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Abstract 
Financial systems are inherently complex, exhibiting memory effects, nonlin-
earity, and evolving dynamics that cannot be adequately captured by tradi-
tional differential models. This study introduces a novel financial system mod-
eled using variable-order fractional derivatives of the Caputo-Fabrizio type, 
allowing the system’s memory to change dynamically over time. Three distinct 
memory structures-constant, periodic, and non-periodic (sigmoid-shaped)-
are explored to simulate various economic regimes, such as stable markets, cy-
clical behaviors, and structural transitions. Through detailed numerical simula-
tions and comparative analysis, the model demonstrates remarkable flexibility 
in capturing real-world financial behaviors, including oscillatory trends, am-
plification effects, and memory-driven regime shifts. The incorporation of 
variable-order dynamics provides a more adaptive and realistic framework for 
analyzing economic systems under uncertainty. Furthermore, the study out-
lines a path for integrating data-driven estimation techniques to learn the 
memory order ( )q t  from empirical financial data, opening new directions 
for forecasting, control, and policy modeling. The proposed framework offers 
a significant advancement in fractional modeling, bridging theoretical inno-
vation with practical financial relevance. 
 

Keywords 
Variable-Order Fractional Calculus, Caputo-Fabrizio Derivative, Financial 
Systems, Memory Effects, Nonlinear Dynamics, Fractional Modeling,  
Economic Simulation, Time-Varying Memory, Data-Driven Modeling 

 

1. Introduction 

Financial systems are inherently complex, often exhibiting memory-dependent 
behaviors that challenge the assumptions of classical differential models. Such sys-
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tems respond not only to current inputs but also to their historical states, partic-
ularly during financial shocks, speculative bubbles, and long-term policy shifts [1] 
[2]. 

Fractional calculus, which generalizes classical differentiation to non-integer 
orders, has emerged as a powerful mathematical tool for modeling memory and 
hereditary properties in dynamical systems [3] [4]. In the context of finance, frac-
tional derivatives have been successfully applied to capture anomalous diffusion, 
long-range dependence, and volatility clustering in asset prices [5] [6]. 

Traditionally, fractional-order models employ a constant-order derivative. How-
ever, this assumption can limit the adaptability of the model, especially in time-
varying systems such as financial markets, where the memory effect is not static 
but evolves depending on factors like economic cycles, investor sentiment, or reg-
ulatory changes [7] [8]. 

To overcome this limitation, the concept of variable-order fractional derivatives 
has been introduced. In these models, the order of the derivative, denoted by 
( )q t , is allowed to vary with time. This added flexibility enables the system to 

dynamically adjust its memory strength, making it more suitable for modeling 
non-stationary financial processes such as sudden crashes or structural transitions 
[8] [9]. 

In this chapter, we propose a financial system model governed by a variable-
order fractional derivative, specifically the Caputo-Fabrizio type, which uses a 
non-singular exponential kernel. We analyze the behavior of the system under 
different forms of the order function ( )q t , including constant, periodic, and 
non-periodic cases. Our objective is to evaluate the effect of time-dependent 
memory on financial system dynamics and demonstrate the practical advantages 
of using variable-order modeling in finance [10] [11]. 

2. Preliminaries and Background 

Fractional calculus allows the use of derivatives of non-integer order, making it 
well-suited for modeling systems with memory and hereditary effects [3] [4]. In 
financial systems, these properties are essential for capturing long-term depend-
encies and delayed market responses [5] [6]. 

The classical Caputo fractional derivative is commonly used but involves a sin-
gular kernel of the form ( )t ατ −− , which may lead to numerical instability and 
difficulties in computation [9]. To address this, Caputo and Fabrizio introduced 
a new definition with an exponential, non-singular kernel [10]: 

 ( ) ( ) ( ) ( )0 0
  exp ,

1 1
tCF M

D f t t f dα α α τ τ τ
α α

  ′= − − − − ∫  (1) 

where ( ) 2
2

M α
α

=
−

. 

This form improves numerical behavior and is more suitable for practical ap-
plications where memory decays gradually over time [12]. 

In real-world financial systems, memory effects often change over time due to 
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market shocks or structural changes. To capture this, the fractional order α  is 
replaced with a time-varying function ( )q t , leading to the variable-order Ca-
puto-Fabrizio derivative [8] [13]: 

 ( ) ( ) ( )( ) ( )( )
( )( )

( )
( ) ( ) ( )0 0

2
  exp d .

12 1
tq tCF q t M q t q t

D f t t f
q tq t

τ τ τ
−  

′= − − −−  
∫  (2) 

This variable-order model allows more flexibility in simulating financial behav-
ior under changing market conditions. 

3. Mathematical Model Formulation 

We consider a nonlinear financial system described by variable-order Caputo-
Fabrizio fractional derivatives. The model is adapted from the fractional-order 
system proposed by Malaikah and Al-Abdali [14], extended here to incorporate 
time-varying memory effects through a variable fractional order ( )q t . 

The system is governed by the following equations: 

 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0

2
0

0

0

,

2 ,

,

,

q tCF

q tCF

q tCF

q tCF

D x t z t y t a x t u t

D y t by t x t

D z t x t y t x t cz t

D u t dx t y t gu t

= + − +

= − −

= − −

= −





−





 (3) 

where the variables represent key financial indicators: 
 ( )x t : interest rate, 
 ( )y t : investment demand, 
 ( )z t : price index, 
 ( )u t : average profit margin. 

The system parameters are defined as follows: 
 a : saving rate, 
 b : cost per investment, 
 c : market elasticity, 
 , 0d g > : interaction and dissipation parameters. 

By allowing the fractional order ( ) ( )0,1q t ∈  to vary with time, the system dy-
namically adjusts its memory depth. This makes the model more flexible and ca-
pable of capturing different financial regimes-such as stability, volatility, or tran-
sitions caused by economic shocks-more effectively than constant-order models 
[8] [10] [15]. 

4. Choice of Variable-Order Functions 

In variable-order fractional models, the choice of the fractional order function 
( )q t  plays a central role in determining the system’s memory behavior. Unlike 

constant-order models, where memory is fixed, variable-order functions allow the 
memory effect to evolve over time. This is particularly important in financial sys-
tems, where market memory can expand or contract in response to economic cy-
cles, shocks, or structural changes [7] [8]. 
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To explore the impact of different memory dynamics, we consider two repre-
sentative forms of ( )q t : 

4.1. Periodic Order Function 

A periodic form of ( )q t  captures cyclical phenomena in financial systems such 
as business cycles, seasonal investment trends, or policy interventions. The func-
tional form is: 

 ( ) 0
2cos ,q t q A t
T
π = +  

 
 (4) 

where: 
 0q  is the base (average) order, 
 A  is the amplitude of oscillation, 
 T  is the period of the cycle. 

In our simulations, we adopt: 

( ) 20.9 0.1cos ,
50

q t tπ = +  
 

 

which models memory that strengthens and weakens periodically-mimicking the 
expansion and contraction phases of the economic cycle [7] [15]. 

4.2. Non-Periodic (Sigmoid) Order Function 

To represent irreversible or long-term transitions in financial memory (such as 
policy reforms, economic crises, or technological shifts), we use a sigmoid-shaped 
function: 

 ( ) ( )00 ,
1 e r t t

Aq t q
− −

= +
+

 (5) 

where: 
 0 0.85q = : base memory level, 
 0.15A = : maximum increase in memory, 
 0.1r = : rate of transition, 
 0 100t = : midpoint of the transition. 

This function models a smooth but permanent change in memory, which is 
appropriate for capturing structural transitions in financial behavior [8] [13]. 

These two forms of ( )q t  offer a useful contrast: periodic models account for 
short-term market fluctuations, while sigmoid forms capture long-term regime 
changes. 

5. Simulation and Results 

To analyze the effect of time-dependent memory on financial system behavior, we 
simulate the proposed variable-order fractional system under three different 
forms of the order function ( )q t : constant, periodic, and non-periodic. The gov-
erning equations are solved numerically using a two-step predictor-corrector 
method tailored for the Caputo-Fabrizio derivative [11] [12]. 
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The following parameter values and initial conditions are used, based on the 
settings in [14]: 
 Parameters: 0.3a = , 0.1b = , 1c = , 0.1d = , 0.1g = . 
 Initial conditions: ( )0 0.1x = , ( )0 0.2y = , ( )0 0.3z = , ( )0 0.4u = . 
 Time interval: [ ]0,100t∈ , time step 0.01h = . 

5.1. Case 1: Constant Order q 0.9=  

In this baseline case, the memory level remains fixed. The system exhibits regular 
and smooth oscillations, reflecting stable long-term dependencies in all state var-
iables. This suggests a stationary financial regime without external disruptions 
(Figure 1). 
 

 
Figure 1. State trajectories under constant fractional order 0.9q = . 

5.2. Case 2: Periodic Order ( )  
 
 

q t t20.9 0.1cos
50
π

= +  

This setting captures oscillating memory, simulating business cycles. As ( )q t  
increases and decreases periodically, we observe alternating behaviors of amplifi-
cation and damping in the system (Figure 2). Such dynamics may reflect expan-
sion and contraction phases in macroeconomic activity [7].  

5.3. Case 3: Non-Periodic Order ( ) ( )e tq t 0.1 100
0.150.85

1 − −= +
+

 

This sigmoid-shaped function models a structural shift in memory, such as a fi-
nancial crisis or policy transition. The system starts with a lower memory effect 
and gradually moves toward a higher one (Figure 3). As shown in the trajectories, 
such memory adaptation alters both the amplitude and frequency of oscillations, 
reflecting long-term adjustment mechanisms [8] [13].  
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Figure 2. State trajectories under periodic ( )q t . 

 

 
Figure 3. State trajectories under non-periodic ( )q t . 

5.4. Comparative Analysis 

A comparison of the three cases yields the following observations: 
 Constant q : Generates consistent oscillations; useful as a stable reference 

model but lacks adaptability.  
 Periodic ( )q t : Introduces alternating dynamical behavior, well-suited for 

modeling cycles in financial activity. 
 Non-periodic ( )q t : Reflects long-term memory adaptation, ideal for model-

ing structural transitions in financial systems. 
These findings highlight the power of variable-order modeling in capturing a 

broader spectrum of financial dynamics compared to constant-order models. 
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6. Stability and Economic Interpretation 

The stability of a fractional-order financial system depends not only on the system 
parameters but also on the nature of the memory function ( )q t . Unlike integer-
order systems, fractional systems exhibit memory-driven dynamics, where the in-
fluence of past states gradually fades or intensifies based on ( )q t  [9]. 

Although a rigorous Lyapunov-based analysis for variable-order fractional sys-
tems remains mathematically challenging, we can gain qualitative insights by ob-
serving the numerical trajectories: 
 In the constant-order case, the system remains oscillatory and bounded, indi-

cating local asymptotic stability under fixed memory influence. 
 In the periodic-order case, the cyclic memory shifts introduce alternating 

phases of amplification and damping, which reflect transitions between risk-
taking and risk-averse economic behavior. 

 In the non-periodic (sigmoid) case, the system exhibits gradual behavioral 
shifts, indicating long-term structural adaptation. This is analogous to a mar-
ket adjusting to new regulatory frameworks or major policy changes. 

From an economic standpoint: 
 High memory (large ( )q t ) implies long-term influence of historical market 

behavior, often observed during financial uncertainty. 
 Low memory (small ( )q t ) implies the system is more sensitive to recent 

shocks, modeling reactive markets or speculative bubbles. 
 Transitions in ( )q t  can be interpreted as responses to fiscal reforms, shifts 

in investor confidence, or global crises. 
Thus, the variable-order framework not only provides richer mathematical dy-

namics but also aligns well with the heterogeneous and evolving nature of real 
financial systems [8] [13]. 

7. Estimating the Order Function from Real Financial Data 

While the choice of ( )q t  in this study is based on theoretical forms (constant, 
periodic, sigmoid), a critical step toward real-world application is estimating the 
order function ( )q t  directly from empirical financial data. 

In practice, the memory effect in financial markets-captured by ( )q t -may 
evolve based on various observable variables such as:  
 Volatility indices (e.g., VIX), 
 Trading volume or liquidity, 
 Macroeconomic indicators (e.g., inflation, GDP growth), 
 Sentiment or uncertainty measures. 

Several methods can be employed to estimate ( )q t  from such data: 
1) Optimization-Based Estimation: Calibrating the model by minimizing the 

difference between simulated trajectories and historical data [16]. 
2) Machine Learning Approaches: Using neural networks or regression mod-

els to learn ( )q t  as a function of external variables [17]. 
3) Time Series Inversion: Fitting inverse models using observed output to re-
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cover the best-fitting fractional order profile [18]. 
Incorporating data-driven ( )q t  estimation transforms the fractional model 

into a data-adaptive forecasting tool, enhancing its predictive capability and rele-
vance for economic policy design. 

Future work may include constructing models where ( )q t  is dynamically es-
timated online, allowing the system to adapt in real time to market fluctuations or 
shocks. 

8. Challenges and Limitations 

Despite the advantages of using variable-order fractional derivatives in modeling 
financial systems, several challenges remain. First, the mathematical complexity 
of variable-order operators-especially those with non-singular kernels-can hinder 
analytical tractability and complicate stability analysis. 

Moreover, the choice of ( )q t  in this study was predefined and idealized. In 
practical applications, determining the correct form of ( )q t  from real-world fi-
nancial data remains an open problem, particularly in the presence of noise, re-
gime shifts, and non-stationary behavior. 

9. Future Directions 
Future research may focus on developing data-driven methods to estimate the 
fractional order function ( )q t  dynamically using machine learning or optimi-
zation-based techniques. This would allow the system to adapt its memory struc-
ture in real time based on observed financial indicators. 

Another promising direction is to integrate the variable-order framework into 
more complex financial systems such as multi-agent models, networked markets, 
or policy-regulated environments. These extensions would increase the model’s 
realism and relevance for economic forecasting and decision-making. 

10. Conclusions 
This study presented a variable-order fractional financial model based on the Ca-
puto-Fabrizio derivative, offering a flexible framework to capture time-varying 
memory effects in economic systems. Three types of memory dynamics-constant, 
periodic, and sigmoid-were investigated to demonstrate their impact on system 
behavior. 

Simulation results confirmed that memory variability plays a crucial role in 
shaping financial dynamics. The proposed model offers a promising foundation 
for realistic and adaptive modeling of financial systems, especially in volatile or 
evolving market conditions. 
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