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Abstract 
Attrition is a common challenge in statistical analysis for longitudinal or 
multi-stage cross-sectional studies. While strategies to reduce attrition should 
ideally be implemented during the study design phase, they remain common 
in real-world research, necessitating statistical methods to address them. Tra-
ditional approaches like multiple imputation (MI) and inverse probability 
weighting (IPW) rely on the assumption that data is missing at random 
(MAR), which is not always plausible. Recent developments in machine learn-
ing (ML) based methods offer promising alternatives because of their ability 
to capture complex patterns in data and handle non-linear relationships more 
effectively. This study examines four ML-based imputation methods to ac-
count for attrition and compares them with conventional MI and IPW in a 
two-stage epilepsy population-based prevalence survey involving 56,425 par-
ticipants. Simulated attrition levels from 5% to 50% were applied following the 
MAR mechanism to assess the performance of the different methods. This was 
replicated 100 times using different random seeds. Results showed that bias 
increased with an increase in attrition levels. Complete case analysis had the 
largest bias in all scenarios. k-nearest neighbor (KNN) and sequential KNN 
(sKNN) performed similarly to MI under MAR but exhibited less bias than 
MI and IPW when data were MNAR. While IPW performed similarly to MI 
under MAR, it had greater bias under MNAR. Both missForest and the MI 
implemented using random forest were outperformed by sKNN and KNN. 
We have demonstrated that even a small attrition proportion of 5% can sig-
nificantly bias estimates if not properly addressed. While MI is still the most 
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preferred for missing data assuming MAR, ML methods, particularly sKNN 
and KNN demonstrated potential for addressing attrition when data are 
MNAR. Choosing the appropriate method to address missing data should be 
preceded by an evaluation of different available methods that could be suitable 
for the data being analysed. Future research should explore ML methods in 
various study designs and consider integrating ML into the very robust MI 
framework to improve prediction accuracy for missing data due to attrition. 
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1. Introduction 

Missing data, whether due to attrition or other causes, poses a common challenge 
in any statistical analysis. In practice, for studies with multiple timepoints such as 
longitudinal and multi-stage cross-sectional studies, attrition is often inevitable. 
Attrition results in data missing on outcomes or covariates of interest at that 
specific time point. The process of accounting for attrition should ideally start at 
the point of study design, where strategies can be put in place to enhance response 
rates. While attrition can be minimized, in practice, it cannot be entirely eliminated. 
Thus, there is a need to consider methods which researchers can use to account 
for attrition. 

For diseases such as epilepsy, the application area for this study, the most 
common method of estimating prevalence consists of at least two stages [1] [2]. 
The first stage is used for screening all individuals in the target area (through a 
census) to detect the possible cases of epilepsy, and the subsequent stages are used 
for confirmation by a trained physician (most robustly, a neurologist) [3] [4]. This 
design often faces the challenge of attrition, which occurs when participants 
screened in the first stage fail to participate in the follow-up confirmation stage(s). 

A number of methods exist for accounting for attrition. They range from simple 
methods such as complete case analysis (ignoring missingness), last observation 
carried forward (LOCF), single imputations methods such as mean imputations, 
regression imputation and maximum likelihood estimation (also called direct 
likelihood) [5], to more advanced methods such as inverse probability weights 
(IPW) and multiple imputation (MI). Below, we discuss three commonly used 
methods, namely CCA, MI and IPW, which are three of the most commonly 
applied methods in recent literature [6]. 

Complete case analysis works by restricting the analysis to the observed data 
and thus ignores missingness. This method yields unbiased results when the 
missing data pattern is completely at random (MCAR) [6]. In practice, however, 
MCAR is uncommon, which means that using CCA has an increased risk of 
producing biased estimates. 
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The inverse probability weighting method works by assigning weights to each 
observation based on the probability of being observed, thereby giving more 
weight to observations that are less likely to be missing. The common approach is 
using propensity scores generated as predicted values from a fitted model that 
includes covariates related to the missingness [6], for example, socio-demographic 
factors associated with non-response. Inverse probability weights are calculated 
as the inverse of the predicted probability of being observed. This means that 
observations with low probability of being observed (that is, are more likely to be 
missing) would have higher weights, while observations with high probability of 
being observed would have lower weights. Each individual observation is 
weighted by its corresponding inverse probability weight. This means that 
observations with higher weight would have greater influence on the analysis 
effectively giving more importance to observations that are less likely to be 
missing. Analysis is conducted using the weighted data. 

Multiple imputation (MI) is commonly used when the missing data mechanism 
is at least missing at random (MAR). It can be applied to impute continuous, 
binary, and categorical variables [7] [8]. MI replaces missing values with plausible 
values drawn from the posterior predictive distribution of the missing data, 
conditional on the observed data. 

A major assumption that must be met to apply MI and IPW is that the data 
must be MAR or MCAR. Not negating its important role in helping analysis 
navigate the problem of missing data, MI has limitations in some settings [9]-[14]. 
One of the main limitations is that it is not appropriate when data are MNAR 
and the MAR assumption can not be tested with empirical data. Further, its 
efficiency may not be guaranteed if the missing proportion is greater than 40% 
[15], and especially if the MAR assumption is implausible. As noted by Kristman 
et al. [14], attrition is rarely random and MNAR seriously biases estimates. MI 
is computationally intensive and involves a lot of approximations. 

A recent study has shown that, while MAR and MCAR could be sufficient 
conditions for consistent estimation with specific methods, they may not always 
directly determine the best approach for handling the missing data in question [16] 
with sensitivity analysis needed to test plausibility [17]. Further, the most commonly 
used model in the MI framework is logistic regression for binary outcomes. 
However, in comparison with newer approaches such as machine learning, logistic 
regression has often been outperformed by algorithms like random forest and 
extreme gradient boosting methods. As the development and application of 
machine learning (ML) methods continue to evolve, there is attention to their 
potential in addressing the challenges posed by missing data due to attrition. 

Machine learning methods, which are able to learn patterns in a dataset, identify 
trends and make predictions based on large datasets, offer a promising avenue for 
handling missing data in a way that goes beyond traditional imputation and 
weighting techniques. One of the recent developments has been application of 
machine learning algorithms to handle missing data include use of random forest, 
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missForest and k-nearest neighbors (KNN) implemented through common 
statistical software such as mice and caret packages in the R software [18] [19]. 
This is an active area of research to determine how ML methods perform or 
complement the established MI and IPW methods. It remains largely unexplored, 
how the new ML methods perform in the context of attrition in the analysis of 
prevalence using multi-stage population-based surveys. 

In this paper, using a real dataset on epilepsy, we evaluate the performance of four 
ML-based imputation methods, namely KNN, sequential KNN, an iterative 
imputation method called missForest [20], which uses the random forest algorithm, 
and multiple imputation implemented using random forest as the imputation 
model. We also compare their performance against the common approaches such 
as MI and IPW. By leveraging the predictive power of machine learning algorithms, 
researchers can improve the accuracy, efficiency, and robustness of imputation 
procedures. We emphasize the importance of understanding the underlying 
assumptions and considerations when applying different methods for accounting 
for attrition and highlight avenues for future research in the field. 

2. Materials and Methods 
2.1. Study Setting and the Motivating Study 

The data used in this analysis are based on an epilepsy prevalence study conducted 
in the two informal settlements, under the Epilepsy Pathway Innovation in Africa 
(EPInA) project, conducted in Nairobi (Protocol reference: NIHR200134) [21]. It 
was set up to improve epilepsy treatment pathways, including prevention, 
diagnosis, treatment and awareness. The Nairobi site covered two urban informal 
settlements, namely Viwandani and Korogocho, which form the Nairobi Urban 
Health and Demographic Surveillance System (NUHDSS) that is led by the 
African Population and Health Research Center (APHRC). Like most other urban 
informal settlements in Nairobi, Viwandani and Korogocho are characterized by 
lack of basic infrastructure, poor sanitation, overcrowding, high unemployment 
rate, poverty, and inadequate health infrastructure. Epilepsy studies have been 
conducted more predominantly in rural settings. This site was selected because 
it represents urban poor settlements in Nairobi. Viwandani is a more mobile 
population where most residents are workers of the nearby companies in the 
industrial area of Nairobi. Korogocho is a more settled population where most 
residents have stayed there all their life. The two settings provide a suitable 
environment to study attrition in urban settings, which is the focus of this paper. 
Detailed information about the NUHDSS is available elsewhere [22] [23]. 

2.2. Study Design 

The data are from a population-based cross-sectional prevalence survey (census) 
conducted in the NUHDSS in Nairobi, under the EPInA project. The survey had 
two stages of screening patients for epilepsy. In the first stage, trained field 
interviewers administered a standardized validated screening questionnaire with 
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14 items [23] to the head of household or an adult representative in the household 
to identify persons with history of epilepsy. Socio-demographic characteristics of 
all members of the household were collected at this stage, including age and sex. 
Participants identified as possible cases of epilepsy in the first stage would then be 
invited for assessment by the neurologist at a nearby facility (second stage). The 
participants were invited through scheduled appointments, and those who missed 
appointments were physically traced using confidential contact and residential 
information they provided in the first stage. The first stage of screening was 
conducted between 21st September 2021 and 21st December 2021, and the second 
stage between 14th April 2022 and 6th August 2022. 

2.3. The dataset and simulation 

The entire EPInA dataset in the Nairobi site consisted of 56,425 participants, of 
whom 1126 were screened as possible cases of epilepsy in the first stage of 
screening (at household level) and 873 of the possible cases completed the second 
stage (assessment by a neurologist at a health clinic). Data with 0% attrition is not 
feasible in practice. Therefore, for this analysis, we construct a hypothetical ‘gold 
standard’ dataset based on the complete observations from the EPInA dataset. We 
exclude possible cases that were not screened by the neurologist. Thus, we 
consider the dataset with 56,172 records as the dataset with no attrition, for the 
purpose of comparison and determining the methods that better account for 
attrition in a population-based epilepsy prevalence survey. This excludes the 253 
individuals lost to follow-up from stage 2. 

We simulated attrition at different levels, denoted by λ . For each attrition 
level, a new variable was generated to reflect the induced missingness. Attrition 
rates of λ  = 5%, 10%, 20%, 30%, 40%, 50% were randomly imposed on the data, 
with the process repeated 100 times using different random seed values. Attrition 
was imposed only among the 1126 possible cases, reflecting real-world follow-up 
loss. The reported estimates were obtained by computing the mean across all 100 
replications. These proportions were selected to represent small, moderate, and 
high levels of attrition. As a result, the analytical dataset includes a variable with 
complete information (no attrition) and new variables with incomplete 
information at varying levels of attrition ( λ ). We simulated two missingness 
mechanisms: MAR (Missing at Random), by introducing differential attrition 
between the Viwandani and Korogocho sites; and MNAR (Missing Not at 
Random), by manipulating the missingness for sex and age variables to ensure 
that missingness is related to the missing data itself. This dual approach allows for 
an evaluation of how each method performs under more realistic and challenging 
missing data scenarios. MNAR was only evaluated when examining the 
relationship between the outcome and covariates. 

2.4. Outcome 

The primary outcome of this study is the prevalence of epilepsy. It is measured as 
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the proportion of individuals who were confirmed as having epilepsy by a 
neurologist in the second stage out of the population size captured in the first stage. 

2.5. Covariates 

In addition to prevalence estimation, for the purpose of determining utility of the 
imputed datasets, we also examine the association between epilepsy and key socio-
demographic characteristics namely site, sex and age. These covariates were 
chosen just for the purposes of comparing the methods to account for attrition 
and because they are the most commonly analyzed demographic variables in 
epidemiological studies. 

2.6. Statistical Models 
2.6.1. Notations 
The notation used in the statistical models is as follows: 

Y  is a binary outcome indicating epilepsy diagnosis ( 1Y =  if confirmed, 
0Y =  if not confirmed). 

x  is a vector of covariates used in the regression models. 
( )ˆ 1|P Y = x  is predicted probability of epilepsy given the covariates. 

θ̂  is the estimated prevalence of epilepsy. 

iR  is the response indicator ( 1iR =  if observed, 0iR =  if missing). 

iω  is the inverse probability weight for observation i . 
M  is the number of imputations used in multiple imputation. 
ˆ

mβ  is the estimate from the thm  imputed dataset. 
β  is the mean estimate across the M  imputations. 
MCE  is the Monte Carlo Error of the estimates from the imputation. 
In all tables in the results section, σ  denotes the standard error from the 

dataset with no attrition, mσ  denotes the standard error from the dataset with 
some level of attrition, τ  denotes the p-value, and ζ  denotes the attrition bias. 

2.6.2. The Logistic Regression Model 
Let Y  be a binary random variable such that ( )1|P Y = x  denotes the 
probability of being diagnosed with epilepsy, and ( )0 |P Y = x  denotes the 
probability of not being diagnosed. 

1, if participant was confirmed as having epilepsy;
0, if the participant was screened negative at stage 1 or assessed

by a neurologist and not diagnosed with epilepsy at stage 2.
Y


= 



 

Our objectives are to estimate the prevalence of epilepsy (θ ), and identify 
associated factors using a logistic regression model, specified as 

( )
( )

1|
log

1 1|
P Y

P Y
 =

=  − = 

x
x

x
β                    (1) 

where x  is the vector of covariates (including an intercept) and β  is the vector 
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of regression coefficients. 

2.6.3. The Multiple Imputation Model 
The multiple imputation model included both the covariates from the substantive 
model (Equation 1) and screening variables from validated epilepsy screening 
tools [2] [24]. Sociodemographic variables used in the substantive model were also 
included in the imputation model, following best practice recommendations [8] 
[25]. All methods were evaluated across attrition levels  

{ }5%,10%,20%,30%,40%,50%λ = . 
Let jY  denote the binary epilepsy diagnosis variable with missing values. We 

model the missing values using logistic regression: 

( ) ( )0 1 1obs
11|

1 e k kj x xP Y β β β− + + +
= =

+
x



                 (2) 

1) For each missing value jY  in misY , predicted probabilities are computed 
based on the logistic regression model  

( ) ( )0 1 1ˆobs ˆ ˆ
1ˆ 1|

1 e k k
j x x

P Y
β β β− + + +

= =
+

x


 

where 0 1, ,ˆ ˆ ˆ, kβ β β  are the estimated regression coefficients from the logistic 
regression model. 

2) For each missing jY , we generate a random value from a Bernoulli 
distribution with success probability ( )obs1|ˆ

jP Y = x . This step ensures that the 
imputed values reflect the uncertainty in the predicted probabilities. 

3) We perform this imputation multiple times (such as, M  times) to create 
M  complete datasets, where each dataset has a different set of imputed values 
for misY . For this study, we set 50M = . Although a minimum of 5M =  is 
commonly used, larger values are preferred to reduce Monte Carlo Error (MCE) 
of the estimate, which is computed as the standard deviation of the estimates 
across all M . More specifically, 

( )
( )

2

1
ˆ

MCE
1

M
mm

M M

β β
=

−
=

−
∑

                  (3) 

where ˆ
mβ  is the estimate based on the thm  imputation, and β  is the arithmetic 

mean of the estimates from all the M  imputed datasets. Computation of the MCE 
is the same also for the prevalence estimare θ̂ . 

The final step in the multiple imputation process involves combining the results 
from the M  imputed datasets using Rubin’s combination rule [6] [26]. According 
to Rubin’s rules, the combined estimate β̂  of a parameter β  is given by 

( )

1

ˆ ˆ1 M
m

mM
β β

=

= ∑                        (4) 

where ( )ˆ mβ  is the estimate of β  from the thm  imputed dataset. The variance 

( )Var β̂  is obtained as 
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( ) ( ) ( ) ( )( )2

1 1

ˆ ˆ
111Var Var ˆ
1

ˆ
M M

m m

m m

M
M M

β β β β
= =

+
= + −

−∑ ∑          (5) 

This accounts for both within-imputation variability (the first term) and 
between-imputation variability (the second term). The same combination rules 
were applied to both prevalence estimates θ̂  and regression coefficients β̂  
from the multiply imputed datasets. 

2.6.4. Inverse Probability Weighting Model 
To adjust for attrition bias, we modeled the probability of response ( 1iR = ) using 
logistic regression: 

( )
( )

1|
log

1 1|
i i

i
i i

P R
P R

 =
=  − = 

x
x

x
γ                 (6) 

The vector γ represents the regression coefficients corresponding to the 
covariates x . These coefficients quantify the association between each covariate 
and the log odds of being observed, that is, Ri = 1.  

Weights were computed as: 

ˆ
1

i
ip

ω =                         (7) 

A weighted logistic regression was then fitted to the observed outcome: 

( )
( )

1|
log

1 1|
i i

i
i i

P Y
P Y

 =
=  − = 

x
x

x
β                (8) 

The weights iω  adjust for selection bias due to attrition, giving more influence 
to underrepresented individuals and improving the robustness of the parameter 
estimates. 

2.7. Machine Learning-Based Methods 
2.7.1. missForest 
missForest is a random forest-based approach used to handle missing data. It is 
particularly effective for mixed-type data and captures nonlinear relationships 
well. It works by building a series of random forest models, one for each variable 
with missing values, using the other variables as predictors. The idea is to use the 
patterns in the observed data to estimate the missing parts. 

In practice, the algorithm starts by filling in missing values using a simple 
method like the mean or mode. Then, for each variable with missing data, a 
random forest model is trained using only the complete cases. This model is used 
to predict the missing values in that variable. Once all variables have been 
processed, the algorithm checks how much the new imputations differ from the 
previous round. This cycle is repeated until the changes between iterations are 
small enough to stop. 
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2.7.2. k-Nearest Neighbour (KNN) 
KNN is a distance-based algorithm commonly used in classification and regression 
tasks. In the context of imputation, it estimates missing values by identifying the k 
nearest observations in the dataset based on available data. Distance is typically 
calculated using metrics like Euclidean or Gower distance, depending on variable 
types. 

For continuous variables, the imputed value is usually the mean of the k nearest 
neighbors. For binary or categorical variables, the mode of the neighbors is used 
instead. When imputing binary outcomes—such as epilepsy diagnosis—the 
algorithm determines which of the two classes (such as, 0 or 1) appears most 
frequently among the neighbors and assigns that as the imputed value. This 
approach preserves the binary nature of the data while still leveraging the similarity 
structure in the observed dataset. 

2.7.3. Sequential k-Nearest Neighbour 
Sequential KNN extends the basic KNN method by iteratively imputing one 
variable at a time. At each step, KNN is applied to fill in missing values for a single 
variable, using the currently available and previously imputed data as inputs. After 
each round, the dataset is updated, and the process continues with the next 
variable. 

As with standard KNN, binary variables are imputed by identifying the k 
nearest neighbors and selecting the most frequent class among them. This 
majority-vote mechanism ensures that the imputed values remain binary. The 
sequential structure allows for improved accuracy, particularly when multiple 
variables have missing data, by incorporating more information as the algorithm 
progresses. 

Choice of k in KNN and sKNN 
The performance of k-nearest neighbors (KNN) and sequential KNN (sKNN) 

imputation methods depend on the choice of the parameter k , which determines 
the number of nearest neighbors considered when imputing missing values. In 
this study, we used 5k = , a commonly used default in the literature for binary 
and categorical data [27] [28]. For binary outcome variables, this means that 
each missing value is imputed using a majority among the five nearest neighbors 
with observed values. For example, if at least 3 out of the 5 nearest neighbors 
have the value 1, the imputed value is set to 1; otherwise, it is set to 0. This 
approach balances sensitivity to local data structure with stability across the 
dataset. 

We selected 5k =  based on preliminary testing and practical considerations. 
Larger values of k  tend to smooth over local variation while smaller values (for 
example, 1k =  or 3k = ) can introduce noise due to overfitting in some 
instances. To assess the robustness of this choice, we conducted a sensitivity 
analysis using 3k =  and 7k = . The results were consistent across the different 
values of k . 
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2.7.4. Multiple Imputation Using Random Forest 
Multiple imputation (MI) implemented together with random forest (MI with RF) 
models as the underlying imputation model leverages the strengths of machine 
learning to capture complex, nonlinear relationships between variables during the 
imputation process. Similar to other machine learning models, random forest is 
able to learn trends and patterns in the training dataset and use it to predict a new 
set of data. 

In this approach, for each incomplete variable jY , a random forest model is fit 
using the other observed variables j−X  as predictors. In this context, j−X  
represents all variables except the j -th variable jY , which is the target of the 
current imputation. The model predicts the missing values of jY  by sampling 
from the conditional distribution estimated by the random forest rather than 
simply using point predictions. This stochastic element allows for proper 
variability between imputations. Stochastic sampling can be implemented using 
methods such as predictive mean matching or drawing from the distribution of 
trees in the forest to reflect imputation uncertainty. 

For each variable jY  containing missing data, a random forest model is trained 
using the observed values obs

jY  and the other variables j−X  as predictors. 
Imputed values imp

jY  for the missing entries are then generated by sampling from 
the predictive distribution estimated by the random forest. This procedure is 
repeated sequentially for all variables with missing data, with imputations updated 
based on the most recent values of other variables. Finally, the entire iterative 
imputation process is performed m  times to produce m  completed datasets, 
each reflecting the uncertainty inherent in the imputation. 

For missing data in variable jY , the imputed values at iteration t  can be 
written as:  

( ) ( )( ), , 1
RF~ | ,imp t imp t

j j jY f Y −
−X  

where RFf  is the conditional distribution modeled by the random forest, and 
( ), 1imp t

j
−

−X  denotes the latest imputed predictors from the previous iteration. 
After obtaining the m  completed datasets, analyses are performed separately 

on each, and results are combined using Rubin’s rules as shown in equations 4 and 
5. 

2.8. Statistical Analysis 

Descriptive statistics were used to summarize the data including means and 
standard deviations for approximately normally distributed continuous variables, 
medians and interquartile ranges for skewed continuous variables, and frequencies 
or proportions for categorical variables. We present results from the dataset with 
no attrition, alongside those from a dataset in which missing data were imputed. 
To compare how different methods accounted for attrition, we report the point 
estimate their standard errors (σ ), 95% confidence intervals, and the attrition 
bias ( ζ ), defined as the absolute difference between the estimate from the 
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attrition-affected dataset and that from the dataset with no attrition. For this 
analysis, the best model is defined as the one that minimizes attrition bias. 

All statistical tests considered in this study were conducted at a 5% significance 
level ( 0.05α = ). We report both the lower class boundary (LCB) and upper class 
boundary (UCB) of the 95% confidence intervals for all estimates. The focus of 
fitting the logistic regression model is to determine the association between 
epilepsy and key socio-demographic characteristics. The dependent variable was 
binary (epilepsy diagnosis), and the independent variables included site (1 = 
‘Korogocho’, 0 = ‘Viwandani’), age (1 = ‘five years or younger’, 2 = ‘6 to 12 years’, 
3 = ‘13 to 18 years’, 4 = ‘19 to 28 years’, 5 = ‘29 to 49 years’, and 6 = ‘50 years or 
older’), and sex (0 = ‘female’, 1 = ‘male’). These covariates and their categorization 
were selected for demonstration purposes and to simplify comparisons across 
different methodologies. We included all the three covariates in all the models. 

2.9. Training Machine Learning Models 

We evaluated four machine learning-based imputation models: missForest [20], 
k-nearest neighbour (KNN), sequential KNN (sKNN) and multiple imputation 
implemented with random forest model (MI with RF). These models were selected 
because they are widely used and have demonstrated strong performance in 
similar studies [29]-[31]. Training was performed on the dataset with no attrition, 
while testing was conducted using datasets with varying levels of missingness due 
to attrition ( λ ). The performance of the ML-based imputation models was 
evaluated using the following metrics.  

2.9.1. Accuracy  
Number of correctly classified instancesAccuracy

Total number of instances
=        (12) 

Accuracy ranges from 0 to 1, with higher values indicating greater classification 
performance.  

2.9.2. F1 Score  
2 Precision RecallF1

Precision Recall
× ×

=
+

                (13) 

Precision is the proportion of true positive predictions among all positive 
predictions, while Recall (also known as sensitivity or true positive rate) is the 
proportion of true positives among all actual positive instances. The F1 score 
ranges from 0 to 1, with higher values indicating better performance. An F1 score 
above 0.7 is generally recommended [32].  

2.9.3. Area under the Receiver Operating Characteristic Curve (AUC)  
Sensitivity SpecificityAUC

2
+

=                 (14) 

Here, sensitivity is the proportion of true positives correctly identified, and 
specificity is the proportion of true negatives correctly identified. AUC values 
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range from 0 to 1, with higher values indicating better discriminatory ability. AUC 
values above 0.7 are considered acceptable [33]. 

3. Results 
3.1. The Substantive Logistic Regression Model 

In this paper, the substantive model is estimated from the data with no attrition, 
the results against which subsequent findings based on the various methods used 
to account for attrition are compared. Here, we estimate prevalence of epilepsy 
and fit the logistic regression model to determine the association between site, sex 
and age of the participant. Table 1 presents the prevalence of epilepsy expressed 
per 1000 people and the 95% confidence interval. 
 
Table 1. Prevalence based on the dataset with no attrition. 

revalence/1000 Lower CI (L) Upper CI (U) U-L 

9.40 8.60 10.20 1.60 

 
Overall, the prevalence estimate against which the missing data methods are 

compared is 9.4 cases per 1000 people, and a 95% confidence interval of 8.6 to 
10.2. Table 2 shows the estimates from the subtantive logistic regression model, 
against which the estimates from the logistic regression models based on datasets 
with missing data accounted for by different approaches are compared. 
 

Table 2. Logistic regression model based dataset with no attrition. 

 β  σ  τ  Lower 95% boundary Upper 95% boundary 

Site (Ref = Viwandani)      

Korogocho 0.304 0.089 0.001 0.130 0.478 

Sex (Ref = Male)      

Female 0.101 0.088 0.251 −0.071 0.273 

Age in years (Ref = under 5 years)      

6 - 12 years 0.691 0.199 0.001 0.301 1.081 

13 - 18 years 0.791 0.206 <0.001 0.388 1.194 

19 - 28 years 0.717 0.184 <0.001 0.356 1.078 

29 - 49 years 0.746 0.179 <0.001 0.395 1.097 

50 years or older 0.368 0.243 0.130 −0.108 0.845 

Constant −5.468 0.173 <0.001 −5.808 −5.129 

Notes: Ref = Reference category, τ is p-value, σ is standard error and β in this table are the log odds of  being diagnosed with 
epilepsy given the covariates. 

https://doi.org/10.4236/ojs.2025.153018


D. M. Mwanga et al. 
 

 

DOI: 10.4236/ojs.2025.153018 349 Open Journal of Statistics 
 

3.2. Complete Case Analysis, Multiple Imputation and Inverse  
Probability Weighting 

Below, we compare prevalence obtained by CCA, MI and IPW for different levels 
of missingness (assuming MAR) against the prevalence from the dataset with no 
attrition. We compare the attrition bias and precision. Precision is assessed by 
how the missing data methods estimate the confidence intervals and the standard 
errors. Table 3 presents prevalence estimates, confidence intervals when missing 
data is handled using CCA, MI and IPW. It also presents attrition bias, which is 
the difference between the estimate by CCA, IPW and MI and the estimate and 
the estimate from the dataset with no attrition. 
 
Table 3. Prevalence based on data analyzed using CCA and when accounted for MI and 
IPW under MAR. 

Attrition/Methods Prevalence/1000 mσ  LCB (L) UCB (U) U-L ζ  

0% (no attrition) 9.40 0.41 8.60 10.20 1.60 - 

CCA       

5% 8.91 0.40 8.13 9.69 1.56 0.49 

10% 8.38 0.39 7.63 9.14 1.51 1.02 

20% 7.36 0.36 6.65 8.07 1.42 2.04 

30% 6.27 0.33 5.61 6.92 1.31 3.13 

40% 5.63 0.32 5.01 6.25 1.24 3.77 

50% 4.45 0.28 3.90 5.01 1.11 4.95 

MI       

5% 9.36 0.41 8.56 10.17 1.61 0.04 

10% 9.32 0.41 8.51 10.13 1.62 0.08 

20% 9.29 0.43 8.45 10.13 1.68 0.11 

30% 9.16 0.44 8.30 10.03 1.73 0.24 

40% 9.31 0.46 8.40 10.22 1.82 0.09 

50% 8.94 0.44 8.07 9.80 1.73 0.46 

IPW       

5% 10.06 0.46 9.15 10.97 1.82 0.66 

10% 9.44 0.44 8.57 10.30 1.73 0.04 

20% 9.44 0.48 8.49 10.38 1.89 0.04 

30% 9.27 0.53 8.22 10.31 2.09 0.13 

40% 9.31 0.54 8.25 10.36 2.11 0.09 

50% 8.97 0.60 7.79 10.14 2.35 0.43 
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As shown in Table 3, both MI and IPW resulted in prevalence estimates that 
are closer ( 1ζ < ) to the value based on data with no attrition compared to CCA, 
across all levels of attrition. Generally, bias increased with increase in the 
proportion of attrition, particularly for CCA. 

Further, we fit the logistic regression model to determine association between 
socio-demographic characteristics and prevalence under complete case analysis 
and when attrition is accounted for using MI and IPW. Table 4 presents estimates 
comparing the bias in odds ratio estimates when complete case is used, and when 
attrition is accounted for by MI and IPW. 
 

Table 4. Attrition bias on the log odds of the covariates in a logistic regression model under CCA and after accounting for attrition 
using MI and IPW. 

 CCA MI IPW 

λ  5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50% 

MAR                   

Site  
(Ref = Viwandani) 

                  

Korogocho 0.037 0.099 0.369 0.672 0.482 0.675 0.002 0.005 0.001 0.021 0.050 0.096 0.049 0.033 0.031 0.061 0.040 0.064 

Sex (Ref = Male)                   

Female 0.032 0.016 0.044 0.079 0.089 0.054 0.004 0.013 0.015 0.025 0.002 0.011 0.004 0.011 0.024 0.050 0.081 0.064 

Age in years  
(Ref = 0 - 5 years) 

                  

6 - 12 y 0.029 0.007 0.071 0.147 0.126 0.083 0.018 0.035 0.075 0.033 0.184 0.021 0.018 0.032 0.008 0.032 0.053 0.077 

13 - 18 y 0.041 0.016 0.009 0.134 0.073 0.037 0.034 0.050 0.123 0.163 0.075 0.107 0.086 0.033 0.061 0.075 0.029 0.105 

19 - 28 y 0.032 0.019 0.055 0.164 0.206 0.215 0.006 0.028 0.056 0.008 0.152 0.041 0.051 0.022 0.009 0.147 0.209 0.222 

29 - 49 y 0.023 0.013 0.049 0.152 0.176 0.153 0.012 0.018 0.076 0.018 0.098 0.012 0.100 0.043 0.038 0.073 0.130 0.108 

50 y or older 0.081 0.033 0.014 0.102 0.020 0.132 0.046 0.088 0.072 0.029 0.037 0.076 0.046 0.052 0.081 0.107 0.089 0.126 

MNAR                   

Site  
(Ref = Viwandani) 

                  

Korogocho 0.030 0.059 0.034 0.149 0.148 0.131 0.012 0.015 0.032 0.044 0.026 0.016 0.003 0.122 0.163 0.289 0.209 0.156 

Sex (Ref = Male)                   

Female 0.100 0.415 0.727 1.383 2.919 3.820 0.014 0.020 0.050 0.112 0.240 0.343 0.037 0.390 0.693 1.352 2.944 3.924 

Age in years  
(Ref = 0 - 5 years) 

                  

6 - 12 y 0.993 0.055 0.051 0.055 0.052 0.050 0.089 0.142 0.034 0.073 0.031 0.092 1.228 0.162 0.073 0.056 0.015 0.013 

13 - 18 y 0.993 0.725 0.229 0.232 0.222 0.218 0.090 0.145 0.191 0.188 0.187 0.167 1.062 0.803 0.276 0.276 0.195 0.205 

19 - 28 y 0.989 0.986 0.763 0.428 0.423 0.423 0.087 0.080 0.029 0.051 0.028 0.029 1.324 1.166 0.841 0.492 0.362 0.378 

29 - 49 y 0.996 1.014 1.034 0.857 0.426 0.435 0.088 0.078 0.018 0.021 0.011 0.005 1.255 1.149 1.105 0.906 0.369 0.385 

50 y or older 1.008 1.049 1.082 1.164 1.248 0.920 0.090 0.078 0.017 0.009 0.111 0.091 1.243 1.083 1.143 1.206 1.239 0.897 

Notes: Ref = Reference category.  

 
For the MAR scenario, MI generally shows lower biases in log odds, followed 

by IPW. The bias was largest for complete case analysis. For instance, the bias for 
site variable ranged from 0.037 to 0.675 for 5% to 50% attrition when CCA was 
used, but ranged from 0.001 to 0.096 when MI was used and 0.031 to 0.064 for 
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IPW. Similarly, for the sex variable, bias in the log odds ranged from 0.016 to 0.089 
when CCA was but from 0.002 to 0.025 when MI was used and from 0.004 to 0.081 
for IPW. 

In the MNAR scenario, the bias increased, especially for the sex and age 
variable. While bias generally increased, it was greater for CCA and IPW than MI. 
For instance, for sex, bias ranged from 0.100 to 3.820 for CCA, from 0.014 to 0.343 
for MI and from 0.037 to 3.924 for IPW. Similarly, for age, for instance those aged 
19 to 28 years old, bias ranged from 0.423 to 0.989 for CCA, from 0.028 to 0.087 
for MI and from 0.362 to 1.324 for IPW. 

3.3. Evaluation of ML-Based Imputation Methods 

Figure 1 presents key metrics used to evaluate the four ML-based methods for 
different levels of attrition. 
 

 
Figure 1. Evaluation of ML-based imputation methods under varying levels of attrition. 

 
Based on all performance metrics used KNN and sKNN performed better than 

both missForest and random forest implemented within the MI framework. 
Overall, sequential KNN and KNN had similary the best performance across all 
metrics (accuracy, F1 score, and AUC). The performance however reduced with 
increase in attrition levels. The AUC for sKNN ranged from 0.907 for 50% 
attrition to 0.999 for 5% attrition. It ranged from 0.912 for 50% to 0.999 for 5% 
attrition under MAR assumption and 0.945 to 0.996 under MNAR. This suggests 
that sKNN and KNN are better performing models in predicting the missing data 
due to attrition in our study. MI with RF also performed well, closely following 
KNN methods up to 30% attrition, but with a steeper performance drop at higher 
attrition. The missForest model showed consistently lower performance across all 
metrics and attrition levels, with modest variation and no clear advantage as 
missingness increased. These findings suggest that sequential KNN and MI with 
RF are more robust to missing data and have good potential for addressing 
attrition for binary outcome variables, especially at lower to moderate levels of 
missingness. 
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3.4. Prevalence based on Data Imputed by ML-Based Methods 

Table 5 shows the prevalence estimates based on data imputed using missForest, 
sKNN and KNN under different levels of attrition assuming MAR. It also shows 
the amount of attrition bias when compared to the actual prevalence (that is, the 
estimate assuming attrition did not happen). 
 
Table 5. Prevalence based on data imputed by ML-based methods under MAR mechanism. 

Attrition/Methods Prevalence/1000 σ  LCB (L) UCB (U) U-L ζ  

0% (no attrition) 9.40 0.41 8.60 10.20 1.60 - 

missForest       

5% 9.17 0.40 8.38 9.96 1.58 0.23 

10% 9.11 0.40 8.33 9.90 1.57 0.29 

20% 9.36 0.41 8.57 10.16 1.59 0.04 

30% 9.26 0.40 8.47 10.05 1.58 0.14 

40% 9.04 0.40 8.26 9.83 1.57 0.36 

50% 8.53 0.39 7.77 9.29 1.52 0.87 

sKNN       

5% 9.35 0.41 8.55 10.14 1.59 0.05 

10% 9.42 0.41 8.62 10.22 1.60 0.02 

20% 9.56 0.41 8.76 10.36 1.60 0.16 

30% 9.38 0.41 8.58 10.18 1.60 0.02 

40% 9.60 0.41 8.79 10.40 1.61 0.20 

50% 9.44 0.41 8.64 10.23 1.59 0.04 

KNN       

5% 9.36 0.41 8.57 10.16 1.59 0.04 

10% 9.42 0.41 8.62 10.22 1.60 0.02 

20% 9.47 0.41 8.67 10.27 1.60 0.07 

30% 9.24 0.40 8.45 10.03 1.58 0.16 

40% 9.45 0.41 8.65 10.25 1.60 0.05 

50% 9.29 0.40 8.50 10.09 1.59 0.11 

MI with RF       

5% 9.31 0.41 8.52 10.10 1.58 0.09 

10% 9.49 0.41 8.69 10.29 1.60 0.09 

20% 9.19 0.40 8.40 9.98 1.58 0.21 
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Continued 

30% 8.95 0.40 8.18 9.73 1.55 0.45 

40% 9.06 0.40 8.28 9.85 1.57 0.34 

50% 9.04 0.40 8.26 9.83 1.57 0.36 

 
Attrition bias for prevalence estimate ranged from 0.04 to 0.87 across different 

levels of attrition when data were imputed using missForest, from 0.02 to 0.20 
when imputed using sKNN and from 0.02 to 0.11 when using KNN. Standard 
error remained unchanged from the original value of 0.41 across all the four 
methods implying strong precision of the estimates. From these results, KNN 
showed the lowest bias overall, followed closely by sKNN, suggesting they have 
better performance in preserving the true prevalence estimate. MI with RF 
performed better than missForest at higher levels of attrition but worse than KNN 
and sKNN, particularly at 30% attrition and above, where its bias exceeded 0.3. 

When compared with the conventional methods, sKNN and KNN had similar 
performance with MI, but better than IPW as far as analysis of the prevalence 
estimate is concerned. KNN and sKNN outperformed both missForest and MI 
with RF in terms of minimizing attrition bias in the prevalence estimate. The 
standard error remained consistent across all methods, indicating stable precision. 
Based on bias alone, KNN and sKNN outperform missForest and MI with RF, 
particularly at higher attrition levels. Therefore, KNN and sKNN are the most 
reliable in recovering prevalence estimates with minimal bias. 

Figure 2 visualizes the performance of the both machine-learning based models 
and conventional models. 
 

 
Figure 2. Attrition bias on prevalence estimation based on various missing data methods. 

3.5. Logistic Regression Model Based on Data Imputed by  
ML-Based Methods 

Logistic regression model is used to determine association between socio-
demographic characteristics and prevalence under complete case analysis and 
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when attrition is accounted for using ML-based imputation methods; missForest, 
sKNN and KNN. Table 6 presents estimates comparing the bias in odds ratio 
estimates when complete case is used, and when attrition is accounted for by the 
ML-based methods, assuming both MAR and MNAR. 
 

Table 6. Attrition bias on the log odds of the covariates in a logistic regression model for data imputed using ML-based imputation 
methods max. 

 missForest sKNN KNN MI with RF 

λ  5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50% 5% 10% 20% 30% 40% 50% 

MAR                         

Site (Ref = 
Viwandani) 

                        

Korogocho 0.032 0.045 0.001 0.022 0.151 0.276 0.005 0.009 0.042 0.010 0.028 0.106 0.010 0.001 0.020 0.017 0.057 0.139 0.000 0.022 0.008 0.051 0.129 0.083 

Sex (Ref = 
Male) 

                        

Female 0.023 0.003 0.023 0.008 0.034 0.034 0.025 0.025 0.030 0.004 0.010 0.032 0.021 0.010 0.034 0.003 0.019 0.011 0.077 0.039 0.038 0.020 0.081 0.105 

Age in years 
(Ref = 0 - 5 

years) 
                        

6 – 12 y 0.062 0.102 0.035 0.219 0.216 0.280 0.010 0.003 0.001 0.015 0.018 0.114 0.009 0.028 0.076 0.160 0.156 0.313 0.027 0.014 0.027 0.045 0.022 0.073 

13 - 18 y 0.047 0.042 0.057 0.242 0.136 0.069 0.005 0.045 0.036 0.023 0.076 0.223 0.005 0.071 0.041 0.129 0.177 0.294 0.033 0.034 0.076 0.110 0.015 0.042 

19 - 28 y 0.023 0.052 0.048 0.215 0.155 0.229 0.002 0.007 0.033 0.017 0.016 0.130 0.002 0.047 0.090 0.178 0.205 0.269 0.008 0.016 0.103 0.028 0.086 0.073 

29 - 49 y 0.016 0.038 0.105 0.037 0.029 0.018 0.023 0.056 0.080 0.177 0.217 0.333 0.017 0.076 0.159 0.319 0.346 0.397 0.011 0.018 0.056 0.009 0.031 0.010 

40 y or older 0.019 0.044 0.064 0.347 0.306 0.296 0.001 0.008 0.043 0.041 0.074 0.050 0.000 0.020 0.033 0.005 0.013 0.114 0.041 0.039 0.156 0.051 0.059 0.035 

MNAR                         

Site (Ref = 
Viwandani) 

                        

Korogocho 0.002 0.002 0.071 0.099 0.157 0.106 0.018 0.039 0.022 0.035 0.050 0.007 0.014 0.004 0.039 0.094 0.131 0.081 0.014 0.033 0.009 0.030 0.105 0.001 

Sex (Ref = 
Male) 

                        

Female 0.036 0.061 0.300 0.105 0.115 0.167 0.067 0.038 0.035 0.046 0.014 0.005 0.070 0.065 0.033 0.032 0.063 0.016 0.083 0.033 0.013 0.099 0.151 0.035 

Age in years 
(Ref = 0 - 5 

years) 
                        

6 - 12 y 0.268 0.012 0.212 0.070 0.052 0.055 0.375 0.048 0.047 0.043 0.042 0.045 0.392 0.347 0.376 0.380 0.382 0.379 0.236 0.252 0.333 0.344 0.219 0.268 

13 - 18 y 0.267 0.042 0.026 0.079 0.078 0.108 0.375 0.050 0.036 0.044 0.045 0.040 0.393 0.405 0.410 0.418 0.422 0.416 0.237 0.128 0.328 0.279 0.189 0.349 

19 - 28 y 0.268 0.108 0.152 0.037 0.045 0.098 0.372 0.056 0.070 0.162 0.120 0.123 0.390 0.373 0.424 0.495 0.476 0.479 0.234 0.122 0.191 0.199 0.146 0.198 

29 - 49 y 0.270 0.113 0.291 0.020 0.062 0.081 0.376 0.059 0.058 0.105 0.089 0.065 0.395 0.378 0.373 0.416 0.477 0.424 0.228 0.120 0.190 0.173 0.090 0.245 

50 y or older 0.274 0.117 0.296 0.054 0.022 0.033 0.382 0.053 0.054 0.051 0.056 0.022 0.400 0.379 0.380 0.378 0.379 0.257 0.227 0.124 0.191 0.139 0.054 0.117 

 
Overall, sKNN and KNN showed largely similar performance with MI when 

estimating the log odds under MAR. For example, the bias in the log odds for the 
sex variable ranged from 0.003 to 0.034 for missForest, 0.004 to 0.032 for sKNN, 
and 0.003 to 0.034 for KNN, which, though slightly higher, is comparable with MI 
(0.002 to 0.025). Bias for the sex variable ranged from 0.020 to 0.105 for MI with 
random forest and 0.004 to 0.081 for IPW. For age groups and site variables, biases 
were generally low across all methods under MAR. 

When data were MNAR, sKNN (bias range: 0.005 - 0.070) and KNN (bias 
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range: 0.013 - 0.099) consistently provided slightly better estimates for sex across 
different attrition levels compared to MI (0.014 - 0.343), MI with random forest 
(0.035 - 0.151), and IPW (0.037 - 0.930), where bias tended to increase markedly 
with higher attrition. For age categories under MNAR, all ML-based methods, 
including missForest, MI with RF, sKNN, and KNN, showed substantial bias 
increases as attrition rose. The site variable estimates were less affected overall but 
showed some variation across methods. This suggests that ML-based nearest 
neighbor methods might offer an alternative approach to MI for addressing 
missing data where the assumption of MAR can not be guaranteed. 

4. Discussion and Conclusion 

In summary, we found that sKNN and KNN performed similarly to MI in terms 
of estimating prevalence under both MAR and MNAR. Based on the logistic 
regression model under MAR, sKNN and KNN performed comparably to MI. 
Both sKNN and KNN showed promising results when covariates were affected by 
MNAR compared to other models that we evaluated. This indicates the potential 
of ML-based methods to address the persistent challenge of MNAR when imputing 
missing data, though more research is still needed on this topic. Conversely, 
complete case analysis produced the most biased estimates under both MAR and 
MNAR. Complete case analysis only produces unbiased estimates when data are 
missing completely at random (MCAR) [6], but MCAR is rare in practice [14]. 
IPW performed similarly to MI under MAR but exhibited larger bias than MI for 
MNAR data. 

The ideal practice to account for attrition is to design studies that minimize 
attrition. In clinical settings for example, this can be achieved through strategies 
such as targeted mobilization to improve response rates and scheduling favorable 
appointment dates for patients. However, for longitudinal or multi-stage cross-
sectional studies, attrition is often inevitable but can be minimized and accounted 
for during analysis, as demonstrated in our study. As shown, on average, bias 
increased with an increase in the proportion of attrition. 

Recent studies have compared common methods used for missing data 
including CCA, IPW and MI, and found that while IPW and MI are better than 
CCA, MI is more favourable [6] [34], especially when missing data is 5% or more. 
We have extended this work by comparing the three conventional methods for 
handling attrition with machine learning based imputation methods, which are 
gaining popularity in research as the development of data science methodologies 
continues to advance. The key advantage of using machine learning models is that 
they provide flexibility, address the complex non-linear interactions [20] [31] and 
provide internally cross-validated error estimates [35]. 

In addition, our findings regarding the limitations of CCA and IPW are 
corroborated by recent studies. Zhou et al. [36] conducted a comprehensive 
review of missing data techniques and found that CCA consistently produced the 
most biased estimates unless the data were MCAR. Furthermore, their analysis 
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showed that while IPW can perform well under MAR, it tends to introduce 
significant bias under MNAR scenarios. These findings resonate with our results, 
where CCA and IPW showed substantial limitations compared to ML-based 
methods. This growing body of literature emphasizes the need for careful method 
selection based on the specific missing data mechanism and highlights the 
potential of machine learning approaches in improving the accuracy of 
epidemiological and clinical research outcomes. 

Several recent studies have highlighted the advantages of ML-based methods 
over traditional methods [37]. The ability of ML methods to adapt to different 
data structures and missingness mechanisms makes them particularly attractive 
alternatives for handling the attrition often encountered in longitudinal and 
population-based studies. Our study demonstrates that ML-based methods such 
as sKNN and KNN can provide reliable and less biased estimates compared to 
traditional methods. 

In conclusion, our study demonstrates that even a small attrition proportion of 
5% can significantly bias estimates if not properly addressed. Our findings indicate 
that sKNN and KNN perform similarly to MI under MAR and outperform IPW 
and MI in some scenarios under MNAR. This suggests that ML-based methods 
are viable alternatives to MI in various situations. While our findings may not be 
generalized to real-world MNAR data where the mechanism is unknown, our 
findings show that ML-based methods may have potential in addressing this 
persistent challenge. Multiple imputations with random forest did not perform 
differently from those with missForest. This could mean that random forest may 
not be well suited for our dataset, indicating the need for researchers to first 
evaluate which models work best for their data under study before selecting the 
appropriate method to use. It is advisable to avoid using CCA in the presence of 
any level of attrition. As noted by [14], attrition is rarely random, and one should 
assume that attrition is MNAR and make efforts at the study design stage to 
maximize response rates as much as possible. 

Our study underscores the importance of using appropriate methods for 
accounting for attrition in population-based studies. While MI and IPW have been 
widely used, ML-based methods offer promising alternatives, particularly in dealing 
with situations where MAR is not plausible. An examination of different methods 
for accounting for attrition is necessary before settling on one because the 
underlying assumptions may be data-specific. Future research should continue to 
explore the potential of these advanced methods in various study designs and 
contexts. For instance, their application to rare outcomes which tend to have 
imbalanced outcome classes. For instance, in diseases like epilepsy, <1% of the 
population could screen positive for a disease, which results in having imbalanced 
outcome classes. The research considerations could include the development and 
integration of ML-based imputation algorithms within the robust MI frameworks 
to improve the accuracy of prediction and incorporating them in common statistical 
software to allow for their wider application, especially as computational capabilities 
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continue to improve. 
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