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Abstract 
This paper presents a new anomaly detection scheme based on modified DFT 
Adaptive Neural Network (ADALINE) for the determination of time skew er-
ror and frequency drift in the Phasor Measurement Unit (PMU). The modi-
fied DFT/ADALINE algorithm is used to determine time stamp errors and 
frequency drift errors through the determination of the change in the phase 
angle in terms of the correlation coefficient. The correlation coefficient, δ(φ0, t) 

is used to determine the relationship in the change of the phase angle, ∆φ0 with 
respect to the change in the reporting time, ∆t. Further, the correlation coef-
ficient, δ(φ0, f) is used to determine the relationship between the change of the 
phase angle, ∆φ0 with respect to drift in the grid frequency, ∆f. The parallel 
ADALINE algorithms compute the correlation coefficient in the range −1 to 
1 from which values of δ ≥ 0.8 represent normal correlation and δ ≤ 0.799 
represents data anomaly in the grid frequency or the reporting time. ADA-
LINE flags the values for δ ≤ 0799 only thereby reducing the memory require-
ments of the PMU. The results of PMU/ADALINE simulation in MATLAB/Sim-
ulink, show a smooth system response around the optimal operating point of 
49.85 Hz at the maximum correlation coefficient value of 0.9974. It further 
shows that the correlation coefficient is above 0.8 for grid frequencies in the 
49.55 Hz to 50.45 Hz range, signifying normal control area operating frequen-
cies in accordance with South African Grid System Operation Code. It can 
also be seen that a drift in frequency produces a corresponding time error sig-
nifying the relationship between the time skew error and frequency drift with 
the phase angle error in the PMU. Correlation coefficient values below 0.8 sig-
nify data Anomalies for the grid frequency outliers i.e. corresponding to grid 
frequencies below 49.5 Hz and above 50.5 Hz. In conclusion, our proposed 
PMU/ADALINE model guarantees enhanced accuracy and precision of meas-
urement devoid of doing a massive process of iteration as it employees deep 
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learning AI to compute the correlation coefficient signifying the presence of 
time skew and grid frequency error. 
 

Keywords 
DFT, Adaptive Neural Network (ADALINE), Correlation Coefficient, Time 
Skew Error, Frequency Drift, Phase Angle Error, Phasor Measurement Unit 
(PMU) 

 

1. Introduction 

Phasor Measurement Technology has established itself among the best Intelligent 
Electronic Devices (IEDs) for monitoring, protection and control in the power 
system. In power systems where Phasor Measurement Technology is deployed, it 
has been established that the external clock signal from the Global Positioning 
System (GPS) controls timing synchronization of sampled values (SV) and main-
tains the Total Vector Error (TVE) below the 1% threshold [1]. The internal clock 
of the Phasor Measurement Unit (PMU) is disciplined by the GPS signal to ensure 
accuracy in the sampled values and phase angle estimation. As such, issues relat-
ing to the accuracy of reported time stamps are among the most difficult to detect 
and address in Phasor Measurement Technology [2]. In modern power systems, 
a data processing algorithm, known as the state estimator, is used to convert re-
dundant measurement data into an accurate estimate of the power grid system. 
The state estimator works perfectly in the Supervisory Control and Data Acquisi-
tion (SCADA); a system that is both asynchronous and has a low update rate. In 
Wide Area Monitoring, Protection and Control (WAMPAC) systems that are syn-
chronous and have high update rates, the state estimator falls short of providing 
accurate SVs. Even small phase shifts can downgrade the performance of the state 
estimator, which is an indication of its inability to effectively improve the perfor-
mance of the PMU [3]. GPS is the most popular choice for the time synchroniza-
tion problem as it provides sub 100 nanosecond accuracies, and is often used 
where precision time and frequency synchronization is critical [4]. In PMUs 
where GPS is used, the Universal Time Reference (UTC) is applied to time stamp 
the signal. The phase difference between the UTC reference unit and the sinusoid 
is used as the mark of the stamp. A positive phase angle is obtained if the UTC 
reference is after the peak sinusoid and a negative phase angle is obtained if the 
UTC reference mark is before the peak sinusoid [5]. Synchronization issues be-
tween different PMU devices result from discrepancies in their internal clocks and 
their disciplining, that are responsible for generating time stamps for the data [6]. 
Therefore, alternative sources of time synchronization to the PMU must conform 
to the standard set by the GPS. 

The Total Vector Error (TVE) provides a measurement standard for the SVs 
that can be used to determine the suitability of the time synchronization source. 

https://doi.org/10.4236/wjet.2025.133028


G. Musonda et al. 
 

 

DOI: 10.4236/wjet.2025.133028 442 World Journal of Engineering and Technology 
 

It is a measure of steady-state amplitude and phase angle errors. The total vector 
error (TVE) combines both magnitude and phase errors since the synchrophasor 
measurement errors could be originated from inaccuracy of either the magnitude, 
phase, or both [7]. One-cycle Discrete Fourier Transform (DFT) is usually applied 
in algorithms that are used to determine the TVE. The DFT algorithm usually has 
issues when it is used to estimate TVE of signals with dynamic amplitude and 
phase variations [8]. DFT is not robust enough when it encounters certain dis-
turbances such as decaying DC offset. These disturbances can cause undesirable 
oscillations and time delay in the DFT results [9]. In cases where the frequency of 
the power grid deviates from its nominal value, the raw application of the DFT 
approach can lead to large errors during phasor estimation [10]. Numerous im-
provements of the DFT algorithm have been developed to correct the problem of 
frequency spectrum deviation over the years. They include Recursive Discrete 
Fourier Transform (RDFT), and Non-Recursive Discrete Fourier Transform 
(NRDFT) [11]. Non-DFT algorithms have equally been presented in research in-
volving PMUs; they include the full Weighted Least Square (WLS) technique [12], 
the Precision Time Protocol (PTP) [13], and the Three-Phase Enhanced Phase-
Locked Loop (EPLL) [10]. Anomaly Detection techniques such as the Long Short-
Term Memory (LSTM) [14], Convolution Neural Networks (CNN) [15], and the 
Generative Adversarial Networks (GANs) [16] have equally been presented in lit-
erature to correct errors in dynamic phasor estimation. The Non-DFT algorithms 
were designed to enhance accuracy and precision of measurement devoid of doing 
a massive process of iteration. In this paper, section 1 carries the introduction of 
the work presented. In section 2, basic phasor equations are presented to explain 
the time skew error concept. In section 3, a hybrid AI based anomaly detection 
and Phase-locked loop architecture for the PMU is presented. In section 4, per-
formance evaluation of the PMU prototype using real time measurement data is 
presented. The conclusion of the work is presented in section 5. 

2. Related Work 

Anomaly detection techniques using artificial intelligence (AI) have been de-
ployed in a number of electrical engineering related works. Mohammed Q. Mo-
hammed et al. [17], used single-class Support Vector Machine (SVM) to detect 
data anomalies in wireless networks. The results show that SVM properly detected 
and mitigated cybersecurity risks in wireless networks with a precision value of 
0.0922. 

Shiyuan Wang et al., [18] used Artificial Neural Network (ANN) to investigate 
detection and classification, and adaptive condition-awareness high-fidelity meas-
urements in real-time transient stability analysis (TSA). The results show the scheme 
produced classification accuracy on multiple classes of prevailing conditions in 
the power grid which accordingly improves the measurement quality and attains 
promising performance when employed in power system applications using syn-
chrophasor measurements. 
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Yuval Abraham Regev et al. [19] deployed Long Short Term Memory (LSTM) 
and Convolutional Neural Network (CNN) to investigate data anomalies in the 
PMU caused by physical faults on the power grid, as well as disturbances, errors, 
and cyber-attacks in the cyber area. The investigation was conducted by training 
the PMU model using Mean Squared Error (MSE) that heavily punishes the out-
liers in the data set. The results of this investigation show satisfactory results in 
the range of 78.79% to 96.89%. 

Watit Benjapolakul et al. [20] proposed the development of a PMU prototype 
based on the Bagged Averaging of Multiple Linear Regression model, which han-
dles and fulfills the missing values in synchronized frequency data measurement 
fast and efficiently. The results show that the model was able to recover missing 
PMUs data that is acceptable for many real-time applications and to interpret the 
effects of different grid regions to an event using PMUs data. 

This research proposes the application of Adaptive Artificial Neural Network 
(ADALINE) in the PMU to determine the numerical relationship between time 
skew error and vector frequency drift, and phase angle error using the correlation 
coefficient. A ADALINE Time and Frequency Algorithm is applied to determine; 
the relationship between time skew error and the phase angle error, and also the 
relationship between the input vector frequency drift and the phase angle error. 
The results show that the model is able to punish frequency outliers, input vector 
phase errors above 50˚, all through maintaining a correlation coefficient of 0.8 
and above. 

3. Literature Review 

The time skew error is caused by error in the GPS signal or drift in the input vector 
frequency and results in phase angle error in the vector output of the PMU. The 
output of the PMU is called a synchrophasor. The synchrophasor is defined as “a 
phasor calculated from data samples using a standard time signal as the reference 
for the measurement” [21]. The GPS provides the reference time signal required 
in the creation of a synchrophasor by the PMU.  
A. Synchrophasor Determination 

The phasor can be represented as either a sine or a cosine function as shown 
below 

( ) ( )0sinmz t Z tω ϕ= +                       (1) 

where mZ  is the amplitude of the signal ( )z t , ω  is the angular velocity 
( 2 f= π , where f  is the frequency),  and 0ϕ  is the phase angle compared with 
( ) sinmz t Z tω= . 

( ) ( )0cosmz t Z tω ϕ= +                       (2) 

It is quite complicated to analyze quantities in the time domain form of Equa-
tion (1) and Equation (2). Therefore, an alternative method of representing the 
function is presented below. This method of synchrophasor presentation is called 
the Euler’s formula. 
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( ) ( ) ( )0
0 0e cos sinj t

m m m r iZ Z t jZ t X jXω ϕ ω ϕ ω ϕ+ = + + + = +        (3) 

Equation (3) presents the phasor signal in terms of the real and imaginary parts 
denoted as r iX jX+ . Thus a sinusoidal varying signal such as in Equation (1) or 
Equation (2) can be considered to be either the real or the imaginary part of 

( )0e j t
mZ ω ϕ+ , depending on whether the cosine or sine function is being considered. 

( )0 0e e ej t jj t
m mZ Z phasorω ϕ ϕω+ = =                  (4) 

Since, the angular velocity is the same for all the elements in a circuit, thus a 
synchropasor can be described by the equation below 

0mZ ϕ∠                            (5) 

The exponential form of the cosine function. i.e. ( ) ( )0cosmz t Z tω ϕ= + , can 
then be described by the equation below 

( ) ( )( )0 0(1 e e
2

j t j t
mz t Z ω ϕ ω ϕ+ − + = +  

 

( ) ( ) ( )0 01 1e e
2 2

j t j t
m mz t Z Zω ϕ ω ϕ+ − += +                 (6) 

Thus ( )z t  is the sum of two phasors, each with half the amplitude, with one 
having a positive value of angular velocity (i.e. rotating anticlockwise) and a pos-
itive value of 0ϕ , and the other having a negative value of angular velocity and a 
negative value of 0ϕ  [22]. It is safe to conclude from this result that ( )0e j t

mZ ω ϕ+   

is the fundamental signal while ( )01 e
2

j t
mZ ω ϕ+  and ( )01 e

2
j t

mZ ω ϕ− +  are the har-

monics. This result shows that if the phase shift is associated only to a lack of  
time synchronization, it is possible to convert a negative phase angle measurement 
to a positive phase angle measurement by analyzing the signal harmonics. The 
value of phase angle 0ϕ  depends on the time scale, at the time instant of 0t = . 
Provided that the definition of the above phasor is based on the angular frequency 
ω, the elaboration with other phasors must be realized with the same frequency 
and time instant [23]. 

The phase angle 0ϕ  is the difference between the instantaneous phase angle of 
( )z t  and a reference cosine signal running at the nominal frequency of the grid 

aligned to Coordinated Universal Time (UTC) [24]. This phase angle 0ϕ  can as-
sume a positive value if the UTC reference is after the pick sinusoid of the signal. 
Negative value is obtained when the UTC reference is before the pick sinusoid of 
the signal. 

For analysis of signals with dynamic amplitude and phase variations, the signal 
in Equation (2) can be written as 

( ) ( )( )0 0cos 2 2 dmz t Z f t a t t ϕ= π + π +∫                (7) 

Where; 

( ) ( ) 0a t f t f= −  

where 0f  and ( )f t  are the nominal and the actual frequency, respectively, and 
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( )a t  is the function of time that indicates the deviation of the actual from the 
nominal frequency. For a fixed frequency deviation, the input signal of Equation 
(7) can be represented by Equation (8) below 

( ) ( )( )0 0cos 2 2mz t Z f f t ϕ= π + π∆ +                  (8) 

where f f+ ∆  is the off-nominal frequency and f∆  represents the fixed fre-
quency deviation. 
B. Synchrophasor Determination Using DFT 

In a balanced three-phase system operating at a nominal frequency, 0f  the 
signal waveforms can be represented by the equations below 

( ) ( )0 0cos 2mz t Z f t ϕ= π +                     (9) 

The time domain sample of the signal in Equation (9) can be represented by; 

0
2cosn m

nz Z
N

ϕπ = + 
 

                    (10) 

where N  is the number of samples and is an integer multiple of fundamental 
frequency 0f  and n  represents the sample index in the array which ranges 
from 0 to 1N −  [25]. 

For N  number of samples, the expression below applies 

1
0

1 2 2cos sinN
nn

n nZ z j
N N N

−

−

π π = − 
 

∑                (11) 

The Discrete Fourier Transform (DFT) of the signal can be determined by the 
equation 

1
0

2 2 2cos sinN
nominal nn

n nZ z j
N N N

−

−

π π = − 
 

∑              (13) 

In this case, the real and imaginary part of the expression can be given by the 
expressions below 

1
0

2 2cosN
real nn

nZ z
N N

−

−

π =  
 

∑                  (14) 

1
0

2 2sinN
imaginary nn

nZ z
N N

−

−

π =  
 

∑                (15) 

For the off-nominal frequency signal of Equation (8) above, the time domain 
sample can be represented by 

( )0 0cos 2 2n m s sz Z f T fT ϕ= π + π∆ +                  (16) 

where nz  are the samples taken in one window with length of sNT , 
( )0,1,2, , 1n N= −  [26]. 
C. Detection of Time Skew Error Using AI 

The discrete Fourier transform (DFT) estimation technique is the basic, sim-
plest, and most popular algorithm for phasor computation [27]. In DFT-PMUs 
Time-skew error is normally determined in terms of phase-angle error. In modern 
power systems where abnormal conditions arise from the injection of renewal en-
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ergy into the grid, off-nominal frequency conditions circumstances lead to serious 
positive-phase sequence measurement errors. In [28], the Phase-locked loop (PLL) 
is used to determine the performance analysis of the PMU under grid fault con-
ditions. The PLL configuration shown in Figure 1 below treats the phase angle 
error as a data anomaly. The phase detector calculates the time-phase angle dif-
ference between the input signal and the output signal. The error signal becomes 
the input to the LPF to determine the stability and the overall response of the 
system.  

 

 

Figure 1. Single-phase Phase-Locked Loop (PLL) block diagram. 
 

This technique, however, suffers from inaccuracies under grid voltage harmon-
ics, inter-harmonics and DC-offset [29]. To mitigate this problem, Koteswara Rao 
et al. [30] proposed the use of a combined amplitude and phase modulated signal 
model to approximate frequency ramp, sudden change in amplitude and phase in 
terms of amplitude and phase modulation signal for a small interval of time using 
feed forward Artificial Neural Network (ANN). ANN process inputs via linear 
combinations of weights and biases while biological neurons (dynamic) exhibit 
more dynamic and nonlinear behaviors [31]. ANN suffers from high computa-
tional complexity and hardware implementation. A modified Gauss-Newton ADA-
LINE (MGNA) that uses recursive formulation and reduces the computational 
burden is proposed in [32]. It comes with the promise of determining the funda-
mental and harmonic phasors while maintaining simple hardware implementa-
tion and computation complexity. ADALINE is a linear AI algorithm that can be 
implemented in multiple arrays, called MADALINE to deal with non-linear grid 
conditions. The MADALINE concept is adopted in this research. 

4. Hypothesis and Algorithms 

Our hypothesis is that if a GPS signal error or frequency error occurs in the electric 
grid, the PMU will detect the change in the dynamic conditions to ascertain the 
correlation of these grid conditions with the phase angle change in the measured 
vector signal. There are correlations in a single change of a grid parameter or mul-
tiple changes in different grid parameters to the phase angle error that can be in-
vestigated using ADALINE AI. To investigate these correlations, the linear prod-
uct correlation coefficient formula is used: 

( ) ( )
( ) ( )2 2

i i

i i

x x y y
r

x x y y

− −
=

− −

∑ ∑
∑ ∑
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where r  is an indicator of how well the points ( ),i ix y  fit a straight line [33]. 
r  is a number between −1 and 1. In this work, r  is used a measure the cor-
relation between the change in the input vector frequency and the change in 
the measured vector phase angle on one hand; and the error in the time stamp 
to the change in the measured vector phase angle by the PMU on the other 
hand. The computation complexity is reduced by the application of the ADA-
LINE. 

For a fixed frequency deviation, the phasor signal can be represented by the 
equation below 

( ) ( )( )0 0cos 2 2mz t Z f f t ϕ= π + π∆ +                 (17) 

where 0f f+ ∆  is the off-nominal frequency and f∆  represents the fixed fre-
quency deviation. The phase angle deviation 0ϕ  from a time 1t  to 2t  can be 
derived from Equation (18) below 

[ ]2

1
0 02 d

t

t
f f tϕ = π ∆ −∫                     (18) 

And the relative phase angle can be measured from Equation (19) below 

0rel refϕ ϕ ϕ= −                         (19) 

where 0ϕ  is the measured phase angle and refϕ  is the phase angle of the refer-
ence PMU. The PMU reporting time t∆  can be represented by the equation 

2 1t t t∆ = −                          (20) 

Therefore, the variation of the relative phase angle will be given by Equation 
(21) below 

0rel refϕ ϕ ϕ∆ = ∆ −∆                       (21) 

Further, the change in relative phase angle can represented by Equation (22) 
below 

[ ]2

2
0 02 d

t

t t
f f tϕ

−∆
∆ = π ∆ −∫                     (22) 

In the event of time skew error in the PMU, the inaccurate time st  is defined 
by the expression below 

st t τ= +                           (23) 

where st  is the shift in UTC time, t  is the UTC reference time, and τ  is the 
deviation from the UTC time.  

( ) ( ) ( )0 2s relt t f t tτϕ ϕ∆ = ∆ + π⋅∆ ∆                 (24) 

Equation (24) is used to detect anomalies in the timestamps of the synchro-
phasor. Where ( )0 stϕ∆  is the variation of relative phase angle with timestamp 
shifting, ( )f t  denotes the instant frequency of measured signal at the time t  
and ( )f tτ∆  is frequency variation between time st  and t  [34]. The outputs of 
the PMU are fed to the ADALINE to compute the correlation coefficient to be 
used for determination of normal and abnormal grid conditions as illustrated in 
Figure 2 below. 
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Figure 2. AI Based PMU Block diagram. 

 
For single input ADALINE, one variable one output scenario, Equation (25) 

will be used to determine the phase angle error with respect to the shift in the time 
stamp i.e. time stamp shifting condition. 

( ) ( )0 2s relt t f tϕ ϕ∆ = ∆ + π ∆                    (25) 

The time skew error is simulated by inducing a shift in time τ  as a function 
of the drift in the input vector frequency. The adaptive linear neuron (ADALINE) 
computes the correlation coefficient for this condition.  

It can be observed that st  can be updated iteratively. The formulations for up-
dating the time shift by substituting the relative change in UTC time t∆  in (25) 
is as shown below 

( )1st n t τ+ = + ∆  

( )2 2st n t τ+ = + ∆  

( )3 3st n t τ+ = + ∆  

( )4 4st n t τ+ = + ∆  

( ) ( )st n t n τ+ = + + ∆                     (26) 

To determine the correlation between the change in the phase angle and the 
shift in the time, the equation below is used [34]. 

( )
( )0

0
0

,
,

t
t

t

ϕ
ϕ

ϕ

σ
δ

σ σ
=                         (27) 

where r  is the correlation factor, ( )0 ,tϕσ  is the covariance, 
0ϕ

σ  and tσ  are  

the phase angle and time respective standard deviations. These parameters are de-
fined in the equations below 
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( )
( )( )

( ) ( )
0

0 2 1
, 2 2

0 2 1

ref
t

ref

t t

t t
ϕ

ϕ ϕ
δ

ϕ ϕ

− −
=

− −

∑
∑ ∑

               (28) 

The correlation coefficient will be used to ascertain how the phase angle 0ϕ   
correlates with the time t . ( )0 , 0.8tϕδ ≥ , represents normal grid conditions i.e.  

phase angle 0ϕ  and the time t . Since the equation for the determination of the  
change in the phase angle ( )0 stϕ∆  is linear, ( )0 , 0.799tϕδ ≤  represents the lack 

of correlation between the variables. In this work, ( )0 , 0.799tϕδ ≤  is treated as a  

data anomaly.  
For single input ADALINE, one variable one output scenario, Equation (29) 

will be used to determine the phase angle change with variable frequency i.e. fre-
quency shifting condition. 

( ) ( ) ( )0 2s relf t f t tτϕ ϕ∆ = ∆ + π⋅∆                  (29) 

The frequency drift error is simulated by inducing a shift in frequency. 
( )f tτ∆ ranging from −0.55 to 0.55 off the nominal 50 hz frequency. The adap-

tive linear neuron (ADALINE) computes the correlation coefficient for this 
condition.  

It can be observed that the frequency, f  can be updated iteratively. The for-
mulations for updating the shift in the frequency f  by substituting the relative 
change in frequency f∆  in (30) is as shown below 

( )1tf n f fτ+ = + ∆  

( )2 2tf n f fτ+ = + ∆  

( )3 3tf n f fτ+ = + ∆  

( )4 4tf n f fτ+ = + ∆  

( ) ( )tf n f n fτ+ = + + ∆                    (30) 

To determine the correlation between the change in the phase angle and the 
shift in the frequency, the equation below is used [34] 

( )
( )0

0
0

,
,

f
f

f

ϕ
ϕ

ϕ

σ
δ

σ σ
=                         (31) 

where r  is the correlation factor, ( )0 , fϕσ  is the covariance, 
0ϕ

σ  and fσ  are  

the phase angle and time respective standard deviations. These parameters are de-
fined in the equations below 

( )
( )( )

( ) ( )
0

0 2
, 2 2

0 2

ref
f

ref

f f

f f
ϕ

ϕ ϕ
δ

ϕ ϕ

− −
=

− −

∑
∑ ∑

               (32) 

The correlation coefficient will be used to ascertain how the phase angle 0ϕ   
correlates with the frequency, f . If ( )0 , 0.8fϕδ ≥  shows normal correlation  

between the phase angle 0ϕ  and the frequency, f . Since the equation for the  
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determination of the change in the phase angle ( )0 stϕ∆  is linear, ( )0 , 0.799fϕδ ≤   

represents the lack of correlation between the variables. In this work, ( )0 , 0.799fϕδ ≤   

is treated as a data anomaly.  

5. Methodology 

The test signal can be calculated and implemented to distinguish between a real 
fault situation and a normal operating condition through the computation of 
the correlation factor for the change in the frequency and the phase angle. The 
use of ADALINE AI in the configuration utilizes deep learning of the grid op-
erating conditions thereby increasing measurement accuracy and efficiency sig-
nificantly. This can be implemented in MATLAB/Simulink. In order to calculate 
the phase-shift, the input signal has to be compared with a reference signal [35]. 
The computation of the phase-shift will be done by the ADALINE algorithm in 
the PMU. 

To validate the application of the ADALINE in the determination of the corre-
lation coefficient of the frequency drift and time-skew error to the change in the 
phase angle error, the PMU prototype is simulated in MATLAB/Simulink as 
shown in Figure 3 below.  

 

 

Figure 3. PMU/ADALINE Prototype. 
 
Figure 4 shows the ADALINE configuration in MATLAB/Simulink. 
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Figure 4. ADALINE Module in simulink. 

 

The PMU/ADALINE prototype is simulated in MATLAB/Simulink for proof 
of concept. Figure 5 below shows the algorithm flow chart and frequency error 
equation. 

( ) ( ) ( )0 2s relf t f t tτϕ ϕ∆ = ∆ + π⋅∆  

 

 

Figure 5. PMU/ADALINE frequency subsystem flow chart. 
 

Step 1. Initialize ADALINE with reference phase angle refϕ , shift in the fre-

quency, fτ∆  with values ranging from −1 to 1hz to estimate the change in phase 
angle using equation (29). 

Step 2. Calculate the correlation factor ( )0 , fϕδ  using equation (32). 

Step 3. Check if correlation factor ( )0 , fϕδ  exceeds ( )0 , 0.799fϕδ ≤ .  

Step 4. Update fτ∆  using (30) until error is achieved.  

Step 5. Continue till the maximum number of iterations are reached.  
Step 6. End. 
Figure 6 below shows the MATLAB/Simulink implementation of the algo-
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rithm. 
 

 

Figure 6. Simulink frequency estimation module. 
 

The PMU/ADALINE prototype is simulated in MATLAB/Simulink for proof 
of concept. Figure 7 below shows the algorithm flow chart and time error equa-
tion are provided below; 

( ) ( )0 2s relt t f tϕ ϕ∆ = ∆ + π ∆  

 

 

Figure 7. PMU/ADALINE time subsystem flow chart. 
 

Step 1. Initialize ADALINE with reference phase angle refϕ , shift in the UTC, 
τ  with values ranging from 0.1 to 0.2 seconds to estimate the change in phase 
angle using Equation (26). 

Step 2. Calculate the correlation factor ( )0 ,tϕδ  using Equation (28). 

Step 3. Check if correlation factor ( )0 ,tϕδ  exceeds ( )0 , 0.799tϕδ ≤ .  

Step 4. Update τ∆  using (24) until error is achieved.  
Step 5. Continue till the maximum number of iterations are reached.  
Step 6. End. 
Figure 8 below shows the MATLAB/Simulink implementation of the algorithm 
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Figure 8. Simulink time error estimation module. 
 

The correlation coefficient is calculated using the equations below 
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Figure 9 below shows the MATLAB/Simulink implementation of the correla-
tion coefficient computations. 

 

 

Figure 9. Simulink correlation coefficient estimation module. 

6. Results and Discussion 

The completeness of the hypothesis of using the correlation coefficient to determine 
data anomalies in the form grid frequency drift and Time Skew Error was confirmed 
by the simulation of the model in MATLAB/Simulink. The PMU/ADALINE error 
computation rate is 0.006 seconds was used in the simulations. The simulation 
results are presented in Table 1. 

The graph shows a semi-parabolic curve. Average correlation at 49.45 Hz is low 
at approximately 0.75, increases steadily reaching its peak values in the range 
49.80 - 49.85 Hz at the maximum correlation coefficient value of 0.9974. Beyond 
the 0.9974 peak value, the correlation coefficient steadily declines to 0.7535 at 
50.55 Hz. The graph is symmetric around the 0.9974 peak value; signifying a 
smooth system response around the optimal operating point. The highest corre-
lation zone lies Approximately between 0.996 and 0.997, and covers a narrow 
band centered just below the 50 Hz threshold; representing the most reliable re-
gion for the system. Outside the 50.30 to 49.60 Hz zone, the correlation reduces 
more rapidly, indicating a fall-off in system performance. 
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Table 1. Correlation coefficient analysis of the input vector frequency error. 

Input Vector Freq. Mea. Ref. Time (UTC) Time Err. Avg. Freq. Error Avg. Avg. Corr. 

49.45 0.795 4.485e−4 3.584e−1 7.522e−1 

49.50 0.795 6.416e−4 4.101e−1 7.899e−1 

49.55 0.795 7.735e−4 4.442e−1 8.608e−1 

49.60 0.795 8.520e−4 4.588e−1 9.535e−1 

49.65 0.795 8.833e−4 4.528e−1 9.892e−1 

49.70 0.795 8.719e−4 4.268e−1 9.956e−1 

49.75 0.795 8.200e−4 3.824e−1 9.972e−1 

49.80 0.795 7.290e−4 3.222e−1 9.974e−1 

49.85 0.795 5.991e−4 2.500e−1 9.972e−1 

49.90 0.795 4.315e−4 1.703e−1 9.971e−1 

49.95 0.795 2.290e−4 8.797e−2 9.969e−1 

50.00 0.795 −1.965e−6 8.060e−3 9.964e−1 

50.05 0.795 −2.512e−4 −6.452e−2 9.954e−1 

50.10 0.795 −5.408e−4 −1.253e−1 9.935e−1 

50.15 0.795 −7.478e−4 −1.708e−1 9.905e−1 

50.20 0.795 −9.657e−4 −1.976e−1 9.850e−1 

50.25 0.795 −1.146e−3 −2.047e−1 9.733e−1 

50.30 0.795 −1.279e−3 −1.915e−1 9.461e−1 

50.35 0.795 −1.354e−3 −1.588e−1 9.014e−1 

50.40 0.795 −1.358e−3 −1.086e−1 8.542e−1 

50.45 0.795 −1.267e−3 −4.413e−2 8.128e−1 

50.50 0.795 −1.045e−3 3.075e−2 7.790e−1 

50.55 0.795 −6.783e−4 1.114e−1 7.535e−1 
 

 

Figure 10. Input vector frequency vs. average correlation coefficient. 
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Figure 11. Input vector frequency vs. frequency error average. 
 

The graph shows a clear nonlinear diminishing trend. At 49.45 Hz, the fre-
quency error at approx. 0.3584 Hz is large and positive depicting weak correlation 
with the input frequency. The frequency error gradually decreases, as the input 
frequency increases, crossing zero mark at 50.00 Hz. Beyond the 50.00 Hz mark, 
the error becomes negative, reaching a minimum slightly 50.20 Hz mark, crossing 
the zero mark again after the 50.45 Hz point. 

 

 
Figure 12. Input vector frequency vs. time error average. 

 

The graph shows a non-linear decreasing movement from 49.45 Hz to about 49.70 
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Hz. The time error increases steadily, peaking around 8.833e−4 seconds. Beyond the 
49.70 Hz point, the time error progressively decreases, crossing zero at approx. 50.00 
Hz. At the 50.00 Hz point and beyond, the time error is increasingly negative, reach-
ing a minimum between 50.35 Hz and 50.40 Hz. The curve levels slightly after the 
minimum point, indicating the error is approaching a steady lower limit (Table 2). 

 
Table 2. Correlation coefficient analysis of the input vector phase angle. 

Input Vector 
Freq. 

Mea. Ref. Time 
(UTC) 

Input Vector Phase Angle 
θ˚ 

Time Err. Avg. 
θ˚ 

Freq. Error Avg. 
θ˚ 

Avg. Corr. 
θ˚ 

50.00 0.795 5 −1.268e−2 −1.259e−2 9.978e−1 
50.00 0.795 10 −2.573e−4 −2.224e−2 9.964e−1 
50.00 0.795 15 −3.881e−4 −2.997e−2 9.908e−1 
50.00 0.795 20 −5.188e−4 −3.569e−2 9.800e−1 
50.00 0.795 25 −6.484e−4 −3.938e−2 9.630e−1 
50.00 0.795 30 −7.764e−4 −4.101e−2 9.396e−1 
50.00 0.795 35 −9.020e−4 −4.056e−2 9.103e−1 
50.00 0.795 40 −1.025e−3 −3.803e−2 8.762e−1 
50.00 0.795 45 −1.143e−3 −3.385e−2 8.387e−1 
50.00 0.795 50 −1.258e−3 −2.685e−2 7.994e−1 
50.00 0.795 55 −1.368e−3 −1.828e−2 7.597e−1 
50.00 0.795 60 −1.472e−3 7.807e−3 7.206e−1 
50.00 0.795 65 −1.570e−3 4.492e−3 6.828e−1 
50.00 0.795 70 −1.662e−3 1.852e−2 6.468e−1 
50.00 0.795 75 −1.746e−3 3.418e−2 6.128e−1 
50.00 0.795 80 −1.824e−3 5.134e−2 5.808e−1 
50.00 0.795 85 −1.853e−3 6.987e−2 5.509e−1 
50.00 0.795 90 −1.954e−3 8.964e−2 5.320e−1 

 

 

Figure 13. Phase angle error vs average correlation coefficient. 
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The curve shows a strong decreasing trend in the Average Correlation Coeffi-
cient as the phase angle error increases from 5˚ to 90˚. The average correlation 
value is above 0.9 with the peak at 0.9978. The region between the 45˚ and 50˚ 
range indicates the point at which the curves cross the 0.8 threshold. The average 
correlation value rapidly drops below 0.7 at 65˚ and finally to 0.532 at 90˚. The 
curve depicts a very strong negative correlation between the phase angle error and 
the average correlation. 
 

 

Figure 14. Input phase angle error vs. average correlation/frequency error average. 
 

Frequency Error Average largely decreases as the input phase angle rises up to 
the 50˚ point; it then sharply begins to rise. The graph shows a consistent and 
uninterrupted decrease in the Average Correlation with increasing phase angle 
error. Low phase errors (0˚ to 50˚) correspond with correlation values of 0.8 and 
above which is consistent with the hypothesis of this research. The PMU/ADA-
LINE algorithm demonstrates that it is highly phase-sensitive, maintains fre-
quency tracking and correlation beyond a certain error margin. 

7. Conclusions 

The input vector frequency versus frequency error average graph represents a cor-
rection curve, where the frequency error is high when the input deviates from a 
nominal frequency value of 50 Hz. The shape of the curve suggests a slightly asym-
metric parabolic profile which indicates non-linear behavior in the system. 

The input vector frequency versus time error average curve suggests that the 
system’s timing error is frequency-dependent, with optimal performance at 50.00 
Hz. The peak in time error occurs at approximately 49.65 Hz and valley at ap-
proximately 50.35 Hz indicating system lag or phase shift on either side of the 
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nominal frequency. 
The input vector frequency versus average correlation curve reflects the quality 

of signal matching, orientation, and model precision at different input frequencies. 
The peak in correlation implies that the system is optimized for a specific frequency 
range, centered around 49.80 to 49.90 Hz. As frequency drifts away from this peak 
range, phase angle error is likely to increase, lowering the correlation. Best system 
performance for the PMU/ADALINE is dependent on keeping the input vector fre-
quency in the range of 49.65 Hz to 50.05 Hz where the correlation coefficient is 
greater than 0.99. The region between 49.55 Hz to 49.65 Hz, and 50.05 Hz to 50.45 
Hz represents the region where system calibration of correction is considered to be 
normal. Finally, the correlation coefficient values below 0.799 corresponding to fre-
quencies outside 49.55 Hz and 50.45 Hz are scientifically called data anomalies as 
they fall outside the acceptable correlation. Outliers, missing data, and event data in 
the synchrophasor are considered to be data anomalies [36].  

In this paper, we have investigated the PMU/ADALINE that works on the prin-
ciple of computing the correlation coefficient using AI to determine data anoma-
lies of the normal grid operating conditions in a given control area. The control 
area is considered to be under normal frequency conditions when the frequency 
is within the range 49.5 to 50.5 Hz [37]. The graph in Figure 10 shows how the 
average correlation coefficient changes with the input vector frequency. You can 
see a clear transition around 49.55 - 50.45 Hz, where the correlation coefficient  
shifts from ( )0 , 0.799fϕδ ≤  to ( )0 , 0.8fϕδ ≥  and then back down again, suggesting 

a peak correlation around 49.75Hz to 49.85Hz. Further, the graph in Figure 13 
suggests that phase angle error significantly affects the average correlation in a 
manner similar to the graph in Figure 10. The characteristics depicted in both 
Figures 10-13 confirm that there is a very strong relationship between the input 
vector frequency, time error average, the phase angle error and the correlation 
coefficient.  

For optimal performance, analysis of the graph in Figure 14 suggests that ideally 
the input vector phase angle error should be less than 50˚. The correlation coefficient 
is unstable and the frequency error average is high for input vector phase angles 
above 50˚, which is an indication of loss of coherence. The system behavior indicates 
that phase error correction beyond the 50˚ threshold is necessary. The results of the 
MATLAB/Simulink prototype confirm the hypothesis of this research. 

Performance analysis of average correlation as a performance parameter can be 
benefited from further investigation of the systems response to transient condi-
tions, such as thunderstorms and other sources of noise. An inclusion of mathe-
matical analysis of the computation load in DFT PMUs compared to the ADA-
LINE PMU would enrich the hypothesis of this research. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

https://doi.org/10.4236/wjet.2025.133028


G. Musonda et al. 
 

 

DOI: 10.4236/wjet.2025.133028 459 World Journal of Engineering and Technology 
 

References 
[1] Musonda, G., Zulu, A. and Lubobya, C.S. (2024) Determination of Total Vector Error 

of the Phasor Measurement Unit (PMU) Using the Phase Angle Error of a Constant 
Amplitude Voltage Signal. Journal of Power and Energy Engineering, 12, 34-47.  
https://doi.org/10.4236/jpee.2024.1211002 

[2] Mishra, C., Vanfretti, L., De La Ree, J., Jones, K.D. and Gardner, M.R. (2024) Esti-
mating Clock Synchronization Correction Factor from Synchrophasor Phase Angle 
Drift. 2024 International Conference on Smart Grid Synchronized Measurements 
and Analytics (SGSMA), Washington, 21-23 May 2024, 1-5.  
https://doi.org/10.1109/sgsma58694.2024.10571449 

[3] Almutairy, F., Scekic, L., Matar, M., Elmoudi, R. and Wshah, S. (2023) Detection and 
Mitigation of GPS Spoofing Attacks on Phasor Measurement Units Using Deep Learn-
ing. International Journal of Electrical Power & Energy Systems, 151, Article ID: 
109160. https://doi.org/10.1016/j.ijepes.2023.109160 

[4] Parvez, I., Sarwat, A.I., Pinto, J., Parvez, Z. and Khandaker, M.A. (2017) A Gossip 
Algorithm Based Clock Synchronization Scheme for Smart Grid Applications. 2017 
North American Power Symposium (NAPS), Morgantown, 17-19 September 2017, 
1-6. https://doi.org/10.1109/naps.2017.8107405 

[5] Ravi, A., Saranathan, M., Achuthan, P.H.K., Lavanya, M.C. and Rajini, V. (2022) A 
Comprehensive Review on the Current Trends in Micro-Phasor Measurement Units. 
IOP Conference Series: Materials Science and Engineering, 1258, Article ID: 012045.  
https://doi.org/10.1088/1757-899x/1258/1/012045 

[6] Mishra, C., Vanfretti, L., Delaree, J. and Jones, K.D. (2024) Internal Clock Errors in 
Synchrophasor Ambient Data: Effects, Detection, and a Posteriori Estimation-Based 
Correction. International Journal of Electrical Power & Energy Systems, 161, Article 
ID: 110208. https://doi.org/10.1016/j.ijepes.2024.110208 

[7] Agustoni, M., Castello, P. and Frigo, G. (2022) Phasor Measurement Unit with Digital 
Inputs: Synchronization and Interoperability Issues. IEEE Transactions on Instru-
mentation and Measurement, 71, 1-10.  
https://doi.org/10.1109/tim.2022.3175052 

[8] de la O Serna, J.A., Paternina, M.A. and Zamora-Mendez, A. (2021) Assessing Syn-
chrophasor Estimates of an Event Captured by a Phasor Measurement Unit. IEEE 
Transactions on Power Delivery, 36, 3109-3117.  
https://doi.org/10.1109/tpwrd.2020.3033755 

[9] Rahmati, A. (2016) Accurate Real-Time Measurements of the Smart Grid Phasor 
Measurement Unit Parameters. Electric Power Components and Systems, 44, 1815-
1824. https://doi.org/10.1080/15325008.2015.1114049 

[10] Giotopoulos, V. and Korres, G. (2023) Implementation of Phasor Measurement Unit 
Based on Phase-Locked Loop Techniques: A Comprehensive Review. Energies, 16, 
Article 5465. https://doi.org/10.3390/en16145465 

[11] Ponnala, R., Vijay Babu, P., Leelakrishna, C. and Reddy, R. (2024) Development and 
Implementation of Synchronized Phasor Measurements for Dynamic State Power 
System Monitoring and Fault Identification.  
https://doi.org/10.21203/rs.3.rs-4186838/v1  

[12] Kumar, J., Singh, A.K. and Kumar, U. (2023) Effect of WLS Method with Phasor 
Measurement Unit in State Estimation of Power System. Journal for Basic Sciences, 
23, No. 5. 

[13] de la O Serna, J.A. (2018) Analyzing Power Oscillating Signals with the O-Splines of 

https://doi.org/10.4236/wjet.2025.133028
https://doi.org/10.4236/jpee.2024.1211002
https://doi.org/10.1109/sgsma58694.2024.10571449
https://doi.org/10.1016/j.ijepes.2023.109160
https://doi.org/10.1109/naps.2017.8107405
https://doi.org/10.1088/1757-899x/1258/1/012045
https://doi.org/10.1016/j.ijepes.2024.110208
https://doi.org/10.1109/tim.2022.3175052
https://doi.org/10.1109/tpwrd.2020.3033755
https://doi.org/10.1080/15325008.2015.1114049
https://doi.org/10.3390/en16145465
https://doi.org/10.21203/rs.3.rs-4186838/v1


G. Musonda et al. 
 

 

DOI: 10.4236/wjet.2025.133028 460 World Journal of Engineering and Technology 
 

the Discrete Taylor-Fourier Transform. IEEE Transactions on Power Systems, 33, 
7087-7095. https://doi.org/10.1109/tpwrs.2018.2832615 

[14] Phadke, A.G. and Bi, T.S. (2018) Phasor Measurement Units, WAMS, and Their Ap-
plications in Protection and Control of Power Systems. Journal of Modern Power 
Systems and Clean Energy, 6, 619-629. 

[15] Almas, M.S., Vanfretti, L., Singh, R.S. and Margret Jonsdottir, G. (2018) Vulnerability 
of Synchrophasor-Based WAMPAC Applications’ to Time Synchronization Spoof-
ing. 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, 5-10 
August 2018, 1. https://doi.org/10.1109/pesgm.2018.8586667 

[16] Zenati, H., Romain, M., Foo, C., Lecouat, B. and Chandrasekhar, V. (2018) Adversar-
ially Learned Anomaly Detection. 2018 IEEE International Conference on Data Min-
ing (ICDM), Singapore, 17-20 November 2018, 727-736.  
https://doi.org/10.1109/icdm.2018.00088 

[17] Mohammed, M.Q., Al-Safi, M.G.S. and Faris, A.M. (2024) Statistical Anomaly De-
tection for Enhanced Cybersecurity Using Ai-Based Wireless Networks. Ingénierie 
des systèmes d information, 29, 1743-1754. https://doi.org/10.18280/isi.290508 

[18] Wang, S.Y., Hijazi, M. and Dehghanian, P. (2023) Smart Measurement Units in Smart 
Grids: An AI-in-the-Loop Solution for Distributed Intelligence and High-Fidelity 
Measurements. Association for the Advancement of Artificial Intelligence.  
https://www.aaai.org  

[19] Regev, Y.A., Vassdal, H., Halden, U., Catak, F.O. and Cali, U. (2022) Hybrid AI-Based 
Anomaly Detection Model using Phasor Measurement Unit Data. arXiv: 2209.12665. 

[20] Le, N.T. and Benjapolakul, W. (2018) A Data Imputation Model in Phasor Measure-
ment Units Based on Bagged Averaging of Multiple Linear Regression. IEEE Access, 
6, 39324-39333. 

[21] Lixia, M., Benigni, A., Flammini, A., Muscas, C., Ponci, F. and Monti, A. (2012) A 
Software-Only PTP Synchronization for Power System State Estimation with PMUs. 
IEEE Transactions on Instrumentation and Measurement, 61, 1476-1485.  
https://doi.org/10.1109/tim.2011.2180973 

[22] Bird, J. (2006) Higher Engineering Mathematics. 5th Edition, Khanna Publishers, 
699-701. 

[23] Ponnala, R., Chakravarthy, M. and Lalitha, S.V.N.L. (2022) Effective Monitoring of 
Power System with Phasor Measurement Unit and Effective Data Storage System. 
Bulletin of Electrical Engineering and Informatics, 11, 2471-2478. 
https://doi.org/10.11591/eei.v11i5.4085 

[24] IEEE (2011) IEEE Std C37.118.1-2011; IEEE Standard for Synchrophasor Measure-
ments for Power Systems. 

[25] Mohapatra, D. (2015) Development and Hardware Implementation of a Phasor 
Measurement Unit using Microcontroller. National Institute of Technology, Rourkela, 
9-10. 

[26] Li, H. (2019) Frequency Estimation and Tracking by Two-Layered Iterative DFT with 
Re-Sampling in Non-Steady States of Power System. EURASIP Journal on Wireless 
Communications and Networking, 2019, Article No. 28.  
https://doi.org/10.1186/s13638-018-1320-1 

[27] Chukkaluru, S.L. and Affijulla, S. (2023) Review of Discrete Fourier Transform dur-
ing Dynamic Phasor Estimation and the Design of Synchrophasor Units. ECTI Trans-
actions on Electrical Engineering, Electronics, and Communications, 21, Article ID: 
248548. https://doi.org/10.37936/ecti-eec.2023211.248548 

https://doi.org/10.4236/wjet.2025.133028
https://doi.org/10.1109/tpwrs.2018.2832615
https://doi.org/10.1109/pesgm.2018.8586667
https://doi.org/10.1109/icdm.2018.00088
https://doi.org/10.18280/isi.290508
https://www.aaai.org/
https://doi.org/10.1109/tim.2011.2180973
https://doi.org/10.11591/eei.v11i5.4085
https://doi.org/10.1186/s13638-018-1320-1
https://doi.org/10.37936/ecti-eec.2023211.248548


G. Musonda et al. 
 

 

DOI: 10.4236/wjet.2025.133028 461 World Journal of Engineering and Technology 
 

[28] Ali, Z., Saleem, K., Brown, R., Christofides, N. and Dudley, S. (2022) Performance 
Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewa-
ble Energy Systems. Energies, 15, Article 1867. https://doi.org/10.3390/en15051867 

[29] Saleem, K., Ali, Z. and Mehran, K. (2021) A Single-Phase Synchronization Technique 
for Grid-Connected Energy Storage System under Faulty Grid Conditions. IEEE Trans-
actions on Power Electronics, 36, 12019-12032.  
https://doi.org/10.1109/tpel.2021.3071418 

[30] Rao, A.V.K., Soni, K.M., Sinha, S.K. and Nasiruddin, I. (2021) Dynamic Phasor Esti-
mation Using Adaptive Artificial Neural Network. International Journal of System 
Assurance Engineering and Management, 12, 310-317.  
https://doi.org/10.1007/s13198-021-01082-2 

[31] Islam, A., Bouzerdoum, A. and Belhaouari, S.B. (2024) Bio-Inspired Adaptive Neu-
rons for Dynamic Weighting in Artificial Neural Networks. arXiv: 2412.01454. 
https://www.researchgate.net/publication/386375425  

[32] Nanda, S. and Dash, P.K. (2016) A Gauss-Newton ADALINE for Dynamic Phasor 
Estimation of Power Signals and Its FPGA Implementation. IEEE Transactions on 
Instrumentation and Measurement, 67, 45-56. 

[33] John, T. (1997) An Introduction to Error Analysis: The Study of Uncertainties in 
Physical Measurements. University Science Books, 215-217. 

[34] Yu, W.P., Yao, W.X., Deng, X.D., Zhao, Y.F. and Liu, Y.L. (2020) Timestamp Shift 
Detection for Synchrophasor Data Based on Similarity Analysis between Relative 
Phase Angle and Frequency. IEEE Transactions on Power Delivery, 35, 1588-1591. 

[35] Björkhem, F., Myrland, J.B., Jolhammar, T. and Nour, O.M. (2024) Implementation 
of a Phasor Measurement Unit in Matlab. Department of Electrical Engineering, 
Uppsala University, 13-17. 

[36] Khaledian, E., Pandey, S., Kundu, P. and Srivastava, A.K. (2021) Real-Time Synchro-
phasor Data Anomaly Detection and Classification Using isolation Forest, Kmeans, 
and Loop. IEEE Transactions on Smart Grid, 12, 2378-2388.  
https://doi.org/10.1109/tsg.2020.3046602 

[37] (2022) Description of Normal Frequency, The South African Grid Code System Op-
eration Code, Version 10.1. Eskom Transmission Division. 

 
 
 
 
 
 
 

https://doi.org/10.4236/wjet.2025.133028
https://doi.org/10.3390/en15051867
https://doi.org/10.1109/tpel.2021.3071418
https://doi.org/10.1007/s13198-021-01082-2
https://www.researchgate.net/publication/386375425
https://doi.org/10.1109/tsg.2020.3046602

	Adaptive Artificial Neural Network (ADALINE) Dynamic Phase Error Estimation Based on the Average Correlation Coefficient
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Literature Review
	4. Hypothesis and Algorithms
	5. Methodology
	6. Results and Discussion
	7. Conclusions
	Conflicts of Interest
	References

