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Abstract 
The chemical garden experiment demonstrates the formation of plant-like 
crystal structures using metal salts and sodium silicate. This visually appealing 
experiment is ideal for chemistry education. In the experiment, metal salt crys-
tals react with sodium silicate, forming membrane structures through osmotic 
pressure and hydrostatic forces, promoting the growth of silicate structures. 
Different metal salts produce varied colors and shapes, enhancing the educa-
tional value. A study using Design Expert software explored the relationship 
between metal salt solubility and crystal growth height. Experiments with salts 
like copper (II) nitrate and iron (III) nitrate showed a linear correlation be-
tween solubility and growth height. Higher solubility salts led to taller struc-
tures due to sufficient ion supply. The linear regression model confirmed this 
correlation, with significant statistical results. This study highlights the role of 
solubility in crystal growth, providing valuable insights for educational pur-
poses. Future research could explore variables like temperature and sodium 
silicate concentration to deepen understanding of the chemical garden phe-
nomenon. The experiment’s basic principle involves the reaction of metal salt 
crystals with sodium silicate solution, releasing metal ions and forming an in-
soluble metal silicate membrane. Water molecules enter the membrane through 
osmotic pressure, increasing the internal liquid volume, causing hydrostatic 
pressure changes, and promoting the formation and growth of new mem-
branes. The color and surface shape of the metal salts depend on the type of 
salt used, such as copper salts producing blue, iron salts producing reddish-
brown, and cobalt salts producing purple or red structures. The study used 
nine metal salts, including copper (II) nitrate, iron (III) nitrate, and cobalt (II) 
nitrate. Each salt has a different solubility, and the experiment measured the 
crystal growth height. Data analysis showed that higher solubility salts gener-
ated taller silicate structures. These findings align with theoretical expecta-
tions, where higher solubility salts facilitate rapid membrane formation and 
upward growth of silicate structures. In summary, the research successfully 
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demonstrated the use of Design Expert software to quantitatively analyze the 
significant impact of metal salt solubility on crystal growth characteristics. 
This not only deepens the understanding of the process but also offers practi-
cal advice for teachers to reveal the underlying physics in classroom or labor-
atory activities. 
 
Keywords 
Univariate Experiments, Experimental Teaching, Experimental Design 

 

1. Experiment Introduction 

The “chemical garden” or “water garden” is a classic demonstration in chemistry 
education, notable for its striking visual appeal and rich scientific implications. It 
presents a visually dynamic and chemically rich phenomenon where metal salts 
react with sodium silicate solution to form vividly colored, plant-like structures. 
This process provides a pedagogical platform to explore fundamental concepts 
such as precipitation reactions, osmotic pressure, membrane formation, and self-
organization. 

Previous research has investigated various aspects of chemical gardens, includ-
ing their morphological development, dynamics of membrane rupture, and pat-
tern formation [1] [2]. Liu (2006) [3] outlined the specific conditions under which 
these gardens form, noting the role of ion exchange and osmotic gradients. How-
ever, a key factor that has received limited quantitative attention is the solubility 
of the metal salts involved—a parameter likely to influence both the availability of 
ions and the rate of membrane formation. 

Studies on metal salt solubility have shown its impact on crystallization and 
membrane growth in related contexts. For instance, Bezerra et al. (2008) [4] and 
Gunst (1996) [5] explored how solubility affects ion transport and precipitation 
rates in optimization of chemical reactions. Nevertheless, their work did not ex-
tend into the specific domain of silicate membrane growth or chemical garden 
development. Furthermore, response surface methodology [6] [7], has been 
widely adopted in chemical engineering to model such relationships, but its ap-
plication to educational experiments like the chemical garden remains relatively 
unexplored. 

This study therefore contributes a novel integration of Design Expert software 
with a traditional pedagogical experiment, providing a systematic and quantita-
tive assessment of the correlation between metal salt solubility and crystal growth 
height. By employing linear regression and factorial design methods, the research 
not only bridges an educational gap—offering students an applied statistical mod-
eling context—but also offers new insights for scientific inquiry into self-organiz-
ing chemical systems. Uniquely, this work isolates solubility as a primary factor, 
analyzes multiple salts with different solubility profiles, and evaluates model ro-
bustness through rigorous diagnostics, including ANOVA and residual plots. In 
doing so, it addresses the existing lack of empirical, software-based modeling in 
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undergraduate-level experiments on chemical gardens. 

2. Experiment Overview 

The “Underwater Garden” is a classic student lab experiment known for its high 
safety, engaging visual effects, low cost, and strong aesthetic appeal [3] [8] [9]. It 
is particularly suitable for first- and second-year chemistry and chemical engi-
neering students as an exploratory experiment. 

2.1. Experimental Principle 

When solid metal salts are added to a sodium silicate solution, they gradually react 
to form colored silicate colloids (most silicates are insoluble in water). For example: 

Cu(NO3)2 + Na2SiO3 = CuSiO3↓ + 2NaNO34 
MnSO4 + Na2SiO3 = MnSiO3↓ + Na2SO4 
CoCl2 + Na2SiO3 = CoSiO3↓ + 2NaCl 
Metal salt ions readily react with sodium silicate solution to form a silicate 

membrane. Inside this membrane is a concentrated metal salt solution, while out-
side is the sodium silicate solution. Due to osmotic pressure, water continuously 
diffuses into the membrane, leading to the formation of a highly concentrated 
metal salt solution inside [1]. 

Since the hydrostatic pressure is lower near the top of the membrane, the upper 
semi-permeable membrane expands. Once the pressure reaches a critical point, 
the membrane ruptures, releasing the metal salt solution through the cracks. This 
solution then reacts with the surrounding sodium silicate, forming a new gel-like 
metal silicate membrane. This cycle of rupture and reformation repeats, causing 
the silicate structures to grow upward like branching “stalagmites” until they 
reach the liquid surface [2]. 

Moreover, different metal salts produce distinct silicate formations in the sodium 
silicate solution, resulting in a vibrant and visually striking “chemical garden”. 

2.2. Experimental Design and Software Introduction 

Experimental design involves selecting specific points within a carefully con-
structed experimental space (composed of potential influencing factors, referred 
to as “factors”)—such as vertices, face centers, centroids, and edge centers—to 
conduct experiments. Based on the experimental results, statistical principles like 
variance analysis are applied to establish a functional relationship between the 
factors and the observed outcomes. This process helps determine the optimal fac-
tor conditions that maximize, minimize, or constrain the observed values within 
a desired range. Some software tools can visually represent the relationship be-
tween factors and observed outcomes. 

Commonly used experimental design software includes Minitab, Design Ex-
pert, and JMP. 

This paper presents preliminary results using Design Expert to analyze the fac-
tors influencing the length of silicate crystals in the “Underwater Garden” exper-
iment. 
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2.3. Experimental Reagents and Instruments 

1) Sodium silicate 
Solid Cu(NO3)2 Solid Fe(NO3)3, Solid Co(NO3)2, Solid Ni(NO3)2, Solid Zn(NO3)2, 

Solid MnSO4, Solid NiSO4, Solid CuCl2, Solid CoCl2. 
2) 250 mL beaker, Test tubes, Glass stirring rod, Alcohol lamp, Ruler. 

2.4. Experimental Procedure 

Approximately 30 g of solid substance is added to a 250 mL beaker, followed by 
the addition of 100 mL of deionized water. The mixture is gently heated and 
stirred until fully dissolved. After allowing the solution to stand for 5 minutes, 
metal salt crystals with diameters of 3 - 5 mm (e.g., copper nitrate, iron nitrate, 
cobalt nitrate, nickel nitrate, zinc nitrate, manganese sulfate, nickel sulfate, copper 
chloride, cobalt chloride, etc.) are carefully introduced using tweezers at various 
positions on the bottom of the beaker containing the sodium silicate (Na2SiO3) 
solution. The time of addition is recorded, and each placement location is clearly 
marked. 

The growth behavior of the metal salts is observed closely, and the length of the 
resulting structures is measured and recorded at 5-minute intervals. Shortly after 
introduction, the metal salt crystals begin to develop colorful, plant-like struc-
tures—such as blue, brown, purplish-red, yellow, and green formations resem-
bling buds or dendritic “chemical flora”. 

For long-term preservation of the chemical garden, the sodium silicate solution 
in the beaker may be carefully removed via siphoning. Subsequently, distilled wa-
ter is gently added to a glass container, and the beaker is covered with a watch 
glass to minimize disturbance and evaporation. 

3. Experimental Data 

A total of 14 students participated in the experiment. The collected data are as 
follows (Table 1, Table 2): 
 

Table 1. Data for copper (II) nitrate. 

 5 10 15 20 25 30 35 40 45 50 55 60 

Cu(NO3)2 1.8 2.6 2.9 2.9 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 

Fe(NO3)3 3.2 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

Co(NO3)2 1.9 2.3 2.5 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Ni(NO3)2 2.2 2.4 2.6 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 

Zn(NO3)2 0.7 0.9 1.1 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

MnSO4 0.9 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

NiSO4 0.3 0.3 0.5 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

CuCl2 1.0 1.1 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

CoCl2 1.2 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 
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Table 2. Solubility data of metal salts used in the experiment. 

 
Solubility 

(20˚C, g/100 g H2O) 
Solubility 

(20˚C, Mol/L) 

Cu(NO3)2 125 3.1 

Fe(NO3)3∙9H2O 138 (82.6) 3.6 

Co(NO3)2 97.4 3.0 

Ni(NO3)2 96.3 2.9 

Zn(NO3)2 119 1.4 

MnSO4 62.9 1.6 

NiSO4∙6H2O 44.6 (26.3) 0.9 

CuCl2 73 1.4 

CoCl2 52.9 2.4 

4. Data Processing Procedure 

A new single-factor (solubility, 9 levels) and one response variable (height) are 
designed for a factorial design. 

The experimental data are then input into the software for matching analysis. 
 

Table 3. Fitting summary results. 

Source Sequential p-value Lack-of-fit p-value Adjusted R2 Predicted R2  

Linear 0.0539  0.3522 0.0600 Recommendation 

Quadratic 0.9875  0.2443 −0.3200  

Cubic 0.5420  0.1646 −0.6607  

Quartic 0.5659  0.0487 −2.8313  

Quintic 0.3141  0.1460 −57.8784  

Sextic 0.0513  0.8720 −45.9648 Recommendation 

 
As showsn in Table 3, Design Expert recommended both the linear model and 

the sixth-degree model. However, the predicted R2 for the sixth-degree model is 
−45.9648, and such higher-degree models are rarely used in practical applications. 
Therefore, the linear model was selected for further simplification, followed by 
analysis of variance (ANOVA). 

 
Table 4. ANOVA for the first linear model. 

Source 
Variance 
Summary 

df Mean Square F-value p-value  

Model 3.14 1 3.14 5.35 0.0539 Not Significant 

A-A 3.14 1 3.14 5.35 0.0539  

Residual 4.10 7 0.5864    
Total  

Corrected 
7.24 8     
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The linear model is not significant. According to statistical principles, a model 
is considered significant when the p-value is less than 0.0001. Additionally, the 
variance summary shows that the model can only predict 43.37% of the total cor-
rected variance (3.14/7.24), with an accuracy of less than 50%. 

Therefore, this linear model is not significant. 
Further analysis of the experimental content revealed that among the nine 

salts, only zinc nitrate is colorless, while the other eight salts in the chemical 
garden experiment showed distinct colors in water. It is therefore preliminarily 
considered that colorless metal salts should be excluded. The data is then refitted 
(Table 4). 
 
Table 5. Fitting summary for the second linear fit. 

Source 
Sequential  

p-value 
Lack-of-fit  

p-value 
Adjusted R2 Predicted R2  

Linear 0.0057  0.7033 0.5623 Recommendation 

Quadratic 0.7983  0.6491 0.4327  

Cubic 0.8583  0.5653 −0.3122  

Quartic 0.9219  0.4226 −26.8867  

Quintic 0.0232  0.9603 −84.9654 Recommendation 

Sextic 0.1298  0.9967 −135.3958  

 
The linear model was selected as shown in Table 5. 
 

Table 6. ANOVA for the second linear model. 

Source 
Variance  
Summary 

df Mean Square F-value p-value  

Model 4.79 1 4.79 17.59 0.0057 Significant 

A-A 4.79 1 4.79 17.59 0.0057  

Residual 1.63 6 0.2720    

Total  
Corrected 

6.42 7     

 
The model is effective. The solubility of various salts has a significant impact on 

the crystal growth height (Table 6). 
 

Table 7. Statistical parameters for the second linear model. 

Std. Dev. 0.5216 R2 0.7457 

Mean 2.36 Adjusted R2 0.7033 

C.V. % 22.08 Predicted R2 0.5623 

  Adeq Precision 8.7753 
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Conclusion: The model is effective. The difference between the Adjusted R2 
(0.7033) and the Predicted R2 (0.5623) is less than 0.2, and the R2 value (0.7457) is 
also considered acceptable. 

According to the software’s fitting results, the recommended linear regression 
equation is as follows Table 7. 

R1 = +0.248873 + 0.024502A 
Where A represents the solubility of the chemical substance (g/100 mL water). 

 

 
Figure 1. Diagnostic plots for the second linear fit. 

 
Top Left: Normal probability plot of residuals—the data fits the model well.  
Bottom Left: Box-Cox plot—no transformation of the data is required. 
Top Right: Residuals vs. predicted values—no outliers are observed. 
Bottom Right: Cook’s distance plot—no influential data points are detected 

(Figure 1). 
 

 
Figure 2. Main effect plot after the second fitting. 
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There is a clear linear relationship between solubility and growth height (Figure 
2). 
 

 
Figure 3. Predicted vs. Actual values after the second fitting. 

 
There is a good agreement between the predicted and actual values. Note that 

the data point in the upper left corner of the plot corresponds to zinc nitrate, 
which was previously excluded. This data point is clearly inconsistent with the rest 
of the dataset [6] [7] [10] [11] (Figure 3). 

5. Analysis and Discussion 

Using Design Expert to analyze the factors affecting crystal length in the chemical 
garden experiment, it was found that the solubility of various salts has a significant 
impact on the crystal growth height. This is consistent with the principles of the 
“chemical garden” [12]. 

Therefore, the plan is to continue guiding students to use Design Expert soft-
ware for a comprehensive analysis and discussion of the factors affecting crystal 
growth height in the “chemical garden”, including (1) temperature, (2) the con-
centration of sodium metasilicate solution, and (3) the modulus of sodium meta-
silicate [5]. 

The findings of this study—particularly the statistically validated correlation 
between metal salt solubility and crystal growth height—can be directly leveraged 
to enhance educational practices in chemistry and chemical engineering courses. 
Below are several proposed changes to pedagogical methods that incorporate the 
study’s outcomes: 

5.1. Integrate Quantitative Modeling into Introductory Laboratory  
Courses 

Traditionally, chemical garden experiments are presented as qualitative demon-

https://doi.org/10.4236/ajac.2025.166006


Z. L. Miu, Y. C. Lu 
 

 

DOI: 10.4236/ajac.2025.166006 115 American Journal of Analytical Chemistry 
 

strations. This study suggests redesigning the lab to include quantitative compo-
nents, where students collect growth data and use software such as *Design Ex-
pert* or *Excel* to fit linear models. This fosters a deeper understanding of varia-
ble control and experimental reproducibility. 

5.2. Introduce Concepts of Statistical Analysis Early in Curriculum 

By incorporating ANOVA, regression analysis, and residual diagnostics into first- 
or second-year chemistry labs, students can begin developing essential data anal-
ysis skills early. This also strengthens cross-disciplinary links with statistics and 
engineering. 

5.3. Use Solubility-Dependent Growth to Teach Predictive Thinking 

Teachers can pose pre-lab hypotheses such as: Which salt will produce the tallest 
structure? Why? Students can then test these predictions experimentally and val-
idate them against solubility tables, reinforcing the link between theoretical chem-
istry and experimental outcomes. 

5.4. Develop Scaffolded Learning Module 

This experiment can be expanded into a multi-week module: 
* **Week 1**: Introduction to chemical garden formation and basic qualitative 

observations. 
* **Week 2**: Data collection from multiple salts and introduction to solubility. 
* **Week 3**: Statistical modeling using collected data. 
* **Week 4**: Discussion of model validity and real-world implications. 

5.5. Encourage Design of Controlled Experiments by Students 

Based on this study’s framework, students can be guided to design their own var-
iants—e.g., changing temperature, Na2SiO3 concentration, or using different metal 
ions—to investigate how these variables affect growth. This shift from “cookbook” 
procedures to inquiry-based experimentation promotes scientific curiosity and 
ownership of learning. 

5.6. Use the Experiment as a Gateway to Interdisciplinary Topics 

The chemical garden can serve as a springboard to introduce topics such as bio-
mimicry (growth patterns similar to biological forms), environmental chemistry 
(mineralization processes), or materials science (membrane formation and struc-
ture). 

6. Conclusion 

Analysis using Design Expert software confirms that there is a linear relationship 
between the growth height of crystals in the chemical garden and the solubility of 
the corresponding substances [4]. 
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