
Journal of Software Engineering and Applications, 2025, 18(6), 175-193 
https://www.scirp.org/journal/jsea 

ISSN Online: 1945-3124 
ISSN Print: 1945-3116 

 

DOI: 10.4236/jsea.2025.186012  Jun. 27, 2025 175 Journal of Software Engineering and Applications 
 

 
 
 

Enhancing Cybersecurity in IoT & IIoT:  
A Machine Learning Approach for  
Anomaly Detection 

Mohamed Koroma1, Alhaji Mansaray2 , Yahya Labay Kamara1, Chernor Gurasiue Jalloh3,  
Ibrahim Sorie Ojasy Bah3 

1School of Technology, Computer Science & I.T Department, Njala University, Bo, Sierra Leone 
2School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China  
3School of Software Engineering, Nankai University, Tianjin, China 

 
 
 

Abstract 
The rapid proliferation of the Internet of Things (IoT) and Industrial IoT 
(IIoT) has revolutionized industries through enhanced connectivity and auto-
mation. However, this expansion has introduced significant cybersecurity 
challenges, including vulnerabilities to Distributed Denial of Service (DDoS) 
attacks, malware, and unauthorized access. Traditional security measures like 
firewalls and encryption are often inadequate due to the dynamic and re-
source-constrained nature of IoT/IIoT networks. While Machine Learning 
(ML) has emerged as a promising solution for anomaly detection, challenges 
such as scalability, adversarial robustness, and energy efficiency remain unre-
solved. This study aims to address these gaps by developing an optimized ML-
based framework for real-time anomaly detection in IoT/IIoT environments. 
The methodology integrates supervised (Random Forest), unsupervised (Iso-
lation Forest), and deep learning (LSTM autoencoder) techniques, leveraging 
federated learning for edge deployment and adversarial training for robust-
ness. Evaluated on benchmark datasets (TON-IoT, CICIDS2017, UNSW-
NB15), the framework achieved a 96.2% F1-score, 14.5 ms latency, and 40.5% 
energy savings, outperforming traditional methods. Key findings demonstrate 
its effectiveness in balancing detection accuracy, computational efficiency, 
and explainability (SHAP values > 90% confidence). The study concludes that 
hybrid ML models significantly enhance IoT/IIoT cybersecurity, answering 
the research question affirmatively. Future directions include exploring quan-
tum ML for efficiency and standardizing evaluation benchmarks. 
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Robustness, Edge Computing 

 

1. Introduction 

The Internet of Things (IoT) and the Industrial Internet of Things (IIoT) have 
totally changed the way industries work by connecting devices and automating 
processes, which helps in making smart decisions [1]. IoT includes all those smart 
gadgets and sensors that gather and share data, while IIoT takes this further into 
areas like manufacturing, energy, and transportation [2]. Because of the rise of 
IoT and IIoT devices, we’re now seeing a huge surge in data, which can really help 
with efficiency and maintenance [3]. But, with all this growth comes some big 
security issues since a lot of IoT and IIoT systems don’t have strong security, 
which can leave them open to cyberattacks [4]. In IoT and IIoT ecosystems, con-
cerns like DDoS attacks, malware, and unauthorized access can seriously threaten 
data security and system performance [5]. Such fundamental measures of security 
such as firewalls and encryption methods are often rendered ineffective in the face 
of the highly heterogeneous and dynamic landscapes found in IoT networks [6]. 
Plus, many IoT devices don’t have the processing power to handle complicated 
security measures. Because of this, we really need better ways to spot and deal with 
cyber threats in real-time. Machine Learning (ML) is starting to look like a good 
answer for improving security in these systems [7]-[10]. Being able to analyze a 
lot of network data, it helps find out different patterns and catches everything that 
seems off. Different ML techniques have shown that supervised learning and un-
supervised learning did miracles and could distinguish normal behavior from un-
usual behavior pretty well [11]. Still, there are some ongoing issues, like false 
alarms and attacks on the ML models themselves, which we need to sort out [12]. 
Improving cybersecurity in IoT and IIoT using ML’s anomaly detection is key to 
protecting important systems, keeping data private, and ensuring everything runs 
smoothly [13]. Solid detection systems can help prevent financial losses, protect 
sensitive information, and reduce downtime from cyber-attacks. Plus, using ma-
chine learning in IoT and IIoT security fits right in with the changes we’re seeing 
in Industry 4.0, making industrial systems smarter and tougher [14]. 

The ever-increasing deployment of IoT/IIoT systems is posing a real-time chal-
lenge to existing security mechanisms for the detection of advanced cyber threats; 
though many systems with such an intention exist, challenges are nonetheless ap-
parent [15]. Conventional signature-based detection schemes work poorly against 
zero-day attacks, and rule-based systems fail mainly because of the ever-changing 
nature of IoT networks [16]. Therefore, adaptive, scalable, and efficient ML pa-
rameterization for anomaly detection needs to be considered to overcome those 
limitations [17]. This research is concerned with the design and evaluation of ML-
based anomaly detection models developed for IoT/IIoT environments. The re-
search analyzes supervised and unsupervised methods, including deep learning, 
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to increase detection accuracy and reduce computational overhead [18]. The work 
covers real-world IoT/IIoT datasets and simulated attack scenarios for validation 
[19]. The primary research question is: How can machine learning enhance anom-
aly detection in IoT/IIoT cybersecurity? The aim of this study is to design an effi-
cient ML-based framework for identifying and mitigating cyber threats in 
IoT/IIoT networks. Key objectives include: 1) reviewing existing ML-based anom-
aly detection techniques, 2) developing an optimized detection model, and 3) eval-
uating performance metrics such as precision, recall, and computational efficiency 
[20]. Unlike prior works focusing on single-algorithm approaches (e.g., SVM or 
LSTM alone), our hybrid framework uniquely combines Random Forest, Isolation 
Forest, and LSTM autoencoders to address both known and zero-day attacks. This 
integration achieves superior accuracy (96.2% F1-score) while maintaining edge 
compatibility, a gap in existing literature. Additionally, our adversarial training 
and federated learning components advance robustness and scalability, respec-
tively, beyond current state-of-the-art solutions [11] [17]. 

The remainder of this paper is organized as follows: Section II reviews related 
works on IoT/IIoT security and ML-based anomaly detection. Section III presents 
the proposed methodology, while Section IV discusses experimental results. Fi-
nally, Section V concludes the study and suggests future research directions. 

2. Literature Review 
2.1. Overview of IoT and IIoT Security Challenges 

The rapid adoption of IoT and IIoT has introduced complex security challenges 
due to the heterogeneous and distributed nature of these systems [1] [2]. Tradi-
tional security mechanisms, such as firewalls and encryption, struggle to protect 
IoT/IIoT networks due to their limited computational resources and dynamic at-
tack surfaces [4] [6]. In a world of cyber threats, botnet attacks such as Mirai, 
ransomware, or man-in-the-middle (MITM) attacks exploit the vulnerabilities of 
poorly secured IoT devices. Critical infrastructure IIoT systems such as smart grid 
power supply infrastructures and industrial control systems are prime targets of 
the advanced persistent threats (APTs) that can interrupt the operational proce-
dures to a catastrophic extent [5]. Various authors have pointed out the short-
comings of the traditional intruder detection systems (IDS) regarding IoT/IIoT 
environments [13] [16]. A signature-based IDS mainly suffers from the inability 
to detect so-called zero-day attacks, whereas rule-based systems are intended to 
be in constant need of updating to remain helpful [13] [21]. Due to the huge 
amount of data produced by IoT devices, it is also imperative that detection mech-
anisms be scalable and real-time, which traditional security methods typically do 
not provide [22] [23]. 

2.2. Machine Learning for Anomaly Detection in IoT/IIoT 

Machine Learning (ML) has developed into a leading means of detecting anoma-
lies in IoT/IIoT networks due to its unique characteristics of being able to learn 

https://doi.org/10.4236/jsea.2025.186012


M. Koroma et al. 
 

 

DOI: 10.4236/jsea.2025.186012 178 Journal of Software Engineering and Applications 
 

patterns from data and adapt to the evolving nature of these threats [8] [9]. SVM 
and Random Forest are two supervised learning algorithms often applied for high-
accuracy classification of malicious traffic [24] [25]. One major drawback with 
these algorithms is that they require labeled datasets, which are often in short sup-
ply in real-life IoT implementations [26]. 

Clustering (K-means, DBSCAN) and autoencoders are different types of unsu-
pervised learning approaches that have found increased applicability in the detec-
tion of unknown attack patterns without prior labeling [10] [27]. Deep learning 
offers several models for solving this problem, among which CNNs and LSTMs 
have comparatively excelled in recognizing complex signature attacks in network 
traffic [17] [28]. For instance, Mirsky et al. [18] proposed an ensemble of autoen-
coders, called Kitsune, for the real-time intrusion detection system in IoT net-
works with a high detection rate and low latency. However, machine-learning-
based anomaly detection is still a challenge because of adversarial attacks (for in-
stance, evasion and poisoning attacks), many false positives, and resource over-
head in IoT devices [11] [29]. Federated learning and edge-based ML have been 
proposed to mitigate these issues by distributing computation and preserving data 
privacy [30] [31]. 

2.3. Comparative Analysis of Existing Approaches 

A comparative analysis of recent ML-based anomaly detection techniques reveals 
varying performance across different IoT/IIoT datasets. Meidan et al. [7] demon-
strated that behavioral profiling using ML improves device identification and at-
tack detection in IoT networks. Similarly, Chaabouni et al. [11] found that hybrid 
models combining supervised and unsupervised learning outperform single-algo-
rithm approaches in detecting zero-day attacks. 

However, most existing studies focus on specific attack types (e.g., DDoS, mal-
ware) rather than providing a holistic security framework for diverse IoT/IIoT 
environments [32] [33]. Additionally, there is a lack of standardized evaluation 
metrics and benchmark datasets, making it difficult to compare different ML 
models fairly [34]. Recent works emphasize the need for explainable AI (XAI) in 
cybersecurity to enhance trust and interpretability in ML-driven detection sys-
tems [35]. 

2.4. Research Gaps and Opportunities 

On the one hand, ML-based anomaly detection has immense potential to help 
secure IoT/IIoT systems. On the other hand, it has quite a lot of issues being sub-
ject to very important research gaps. Scalability is an important critical area of 
research. For instance, a lot of ML models cannot work on IoT/IIoT networks that 
are high in terms of dimensionality and it should be real-time for large production 
[36]. Besides, they don’t account for adversarial robustness. You have such an ML 
model which is open to evasion and poisoning attacks [29] [37]. Moreover, energy 
efficiency remains a major problem because the deployment of deep learning 
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models, which are resource-hungry in computations, is rarely possible on IoT de-
vices that are resource deficient [38]. And it adds the disadvantage of non-availa-
bility of common datasets and evaluation metrics that compare the performance 
of models in several studies [34]. In face of these drawbacks, new approaches such 
as reinforcement learning (RL) for dynamic threat adaptation show a high prom-
ise for future research, as also quantum ML improvements in computational effi-
ciency [39]-[44]. This could go a long way in developing strong, scalable, and en-
ergy-efficient ML solutions for IoT/IIoT security. 

3. Methodology 
3.1. Data Collection and Preprocessing 
3.1.1. Data Collection 
The research made use of three benchmark datasets to evaluate the framework 
proposed. The TON-IoT dataset provided the telemetry data of IoT/IIoT devices 
with labels offering realistic attack scenarios [45]. The CICIDS2017 dataset was 
used for analyzing the network traffic due to its diverse attack signatures [46], and 
the UNSW-NB15 instance offered dual-testing environments in hybrid IoT-en-
terprise scenarios [47]. These datasets were selected for maximum coverage in re-
lation to the security challenges posed in IoT/IIoT including zero-day attacks and 
temporal anomaly detection. 

3.1.2. Preprocessing and Justification 
The data preprocessing consisted of three vital steps. Min-max scaling was applied 
first to normalize non-homogeneous data values into a single range. Following 
that, dimensionality reduction was performed with a Principal Component Anal-
ysis for linear correlations, while an auto encoder was used for capturing other 
non-linear patterns considering maximum computational efficiency. Next, engi-
neering of temporal features such as session duration and packet-frequency re-
lated statistical measures was performed such that better discriminative power 
was necessitated. PCA was intended for better interpretability, making it useful 
for linear relationships, whereas the autoencoders complemented it by capturing 
complex non-linear dependency presented in the data, ensuring that the repre-
sentation of features is kept as a solid feature representation for subsequent ML 
models [48] [49]. 

3.2. Model Architecture 

Our hybrid ML framework employs a strategically selected combination of three 
complementary algorithms, each targeting distinct dimensions of IoT/IIoT secu-
rity threats while collectively addressing the limitations of monolithic approaches 
[11] [17]. The ensemble comprises: 1) a Random Forest classifier (100 trees, Gini 
impurity) optimized for high-precision (95.8% F1-score) identification of known 
attack signatures in labeled datasets; 2) an Isolation Forest detector (ψ = 0.01) im-
plementing unsupervised anomaly scoring to surface zero-day threats without de-
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pendency on labeled examples; We chose the Isolation Forest algorithm because 
it works well for finding anomalies without needing labeled data, which is often 
hard to come by in high-dimensional IoT or IIoT data. Its way of breaking down 
the data helps it spot anomalies with fewer splits, making it faster and easier to 
use, especially on devices that have limited resources [41], and 3) a stacked LSTM 
autoencoder (64-unit hidden layers, sequence length = 10) specifically engineered 
to extract temporal patterns from network traffic streams, demonstrating partic-
ular efficacy against DDoS attacks (22% false negative reduction versus non-tem-
poral baselines). This tripartite architecture, illustrated in Figure 1, achieves com-
prehensive threat coverage while maintaining the computational efficiency re-
quired for edge deployment through careful dimensionality management (PCA + 
autoencoder preprocessing) and federated optimization. 

The implementation details of each component reflect both algorithmic best 
practices and IoT-specific optimizations: a) Random Forest employs scikit-learn’s 
histogram-based split finding for 3.2 × speedup on edge hardware; b) Isolation 
Forest implements the extended iForest algorithm for streaming data support; and 
c) the LSTM autoencoder uses CuDNN kernels when GPU-accelerated nodes are 
available. 

 

 
Figure 1. Proposed ML Framework Architecture as described in Section III-B, illustrating the 4-phase integration of Random Forest, 
Isolation Forest, and LSTM autoencoder components. 

3.3. Training and Optimization 

The framework’s training pipeline incorporates three key optimization strategies 
to enhance security and efficiency. Federated learning (FL) was implemented 
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across Raspberry Pi 4 edge nodes, enabling distributed model training that re-
duces cloud dependency by 40% while preserving data privacy through localized 
processing. To defend against adversarial evasion, the models underwent robust 
training using Fast Gradient Sign Method (FGSM)-resistant architectures, reduc-
ing attack success rates from 32% to 8%. Bayesian approaches to hyperparameter 
optimization with F1-score maximization in the objective function exhaustively 
trail over 200 parameter combinations to realize detection performance. We used 
Bayesian methods for hyperparameter tuning, which helps adjust settings by mod-
eling the F1-score as a Gaussian process. This method cut down the search space 
by 60% compared to grid search and found the best configurations, like using 100 
trees for Random Forest and 64-unit LSTM layers, in just 200 iterations while 
keeping within the limits of edge devices [42]. This multiple-faceted approach is 
intentionally designed to overcome the most significant constraints of the 
IoT/IIoT. The FL satisfies privacy compliance in distributed industrial environ-
ments; the models are hardened against the evolving threat vectors by adversarial 
training, and optimum algorithmic performance without transcending the com-
putational limits of the edge devices is ensured by using coherent Bayesian opti-
mization. Hyperparameters include Random Forest (100 trees, Gini impurity), 
LSTM autoencoder (64-unit hidden layer, Adam optimizer, learning rate = 0.001), 
and Isolation Forest (contamination factor = 0.01). 

3.4. Experimental Setup and Ethical Considerations 

Evaluation of the tasks was carried out in a hardware testbed with Raspberry Pi 4 
units (4 GB RAM) for the edge deployment and NVIDIA Jetson TX2 modules as 
the gateway nodes, thus depicting realistic constraints of an IoT/IIoT infrastruc-
ture. System performance was evaluated in terms of three criteria, namely F1-
score for detection accuracy, inference latency (in milliseconds), and energy usage 
(in Joules per inference). In consideration of ethical principles, all datasets that 
had been acquired were subject to a stringent anonymization process preceding 
any analysis, and adversarial testing was carried out strictly in isolated sandbox 
environments, all with strict network segmentation controls. The experimental 
design thus enabled comprehensive evaluation and demonstration of the opera-
tional capability of the framework while adhering to security best practices such 
that data integrity is secured throughout the testing process. 

4. Results 
4.1. Detection Accuracy Performance 

The proposed framework achieves state-of-the-art performance (Table 1) with a 
96.2% F1-score, demonstrating significant improvements over existing approaches: 
CNN-LSTM (92.7%) [28], SVM (88.1%) [24], and Snort IDS (78.5%) [22]. Compre-
hensive evaluation across multiple metrics including a low false positive rate (1.8%), 
real-time latency (14.5 ms), and energy efficiency (0.42 Joules/inference) confirms 
its balanced detection capability. Precision-recall analysis (Figure 2) and energy-
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accuracy Pareto fronts (Figure 3) further validate superior performance trade-offs 
compared to GAN-based and transformer models [20]. Notably, the LSTM autoen-
coder component excels in temporal attack detection, achieving 98.3% recall for 
DDoS threats. As illustrated in Figure 4’s cross-dataset comparison, the hybrid ar-
chitecture consistently outperforms alternatives, effectively addressing both known 
attack signatures and novel anomalies while maintaining computational efficiency. 
 
Table 1. Comparative analysis of anomaly detection models. 

Model 
F1-Score 

(%) 
False Positive 

Rate (%) 
Latency 

(ms) 
Energy  

(Joules/inference) 

Proposed Framework 96.2 1.8 14.5 0.42 

CNN-LSTM [28] 92.7 3.1 28.3 0.87 

SVM [24] 88.1 5.6 9.2 0.35 

Snort (IDS) [22] 78.5 8.9 2.1 0.12 

 
The experimental results yielded three key findings that demonstrate the effec-

tiveness of the proposed framework. First, the hybrid approach combining en-
semble methods with LSTM architecture achieved an optimal balance between 
detection accuracy (96.2% F1-score) and false alarm reduction (1.8% FPR), sig-
nificantly outperforming single-algorithm approaches. Second, through careful 
lightweight optimization, the framework-maintained edge compatibility with in-
ference latency below 15 ms on Raspberry Pi devices while preserving detection 
performance, making it practical for resource-constrained IoT environments. Fi-
nally, the integration of SHAP explainability and adversarial training techniques 
successfully addressed two critical operational requirements: providing interpret-
able detection decisions with >90% analyst confidence while improving resilience 
against evasion attacks (reducing success rates from 32% to 8%) [37] [44], thereby  
 

 
Figure 2. Performance comparison of Anomaly Detection Methods. 
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Figure 3. Performance comparison of Anomaly Detection Methods. 
 

 
Figure 4. Bar plot comparison across datasets. 

 
enhancing both the transparency and robustness of the security system in real-
world deployments. These findings collectively validate the framework’s ability to 
meet the complex demands of modern IoT/IIoT cybersecurity. 

4.2. Computational Efficiency Analysis 

The framework demonstrated significant improvements in computational effi-
ciency through its edge-optimized design. Deployment on edge devices achieved 
an inference latency of just 14.5 ms, representing a 48.76% reduction compared 
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to cloud-based processing, enabling real-time threat detection capabilities criti-
cal for time-sensitive IoT applications. Furthermore, the implementation of fed-
erated learning yielded substantial energy savings, reducing consumption by 
40.5% through distributed model training and localized data processing. The 
associated gains in efficiency are visually summarized via a grouped bar plot in 
Figure 5, which compares the latency and energy consumption breakdown of 
various deployment scenarios. The results validate that the framework indeed 
tries to find a balance between detection performance and resource efficiency, 
therefore making it well suited for resource-constrained IoT environments 
where fast response and lower power consumption are critical operational con-
straints. 
 

 
Figure 5. Latency and energy consumption breakdown. 

 
The multi-panel technical comparison illustrates and gives a clear picture of 

framework performance enhancement in regards to key operational metrics. The 
latency analysis reports a 66% improvement as processing moves from a cloud 
scenario to the edge where measured values fall consistently below the required 
15 ms threshold for real-time processing applications in time-sensitive IoTs. The 
detailed pie chart effectively conveys the energy consumption profile, namely, the 
40.5% savings from the distributed structure of federated learning. The horizontal 
bar graphs further quantify the reduced dependency of the system components on 
the cloud in demonstrating the edge-based processing of the framework. These 
three visualizations communicate three important advantages: 1) Real-time pro-
cessing through edge optimization; 2) Energy efficiency gained by implementa-
tion of federated learning; 3) Reduced dependency on cloud infrastructure for 
maintaining detection accuracy, all key features for actually deploying IoT secu-
rity in resource-constrained environments. 
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4.3. Robustness and Explainability Performance 

Additionally, creating one of the most significant breakthroughs directed towards 
adversarial robustness and decision interpretability in its primary concerns to 
ML-based security systems. This implementation of FGSM-resistant models re-
duced the success rate of adversarial evasion attacks from 32 to 8 percent thus 
making the system stronger against lethal threats. To further complement this se-
curity strength, the SHAP (SHapley Additive exPlanations) values provided inter-
pretability around detection decisions with over 90% confidence among security 
analysts, thereby allowing operational transparency for validation. The dual ad-
vancements are summarized in the line plot of adversarial attack resilience in Fig-
ure 6, showcasing the increasing strength of the framework against reduced de-
tection accuracy with increasing levels of attack. Subsequently, these results cor-
roborate how well the system positions itself in the juxtaposition of attack re-
sistance and explainable AI, making it both technically sound and operationally 
practical for real-world IoT security deployments, where trust and reliability mat-
ter. 
 

 
Figure 6. Showing line plot of adversarial attack resilience. 

4.4. Robustness and Operational Trust 

The framework demonstrates robust security through two measurable advances: 
1) adversarial attack resistance, reducing evasion success rates from 32% to 8% via 
FGSM-resistant training, and 2) interpretable decision-making with SHAP 
(SHapley Additive exPlanations) values exceeding 90% confidence. Feature im-
portance analysis on the TON-IoT dataset revealed packet-frequency variance 
(SHAP = 0.62) and TCP flag anomalies (SHAP = 0.41) as critical indicators for 
DDoS detection, enabling security operators to validate alerts and refine models 
using SHAP force plots (Figure 7). These plots distinctly differentiate attack pat-
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terns: packet-frequency dominance in DDoS, API call sequences in malware, and 
authentication failures in unauthorized access attempts. Operational testing ex-
posed that 85% of false positives originated from industrial sensor noise (e.g., volt-
age spikes beyond ±2.3σ), prompting rule-based pre-filtering that enhanced pre-
cision by 6.2%. This synergy of adversarial robustness (Section IV-D) and explain-
ability addresses a key limitation of black-box ML by allowing: 1) Real-time veri-
fication of threat alerts against feature contribution patterns; 2) Iterative refine-
ment of detection rules without compromising model integrity [33]. The frame-
work’s practical efficacy is further evidenced in precision-recall analysis (Figure 
3), particularly for DDoS detection (AUC = 0.983), where the LSTM autoen-
coder’s temporal processing minimizes false positives in streaming data. By uni-
fying hardened security (8% evasion susceptibility) with operational transparency 
(>90% SHAP confidence), this approach bridges the gap between enterprise-grade 
protection and deployable IoT solutions, setting a new standard for adversarial-
resistant, interpretable ML in cybersecurity. We used SHAP values to measure 
how interpretable our model is. SHAP helps explain why the model makes certain 
decisions by looking at input features, kind of like a game theory approach. This 
gave us over 90% confidence in spotting key indicators, like packet-frequency 
changes and TCP flags. It also helped us get past some of the black-box issues, 
allowing security analysts to check alerts against these feature patterns (see Figure 
7) [44]. 
 

 
Figure 7. Security Robustness Analysis (see Section IV-D), showing adversarial attack suc-
cess rates and SHAP interpretability metrics across threat categories. 
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4.5. Ablation Study Results 

The ablation study quantitatively validates the framework’s architectural choices 
by systematically disabling key components: 1) removing the LSTM autoencoder 
degraded DDoS detection recall by 22% (from 98.3% to 76.3%), confirming its 
critical role in temporal pattern recognition; 2) disabling adversarial training in-
creased evasion attack success rates from 8% to 25%, demonstrating the necessity 
of defensive distillation; and 3) eliminating federated learning increased energy 
consumption by 65% (0.42J to 0.69 J per inference), highlighting its efficiency 
benefits for edge deployment. As detailed in Figure 8, these results prove that each 
component contributes non-redundant value to the framework’s state-of-the-art 
performance, with the complete system outperforming partial configurations by 
an average of 18.7% across all metrics. 
 

 
Figure 8. Stacked bar plot comparing component contributions. 

 
To rigorously evaluate the framework’s design choices, we conducted a com-

prehensive ablation study that systematically assessed the impact of each key com-
ponent. The results demonstrated that the LSTM autoencoder plays a critical role 
in temporal pattern recognition, as its removal led to a 22% decline in time-series 
attack detection accuracy. Similarly, disabling adversarial training substantially 
weakened the system’s defenses, allowing evasion attack success rates to rise to 
25% compared to the enhanced model’s 8% rate. The study further revealed that 
abandoning federated learning in favor of centralized training incurred significant 
energy costs, increasing consumption by 65%, which highlights FL’s crucial role 
in maintaining the framework’s energy efficiency. These findings collectively val-
idate our architectural decisions, confirming that each component, temporal 
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modeling with LSTM, adversarial robustness measures, and distributed learning 
through FL, makes essential, non-redundant contributions to the framework’s 
overall performance, security, and operational efficiency in IoT environments. 

 

 
Figure 9. Component importance analysis (Section IV-E) showing performance degradation when removing 1) LSTM temporal 
processing, 2) adversarial training, or 3) federated learning infrastructure. 

 
The component impact analysis (Figure 9) demonstrates three key findings: 1) 

The LSTM’s temporal processing accounts for 62% of DDoS detection capability; 
2) Adversarial training provides 3.4 × greater evasion resistance than baseline 
models; 3) Federated learning reduces per-node energy costs by 40.5% compared 
to centralized processing. 

5. Conclusions 
5.1. Summary of Contributions 

The proposed hybrid ML framework integrates Random Forest (for known attack 
detection), Isolation Forest (for zero-day anomalies), and LSTM autoencoders 
(for temporal pattern analysis) to establish new benchmarks in IoT/IIoT anomaly 
detection. Comprehensive evaluation demonstrates three key advancements: 1) 
State-of-the-art performance with a 96.2% F1-score at 14.5 ms latency (17.7% im-
provement over traditional IDS systems, Table 2). 2) Robust adversarial resistance 
through FGSM-trained architectures that reduce evasion attacks from 32% to 8%. 
3) Operational practicality with federated learning achieving 40.5% energy reduc-
tion (0.42 Joules/inference) on edge devices while maintaining cloud-comparable 
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accuracy (±2%). The framework demonstrates superior performance across three 
critical dimensions of IoT/IIoT security. In detection capability, it achieves 96.4% 
accuracy for DDoS attacks, 95.1% for malware, and 93.8% for APTs outperform-
ing CNN-LSTM (92.7%) and SVM (88.1%) baselines (Figures 3-4). Its edge-opti-
mized design ensures resource efficiency, delivering real-time responsiveness 
(14.5 ms latency) with 66% lower bandwidth usage compared to cloud-dependent 
solutions. For operational trust, SHAP analysis provides >90% interpretability 
(Figure 7), while ablation studies confirm the necessity of each component, show-
ing a 22% recall drop when excluding LSTM autoencoders and a threefold in-
crease in evasion risk without adversarial training. Together, these advances re-
solve the IoT security trilemma by simultaneously optimizing accuracy, efficiency, 
and deployability, with reproducible implementations (600 DPI vector graphics) 
facilitating industrial adoption. 

5.2. Practical Implications 

The research outcomes have immediate practical value for industrial IoT deploy-
ments. The framework provides reliable, real-time protection for critical infra-
structure with its sub-15 ms detection capability, effectively preventing potentially 
catastrophic operational disruptions. Notably, the system achieves this while 
maintaining exceptional energy efficiency (<0.42 Joules per inference), though 
this does require carefully balanced trade-offs between the computational de-
mands of deep learning components and the resource constraints of edge devices. 
These characteristics make the solution particularly suitable for Industry 4.0 ap-
plications where both security responsiveness and energy efficiency are para-
mount concerns for large-scale, distributed deployments. 

5.3. Future Directions 

Table 2. Comprehensive performance summary of the proposed framework (see Section 
V-A), comparing detection accuracy (F1-score), computational efficiency (latency/energy), 
and robustness metrics against baseline systems. 

Metric 
Proposed 

Framework 
Traditional 
IDS (Snort 

SVM  
Baseline 

Improvement 
Over Baseline 

Detection Accuracy 
F1-score (%) 96.6 78.5 88.1 +17.75 

Recall (DDoS) (%) 99.3 62.3 85.6 +12.7% 
False Positive Rate (%) 1.8 8.9 5.6 −3.8% 

Computational Efficiency 
Latency (ms) 14.5 2.1 9.2 −48.8% (Cloud) 

Energy (Joules/inference) 0.42 0.12 0.35 +16% (SVM) 
Robustness 

Adversarial Attack Success 
Rate (%) 

8 32 (baseline) 25 −24% 

SHAP Interpretability  
Confidence (%) 

>90 N/A N/A N/A 
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Building on Figure 3’s energy-accuracy trade-offs and Table 2’s robustness met-
rics, three key directions emerge: 1) Quantum ML acceleration to reduce the 14.5 
ms latency by 30% - 50%; 2) Expanded adversarial testing against physical-world 
attack vectors [49]; 3) Standardization of the evaluation benchmarks demon-
strated in Figure 4 and Figure 7. Future work will look into testing for real-world 
attack methods, like sensor spoofing and electromagnetic interference, to see how 
well the framework stands up against hardware-related threats. This fits with the 
need for strong security in cyber-physical systems in today’s tech landscape. 
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