 0.3796 

       

Equation (4)       

Cover Type n b0 b1 b2 b3 Adj. R2 

LH 33 0.0266477 - 0.4809177 −0.0060281 0.0940 

Aspen 114 0.0070031 - 0.5476394 0.1694879 0.0560 

Birch 21 0.0111199 - 0.3900418 0.2513429 0.0589 

Balsam Poplar 17 - - - - - 
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NH 35 0.0147023 - 0.3920645 0.2208525 0.1641 

Oak 23 0.0072939 - 0.6211699 0.1743281 0.3284 

BSL 58 0.0001974 - 1.4239636 0.2128786 0.3677 

Tamarack 67 0.0189976 - 0.5374517 −0.0477648 0.0771 

NWC 34 0.0487980 - 0.3933726 −0.0608758 0.1162 

RPP 7 0.0150890 - 0.3544346 0.2429083 0.4339 

Equation (5)       

Cover Type n b0 b1 b2 b3 Adj. R2 

LH 33 - - - - - 

Aspen 114 0.0633146 - - 0.1907877 0.0410 

Birch 21 0.0494205 - - 0.2618250 0.0643 

Balsam Poplar 17 - - - - - 

NH 35 0.0710560 - - 0.2304540 0.1216 

Oak 23 0.0718355 - - 0.2290321 0.0888 

BSL 58 0.0027308 - - 0.7610744 0.1102 

Tamarack 67 - - - - - 

NWC 34 - - - - - 

RPP 7 0.0578380 - - 0.2726478 0.4172 

2.5. Estimating Volume Per Hectare 

Cords per hectare were estimated for each cover type using two VBAR estimation 
methods of either a Single VBAR (Method One) or VBAR as estimated using 
stand-level regressors which is Method Two. To ultimately produce estimates of 
cords per hectare, VBARs using one of the methods were used to estimate cords 
per acre which was then converted to cords per hectare (Table 5). 

In operational practice, when using VBAR to estimate volume per hectare, tree 
H would be measured using the LiDAR data, an equation would then be used to 
estimate D (currently generalized across species since it is difficult to currently 
determine individual tree species at a large spatial scale using LiDAR), and LiDAR 
would be used to determine trees per hectare (acre), where the combination of the 
estimated Ds and trees per hectare (acre) would produce the estimated basal area 
per hectare (acre).   

Here, for this analysis, the tree Hs are assumed known (in a sense simulating 
LiDAR estimates of individual tree Hs), but Ds are predicted using species-specific 
H-D equations fit using FIA data (VanderSchaaf, 2012; 2013). During this analy-
sis, for each species, only the population-average regression equation was used. 
To account for the transformation bias, the procedure recommended by Basker-
ville (1972) was used. In this study, species-specific H-D equations are used—this 
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is somewhat of an optimal situation because currently, operationally, cover type 
H-D equations would need to be used and not species-specific equations due to 
the difficulty of identifying individual tree species at a large spatial scale using 
LiDAR data. 

Although species-specific H-D equations were used, unfortunately, equations 
were not developed for eastern white pine and a few rare or non-timber species 
such as eastern hophornbeam (Ostrya virginiana (Mill.) K. Koch); in these cases 
the FIA reported Ds were used. Regardless of species, FIA does not report Hs for 
trees with a D of 4.9 in. and less (12.446 cm). For these trees, the measured D as 
reported by FIA was used. 

2.6. Validating Volume Per Hectare Estimates 

The true volume per hectare values are assumed to be the reported volumes per 
hectare (acre) by FIA of the single-intensity FIA plots. The difference between the 
observed (Voi) and estimated (Vei) volumes per hectare were calculated for each 
individual plot (i) for each of the two methods of estimating VBAR and ultimately 
volume per hectare. For each VBAR method, the mean residual (ē) and the sample 
variance (v) of residuals were computed by cover type across all plots and consid-
ered to be estimates of bias and precision; respectively. 

An estimate of mean square error (MSE) was obtained for both of the VBAR 
methods by combining the bias and precision measures using the following for-
mula: 

 MSE = ē2 + v (6) 

2.7. Biological Interpretation of Parameter Estimates 

In regression analysis, parameter estimates are examined to make sure they are 
logical given biological theory. It should be remembered that Equations (1) to (5) 
are estimating VBAR and not standing volume. For instance, as age and site index 
increase you would expect standing volume to increase. However, for the same 
amount of basal area, should volume vary—stated differently, should VBAR 
change. Likely with age, as basal area remains constant, the VBAR should increase 
for total merchantable volume because trees should be increasing in height. How-
ever, for site index it is somewhat difficult to determine what is logical. If the pa-
rameter estimate is positive, this is saying that for some reason, as basal area is 
held constant, as site quality increases that volume becomes greater. It could be 
that stem form is related to site quality, such that more cylindrical trees with 
greater volumes per basal area are observed on higher quality sites, and perhaps 
for the same basal area better quality sites have taller trees. 

3. Results and Discussion 

VBARs differed across cover types (VBAR Mean in Table 2 and Table 3). These 
VBARs show there is variability across cover types suggesting that a single VBAR 
value across all cover types would not be applicable. For these forests, based on 
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statistical significance levels, basal area does not appear to be a consistently useful 
variable to estimate VBARs (Table 4). Site index and stand age appear to be better 
predictors—Equation (2). Studies in other forest types, such as Douglas-fir 
(Pseudotsuga menziesii [Mirb.] Franco) plantations in New Zealand (Watt et al., 
2013), have found high correlations between LiDAR height percentiles and stand-
level basal area. However, studies of naturally regenerated longleaf pine (Pinus 
palustris Mill.) in southwestern Georgia (Silva et al., 2016) and mixed-species for-
ests (both pine (Pinus spp.) and hardwood) of both natural regenerated and 
planted origins in southern Alabama (Brown et al., 2022), similar to this study, 
found that using H to predict D resulted in poor predictions of basal area. Silva et 
al. (2016) attributed the poor predictions to the loss of H-D allometry in trees with 
D’s exceeding 25 cm due to asymptotic height behavior while Brown et al. (2022) 
had similar conclusions, believing the poor results due to weak relationships be-
tween a tree’s H and its basal area. 

Across all cover types and equations, the Adjusted R2 values were generally poor 
(Table 4). Although basal area may be beneficial in certain cases, operationally it 
would be a predicted variable as a function of the LiDAR data. The error associ-
ated with the prediction of basal area would be “passed” along to the prediction 
of VBAR. Therefore, the gain from including basal area in the regression analyses 
does not appear substantial enough to justify its inclusion. 

In this study, when estimating basal area per acre (hectare) using predicted D’s 
obtained from the H-D equations, D was predicted simply as a function of H ig-
noring individual stand-level factors. Mixed-effects models can be calibrated if 
some Hs and Ds were actually field measured within the stand. However, that of 
course will require time and money to visit the stand which would likely defeat 
the purpose of using LiDAR, or other remotely sensed data. Alternatively, one 
could use a H-D equation that includes stand-level variables. This could poten-
tially improve the D estimate; however, operationally, the stand-level variables 
would be obtained from LiDAR data, or other remotely sensed sources of data, 
and thus estimates of these stand-level variables may not be as good as desired. 
Future research should concentrate on this alternative. 

Across all observations (n = 375) and thus all cover types (Table 5, Figure 1 
and Figure 2), a single cover type VBAR (Method One) performed better in terms 
of MSE when predicting cords per hectare than when using regression to estimate 
VBAR (Method Two). Similarly, for many cover types, a single cover type VBAR 
performed better in terms of MSE when predicting cords per hectare than when 
using regression to estimate VBAR (Table 5). Based on MSE, when using regres-
sion equations (Method Two), Equation (2), or only using SI and Age as regres-
sors, appears to be sufficient for many cover types to predict VBAR and ultimately 
volume per hectare. Regression showed particularly poor results for MSE as com-
pared to a single cover type VBAR for the Aspen and Oak cover types. Addition-
ally, a single cover type VBAR was superior in terms of MSE relative to all equa-
tions for the Birch and RPP cover types. 
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Table 5. Predicted bias (e), variance (v), and Mean Square Error (MSE) values when predicting cords per hectare for the validation 
dataset (single-intensity, INTENSITY = 1 in the FIA Plotsnap table) when using either a single VBAR (Method One) by cover type 
or stand-level regressors to predict VBAR by cover type (Method Two) when diameter at breast height (dbh) is predicted using 
height-diameter equations (VanderSchaaf, 2012, 2013). n = 375. For the Single VBAR, n = 386 since the Balsam Fir cover type was 
also predicted. dbh occurs at 4.5 feet above the ground (1.372 m). 

  Single VBAR Equation (1) Equation (2) 

Cover Type n e v MSE e v MSE e v MSE 

LH 17 −9.1 366 450 −6.6 374 418 −8.5 368 441 

Aspen 111 −2.8 216 223 −7.2 661 712 −7.6 719 777 

Birch 23 2.7 114 122 −3.2 192 202 −2.2 158 163 

Balsam Poplar 16 4.3 59 78 0.0 142 142 2.7 45 53 

NH 24 −17.1 424 717 −19.0 717 1079 −14.8 466 684 

Oak 23 −7.6 1343 1400 −24.4 3959 4554 −10.8 1714 1831 

Balsam Fir 11 1.4 44 46 - - 

BSL 67 2.9 150 158 −2.1 133 138 −0.5 117 117 

Tamarack 56 −5.8 256 290 −6.1 212 249 −8.7 432 508 

NWC 32 −11.4 223 354 −7.8 176 237 −10.4 231 339 

RPP 6 0.2 965 965 0.8 1323 1324 3.3 995 1006 

All—no BF 375 −3.8 322 336 −7.3 627 680 −6.5 505 547 

All Cover Types 386 −3.6 315 328 - - - - - - 

 
  Equation (3) Equation (4) Equation (5) 

Cover Type n e v MSE e v MSE e v MSE 

LH 17 −8.4 505 575 −8.9 263 343 − 

Aspen 111 −8.5 596 668 −7.2 579 630 −7.8 538 599 

Birch 23 −2.1 174 178 −3.4 301 312 −2.4 271 277 

Balsam Poplar 16 0.2 132 132 − − 

NH 24 −24.2 853 1437 −20.8 800 1230 −24.2 874 1459 

Oak 23 −26.9 4,429 5153 −20.4 3104 3521 −19.8 2911 3304 

Balsam Fir 11 − − − 

BSL 67 −1.5 169 171 −1.0 136 137 −1.7 172 175 

Tamarack 56 − −6.0 261 297 − 

NWC 32 − −8.0 182 246 − 

RPP 6 −5.0 1865 1891 −4.7 2120 2142 −8.8 2558 2635 

All—no BF 375 −8.6 826 899 −7.5 593 649 −8.4 736 807 

All Cover Types 386 − − − − − − − − − 
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Figure 1. Predicted cords per hectare over observed cords per hectare (FIA observed di-
ameters) when using a single VBAR (Method One) for a particular cover type. For the pre-
dicted cords, diameter at breast height (dbh) is predicted diameters using equations found 
in VanderSchaaf (2012) and VanderSchaaf (2013). n = 386. Average error across all n = 386 
observations equals −3.608 cords per hectare with a variance of 314.707, and a mean square 
error (MSE) of 327.722. 

 

 
Figure 2. Predicted cords per hectare over observed cords per hectare (FIA observed di-
ameters) when using Equation (2) for each particular cover type (Method Two), where 
stand age and site index are used to predict the VBAR for each individual stand. For the 
predicted cords, diameter at breast height (dbh) is predicted diameters using equations 
found in VanderSchaaf (2012) and VanderSchaaf (2013). n = 375. A sample size of 375 is 
less than Figure 1 (n = 386) because no equation was fit for the Balsam Fir cover type. 
Average error across all n = 375 observations equals −6.483 cords per hectare with a vari-
ance of 505.339, and a mean square error (MSE) of 547.368. 
 

Figure 3, Figure 4, and Figure 5 present predicted cord per hectare estimates 
by cover type when using a single VBAR for a particular cover type (Method One). 
It is obvious that the use of predicted Ds, where the observed (e.g. reported by 
FIA) Ds can be assumed to be the correct cord per hectare value, has less impact 
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for some cover types than others (Table 5 and Figure 3, Figure 4 and Figure 5), 
perhaps due to issues such as asymptotic H behavior in general and/or stand den-
sity that may impact taper rates and Hs through time. The use of predicted Ds 
generally resulted in overprediction (Table 5 and Figure 1, Figure 3, Figure 4 and 
Figure 5). Predictions, on average, were relatively precise for Balsam Poplar, Bal-
sam Fir, BSL, and Birch (Table 5 and Figure 3 and Figure 4). For LH, NH, Oak, 
and NWC, based on the error term or bias (e), predicted Ds produced relatively 
sizable overpredictions on average (Table 5 and Figure 3, Figure 4 and Figure 5). 
Oak showed a relatively large amount of variability (v) as well. Red pine plantation 
(RPP) predictions were nearly unbiased but highly variable, using predicted Ds 
sometimes overpredicted volume and other times underpredicted volume relative 
to when using observed Ds. 

 

 
Figure 3. Predicted cords per hectare over observed cords per hectare (FIA observed diameters) by cover type when using 
a single VBAR (Method One) for a particular cover type. For the predicted cords, diameter at breast height (dbh) is pre-
dicted diameters using equations found in VanderSchaaf (2012) and VanderSchaaf (2013). Where: LH is Lowland Hard-
wood (n = 17), Aspen (n = 111), Birch (n = 23), and Balsam Poplar (n = 16). 
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Figure 4. Predicted cords per hectare over observed cords per hectare (FIA observed diameters) by cover type when using a single 
VBAR (Method One) for a particular cover type. For the predicted cords, diameter at breast height (dbh) is predicted diameters 
using equations found in VanderSchaaf (2012) and VanderSchaaf (2013). Where: NH is Northern Hardwood (n = 24), Oak (n = 
23), Balsam Fir (n = 11), and BSL is Black Spruce Lowland (n = 67). 

 
Although LiDAR was not actually used here to determine H, based on this anal-

ysis where H is actually assumed to be known as obtained from the FIA data, we 
can infer that future research will need to concentrate on producing better pre-
dictions of D when determining H using LiDAR, or another source of remotely 
sensed data. At some point in the future, perhaps due to higher resolution im-
agery, reduced costs and wide availability of that higher resolution imagery, and 
continually more sophisticated image processing techniques, LiDAR may suffi-
ciently measure D directly. 
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Figure 5. Predicted cords per hectare over observed cords per hectare (FIA observed diameters) by cover type when using a single 
VBAR (Method One) for a particular cover type. For the predicted cords, diameter at breast height (dbh) is predicted diameters 
using equations found in VanderSchaaf (2012) and VanderSchaaf (2013). Where: Tamarack (n = 56), NWC is Northern White 
Cedar (n = 32), and RPP is Red Pine Plantation (n = 6). 

4. Conclusions 

As expected, average VBARs differ substantially across cover types. At the current 
time at least, if the use of LiDAR is the preferred approach to ultimately estimate 
volume (cords) per hectare (acre), individual cover type VBARs will need to be 
used. 

These data suggest basal area is not a favorable variable to predict VBARs. Even 
when knowing the “true” heights (since they were obtained from FIA) and pre-
dicting D as a function of species-specific H-D equations, predicted diameters us-
ing H-D equations often produced less than optimum basal area per acre (hectare) 
predictions. These poor results were observed despite the estimation process be-
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ing nearly optimum since the “true” Hs and the species of each tree was known. 
Thus, since most likely at the current time, we will not be able to identify individ-
ual species from LiDAR data at an operational level, and that in practice, the Hs 
will be predicted using LiDAR metrics, and not directly measured in the field, 
operational predictions of basal area per hectare (acre) will be even poorer. Addi-
tionally, this study was conducted assuming trees per hectare (acre) is known, in 
practice trees per hectare (acre) would be estimated using the LiDAR data. Hence, 
when operationally using LiDAR, basal area per hectare (acre) predictions may 
have even more error associated with them. 

However, the use of H-D equations that include stand-level variables may im-
prove the estimate of D and hence basal area per hectare (acre) estimates. But as 
previously mentioned, operationally, the stand-level variables would be obtained 
from LiDAR data and thus estimates of these stand-level variables may not be as 
good as desired. These results suggest that site index and age will be better predic-
tors of VBARs than basal area if LiDAR is used to estimate volume (cords) per 
hectare (acre). 

In support for the use of LiDAR, it should be remembered though that field-
based operational inventories use plots located within stands and that often only 
a small percentage of the total area is actually measured. Often, due to relatively 
high inventory costs largely due to poor stand access (e.g. tamarack swamp sites) 
and the costs of labor, a low number of plots are established, particularly during 
management plan inventories, and hence a relatively small amount of the stand is 
used to infer about the behavior across the entire stand. LiDAR has the advantage 
of “measuring” trees across the whole stand (Hummel et al., 2011; Watt et al., 
2013; Brown et al., 2022). This current study doesn’t quantify the errors associated 
with plot/point sampling versus LiDAR sampling, but this should be taken into 
consideration if one absolutely believes an entirely field-based sample is neces-
sarily better than a LiDAR based sample. 

An alternative approach is to predict volume per hectare (acre) directly as a 
function of basal area per hectare (acre) and to avoid VBARs. Future research 
should examine this alternative. 
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