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Abstract 
There is a set of points in the plane whose elements correspond to the obser-
vations that are used to generate a simple least-squares regression line. Each 
value of the independent variable in the observations matches up with one of 
these points, which are called pivot or fixed points. The coordinates of the 
fixed points are derived, and the properties of the points are explored. All 
points in the plane that yield each of the fixed points are found. The role that 
fixed points play in regression diagnostics is investigated. A new mechanical 
device that uses linkages to model the role of fixed points is described. A nu-
merical example is presented. 
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1. Introduction 

It is shown in [1] that each point in a set of observations that are used in a standard 
least-squares linear fit has an accompanying pivot point or fixed point. If a se-
lected data point is replaced by any point on the vertical line containing the se-
lected point, the new regression line, which is based upon the other original points 
and the new point on the vertical line, contains the pivot point, i.e., all these re-
gression lines are concurrent, including the one for the original points. Varying 
the observation in this manner in the direction of prediction, which is parallel to 
the vertical axis for simple linear regression, is a common technique for diagnos-
ing each observation’s impact on the regression line [1] ([2], p. 321) ([3], pp. 384-
420) [4]. 

Figure 1 illustrates this phenomenon for a set of artificial observations. The 
observation R , which is on the dashed vertical line 7x = , has been selected and 
consecutively replaced by one other point on the vertical line. The other points 
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plus a replacement point on the vertical line produce the displayed regression 
lines. All of the regression lines contain P , which is the pivot or fixed point cor-
responding to observation R . There is a regression line for each point on 7x = . 
This graph is related to the numerical example in Section 6.  
 

 
Figure 1. The pivot or fixed point P  corresponding to the observation R . 

 
Although figures similar to Figure 1 had appeared, the existence of the pivot or 

fixed point was not pointed out until recently [1]. For example, a figure in ([4]: p. 
390) contains an unnoted point on five of these regression lines for the main data 
set of that article. In ([5]: p. 381) and ([6]: p. 98), the authors use identical graphs 
to discuss the large effect that one bivariate observation can have, but they do not 
note the pivot point that is in the graphs. 

In Section 2, the existence of pivot points is proven and their coordinates are 
found. Then, those coordinates are expressed differently in Section 3 in order to 
show the properties of pivot points. In Section 4, a more general approach is taken 
to find all points in the plane that can replace the selected point to create a regres-
sion line containing the originally selected point’s pivot point. The geometry of 
these special points is explored in Section 5. A numerical example is supplied in 
Section 6, followed by concluding comments in Section 7.  

2. Existence of Pivot or Fixed Points  

Consider the least-squares regression line  

0 1 ,y xβ β ε= + +                          (1) 
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where the intercept 0β  and slope 1β  are to be estimated and the error term ε  
has a standard normal distribution. The observations are  

( ){ }, | 1, 2, , ,i iS x y i n= =                      (2) 

where not all x -values are equal. Recall that in order to obtain estimates of the 
y -intercept and slope, which are the outcomes of the minimization of the sum of  

squared vertical distances of the data from the regression line, apply 
0β

∂
∂

 and 

1β
∂
∂

 to 

( )( )2
0 11 – .n

i ii y xβ β
=

+∑                       (3) 

Setting the results equal to zero and introducing the estimates 0b  and 1b  of 

0β  and 1β , respectively, give the Normal Equations 

( )0 11 1
n

i ii i
nnb x b y

= =
+ =∑ ∑                      (4) 

and 

( ) ( )2
0 11 1 1

n n
i i i ii i i

nx b x b x y
= = =

+ =∑ ∑ ∑                  (5) 

([2], p. 305) ([3], p. 17) Differentiation can be avoided by noticing that the sum 
(3) can be written, using the estimates, as 

( )( )2 2 2 2 2
0 1 0 1 01 1 1 1

0 1 11 1

– 2

2 2 ,

n n n
i i i i ii i i i

n

ii i
n n

i i

y b b x y nb x b y b

x b b x y b
= = = =

= =

+ = + + −

+ −

∑ ∑ ∑ ∑
∑ ∑

 

which is separately quadratic in 0b  and 1b  with positive leading coefficients n  
and 2

1 ii
n x
=∑ , respectively. As a quadratic expression in 0b , the minimum is at-

tained at  

1 1 1
0

2 2
– ,

2

n
i ii i

nb x y
b

n
= =

−
= ∑ ∑  

which is Equation (4). As a quadratic expression in 1b , the minimum is attained 
at 

0 1 1
1 2

1

2 2
–

2
i i

n n
ii

n
i

ii

b x x y
b

x
= =

=

−
= ∑ ∑

∑
, 

which is Equation (5).  
Dividing the Normal Equation (4) by sample size n  shows that the point of 

means  

( )1 1,i ii
n n
i x n y n
= =∑ ∑                       (6) 

is on the regression line in Equation (1). 
Solving the Normal Equations (4) and (5) gives  
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( )
2

1 1 1 1
0 2

2
1 1

n n
i i i i ii i i i

i ii

n

n n
i

nx y x x y
b

n x x
= = = =

= =

−
=

−

∑ ∑ ∑ ∑
∑ ∑

                 (7) 

and 

( )
1 1 1

1 2
2

1 1

.i i i ii i i
n

i ii i

n n

n n

n x y x y
b

n x x
= = =

= =

−
=

−

∑ ∑ ∑
∑ ∑

                   (8) 

Thus, the regression line in Equation (1) can be written as 

( ) ( )
2

1 1 1 1 1 1 1
2 2

2 2
1 1 1 1

,
n n n n n n n

n n

i i i i i i i i ii i i i i i i

i i i ii i i
n n

i

x y x x y n x y x y
y x

n x x n x x
= = = = = = =

= = = =

− −
= +

− −

∑ ∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

   (9) 

and as 

( )
1 1 1 1 1

2
2

1 1

.
n n

i i i i i ii i i i i

i ii

n n n

n n
i

y n x y x y x
y x

n nn x x
= = = = =

= =

 −
 = + −
 −  

∑ ∑ ∑ ∑ ∑
∑ ∑

       (10) 

A fixed point or pivot point in simple linear regression is obtained in the fol-
lowing way. Given a set of bivariate observations, select one of the points, whose 
y -value will be made to vary, while leaving unchanged all the observations’ x -

values and all their y -values except the selected one. Repeatedly, find the regres-
sion line for the original observations but with a replacement y -value for the 
selected one. All the regression lines created in this manner contain one point, 
which is called the pivot point in [1]. The regression lines pivot about the point 
that is like a fulcrum for a lever, as in Figure 1. The lever in various positions is 
analogous to the regression lines. The term fixed point is nearly exclusively used 
below for this point. Theorem 1 says that each observation in a bivariate data set 
is accompanied by a fixed point. 

Equations (7) and (8) show the well-known linear dependence of 0b  and 1b , 
and, hence, the regression line in Equations (9) and (10), on each y -value among 
the observations ([3], pp. 18-19) ([4], p. 390). Designate by ny  the selected y -
value that is to be replaced in order to investigate the fixed point. The observations 
can be ordered so that the data point of interest is the n th one having coordinates 
( ),n nx y . Equations (7) and (8) are written to explicitly display the linear depend-
ence of the coefficients on ny  as 

( )
( )
( )

21 12
1 11 1 1 1

0 2 2
2 2

1 1 1 1

n nn n n n
i i ni ii i i i ii i i i

nn n n n
i i i ii i i i

x x xx y x x y
b y

n x x n x x

− −
= == = = =

= = = =

−−
= +

− −

∑ ∑∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

    (11) 

and 

( ) ( )
1 1

1 1 1 1
1 2 2

2 2
1 1 1 1

.
n n n n

i i i i n ii i i i
nn n n n

i i i ii i i i

n x y x y nx x
b y

n x x n x x

− −

= = = =

= = = =

− −
= +

− −

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

       (12) 

Theorem 1 (Existence and Coordinates of the Fixed Point in Simple Linear 
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Regression). Consider the set of bivariate observations S  in Equation (2), 
where not all x -values are equal. Select ( ),n nR x y , where nx  is not the sam-
ple mean, i.e., ( )n nx x≠ . For these data, each value t  that is chosen to replace 

ny  produces a member of a family of least-squares regression lines. All mem-
bers of this family contain one point P , the fixed point, which is on the regres-
sion line for S . In terms of the first 1n −  observations’ coordinates and nx , 
P  is 

( ) ( )
( )( )

( )( ) ( )
( )( )
( )( )

2 1

1 1
1

–1, , .
n n

j i in nj i
n n

n nn n

x x x x ynP p q P x y
nn x x n x x

−

= =
−

 − − = − − − − 
 

∑ ∑
  (13) 

If ( )n nx x= , then it is said that the observation has a fixed point and that the 
point is at infinity. Subscripts in parentheses indicate sample size. In particular, 

( )nx  is the sample mean of all n  x -values in S , and ( )1ny −  is the sample mean 
of the y -values for the first 1n −  observations of S . 

Proof 1. The slope in Equation (9) and (10) can be written in a standard way as  

( )
( )( )
( )( )

( )

( )( )

11 1 1
1 2 2

2
11 1

2
1

1

nn n n
i inii i i ii i i

nn n
j ni i ji i

n i n
ini

j nj

n x x yn x y x y
b

n x xn x x

x x
y

x x

== = =

== =

=
=

−−
= =

−−

 − =  
 − 

∑∑ ∑ ∑
∑∑ ∑

∑
∑

        (14) 

([2]: p. 306) ([3]: pp. 17-18) Recalling that the point of means in Formula (6) is 
on the line, the regression line for S  can be written so that the coefficient of ny  
is isolated as 

( ) ( )( )
( )

( )( ) ( )( )

( )

( )( ) ( )( )

( )( ) ( )( )
( )( )

1

1
21

1

–1
–11

21

1

2

1

.1

n n

n
i nnii

i ni n
j nj

n
i nnii

i ni n
j nj

n n n
nn

j nj

y y b x x

x xy
y x x

n x x

x xy
y x x

n x x

x x x x
y

n x x

=
=

=

=
=

=

=

= + −

 − = + − 
 − 

  −  = + −  
 −   

 − − + + 
 − 

∑ ∑
∑

∑ ∑
∑

∑

       (15) 

Consider an arbitrary point ( ),nT x t  on the vertical line 

nx x=                           (16) 

as a temporary replacement for the observation ( ),n nR x y . See Figure 2. Then, 
Equation (15) becomes 
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( )

( )( ) ( )( )

( )( ) ( )( )
( )( )

1
11

21

1

2

1

1 .

n
i nnii

i ni n
j nj

n n n

n
j nj

x xy
y y x x

n x x

x x x x
t

n x x

−
−=
=

=

=

  −  = + −  
 −   

 − − + + 
 − 

∑ ∑
∑

∑

        (17) 

If x  in Equation (17) is the x -coordinate p  of a fixed point P , then the 
y -coordinate q  of P  needs to be independent of t , and thus the coefficient 

of t  in Equation (17) must be zero, i.e., 

( )( ) ( )( )
( )( )2

1

1 0.
n n n

n
j nj

x x x x

n x x
=

− −
+ =

−∑
 

Thus,  

( )
( )( )

( )( )

2

1

n
i ni

n
n n

x x
x x

n x x
=

−
= −

−

∑
,                   (18) 

which is p  in Formula (13). By substituting the x -Coordinate (18) into Equa-
tion (17), 

( )

( )( ) ( )( )

( )
( )

( )( )
( )( )

( )( )

( )
( )

( )

1
11

21

1

2

1 1
1 21

1

1
,1 1

1 –

1 1–

n
i nnii

i ni n
j nj

n
j ni nn j

in i n
n nj nj

i nn
in i

n n

x xy
y y x x

n x x

x xx xn y y
n n x xx x

x xn y y
n n x x

−
−=
=

=

− =
− =

=

−
− =

 − = + − 
 − 
   −−−    = +    −   −   
 −−  =
 − 

∑ ∑
∑

∑
∑

∑

∑

 

which is q  in Formula (13).                                        ∎ 
Proof 2. All members of the family of lines 

( ) ( )y a cr d er x= + + +                      (19) 

with real parameter r  and real numbers , ,a c d  and e  for 0e ≠  intersect at 
the point 

,c ae cd
e e

− − 
 

.                      (20) 

The validity of Point (20) is checked by substitution for x  and y  from Point 
(20) into Equation (19). If 0e = , then the lines in Equation (19) are parallel with 
slope d  and, thus, do not intersect, unless they coincide, which occurs if, addi-
tionally, 0c = . The existence of the fixed point can be seen from the identifica-
tion of the coefficients in Formulas (11) and (12) with the corresponding coeffi-
cients in Equation (19) for nr y= . The coordinates of P  can be obtained by 
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substituting from Formulas (11) and (12) for , ,a c d  and e  into the coordinates 
of the point in (20). Comparing Formulas (11) and (12) with Equation (19), 0e ≠  
is equivalent to ( )n nx x≠ .                                           ∎ 

Figure 2 displays the chosen observation ( ),n nR x y , the vertical line nx x= , 
one example of a replacement point ( ),nT x t , the regression line for the set 

( ){ },n nS x y T∪ , and the fixed point P . The observations are not displayed in 
the graph.  
 

 
Figure 2. An example of a point ( ),nT x t  that replaces then selected observation R  in 

Theorem 1. 

3. Properties of the Fixed Point 

The first goal of this section is to express the coordinates of the fixed point P  
so that they include ny  in a way similar to the inclusion of the x -coordinate 

nx . The second goal is to write the coordinates of the fixed point so that the 
occurrences of nx  are explicit throughout and the coordinates are given in 
terms of the simplest sums. The advantage of these re-expressions is that they 
make some properties of fixed points much more apparent. The third goal is to 
show that the fixed point is the intersection of the original regression line for 
the set S  and the regression line for the set of the first 1n −  observations of 
S , i.e., for ( ){ },n nS x y . 

3.1. Expression of the Coordinates of the Fixed Point to Include ny  

Although the fixed point’s coordinates can be exhibited excluding the y -coordi-
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nate ny  of the selected point, as in Formula (13) of Theorem 1, the coordinates 
may be written to incorporate ny  in a way similar to the involvement of the x
-coordinate nx . The occurrences of ny  can be made to drop out algebraically, 
because the fixed point P  does not depend upon ny . It can be useful not to be 
limited to expressions free of ny .  

In the slope 1b  in Formula (14), designate 

( )

( )( )2

1

i n
i n

j nj

x x
k

x x
=

−
=

−∑
, 

which are the weighing factors of the observations’ y -coordinates for computing 
the slope. Although the ik  do not appear to have a name, they occur often. Three 
of their properties are 

1
0n

ii
k

=
=∑ , 

1
1n

i ii
x k

=
=∑  and 

( )( )
2

21

1

1n
ii n

j nj

k
x x

=

=

=
−

∑
∑

 

([3], p. 42). The coordinates of the fixed point ( ),P p q  in Formula (13) can be 
rewritten as follows. The x -coordinate is  

( )
1 .n

n

p x
nk

= −  

Because both the point of means in Formula (6) and the fixed point P  are on 
the original regression line of slope 1b , the y -coordinate q  satisfies 

( )

( )

( )

( ) ( )

11
n n

n
n n

n

y q y q
b

x p
x x

nk

− −
= =

−  
− − 
 

. 

Thus, 

( )
1

n
n

bq y
nk

= − ,  

and the fixed point can be expressed as 

( ) ( ) ( )
11, , .n n

n n

bP p q P x y
nk nk

 
= − − 

 
               (21) 

This presents a balanced notation for the two coordinates and sets out the hor-
izontal and vertical distances between P  and the point of means. It shows that 
the fixed point can be far from the observations when nk  is small, i.e., when nx  
is near ( )nx , and for regression lines with slopes that are large in absolute value. 

3.2. Expression of the Fixed Point with the Simplest Sums 

The identities  

( )( ) ( ) ( )( )11 ,n nn nn x x n x x −− = − −                  (22) 

( )( ) ( )( ) ( )( )2 2 21
1 11 1

1n n
i i nn n ni i

nx x x x x x
n

−
− −= =

−
− = − + −∑ ∑ ,      (23) 
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and 

( )( ) ( )( ) ( )( ) ( )( )1
1 1 11 1

1n n
i i i i n nn n n ni i

nx x y x x y x x y y
n

−
− − −= =

−
− = − + − −∑ ∑    (24) 

are algebraic. Using Identities (22) - (24), the fixed point in Formula (13) can be 
written as 

( ) ( )
( )( )

( ) ( )( ) ( )
( )( ) ( )( )

( ) ( )( )

21 1
1 1 11 1

1 1
1 1

, ,
1 1

n n
i i in n ni i

n n
n nn n

x x x x y y
P p q P x y

n x x n x x

− −
− − −= =

− −

− −

 − − − = − − − − − − 
 

∑ ∑
 

(25) 

and 

( )
( ) ( )
( ) ( )( )

( )
( ) ( )( )

21 121 1 1 1 1
1 11 1 1 1 1

1 1

1 1

1 1
, , .

1 11 1 1 1

n nn n n n n
i ii ii i i i i ii i i i i

n n
n i n ii i

n x xx y n x y x y
P p q P

n nn n x x n n x x

− −− − − − −
= == = = = =

− −

= =

 − − − − 
= − − − −− − − − − − 

 

∑ ∑∑ ∑ ∑ ∑ ∑
∑ ∑

 (26) 

These give the coordinates of P  as sums involving nx  and the first 1n −  
observations. The form of the dependence upon nx  is made clearer. They illus-
trate that, as nx  approaches ( )1nx − , the fixed point’s coordinates increase with-
out bound. Like in Formula (21), Equation (26) conveys the two coordinates of 
P  in a way to reveal a congruity between them. In Formula (26), the coordinates 
are expressed by employing only the most rudimentary sums. 

From Formula (25), 

( )
( )( )

( ) ( )( )

21
11

1
11

n
i ni

n
n n

x x
p x

n x x

−
−=

−

−

−
− = −

− −

∑
,              (27) 

and thus  

( )
( )( )

( ) ( )( )

21
11

1
11

n
i ni

n n
n

x x
x x

n p x

−
−=

−

−

−
− = −

− −

∑
,              (28) 

showing that the x -coordinate nx  of the selected point can be easily computed 
from the x -coordinate p  of the fixed point. Additionally, Equations (27) and 
(28) show that nx  and p  are the same function of each other through a func-
tion that otherwise depends upon only the first 1n −  observations. Writing 
Equation (27) as 

( )( ) ( )( ) ( )( )21
11

1 1 1

n
i ni

n n n

x x
x x p x

n

−
−=

− −

−
− − = −

−

∑
           (29) 

makes apparent the hyperbolic nature of the relationship between the n th obser-
vation’s first coordinate nx  and its accompanying fixed point’s first coordinate 
p . By considering nx  and p  as coordinates, Equation (29) is a rectangular hy-

perbola whose axis has slope minus one and contains the center ( ) ( )( )1 1,n nx x− − . 
The asymptotes are ( )1n nx x −=  and ( )1np x −= . 

The y -coordinate q  of the fixed point P  produces nx  as well. One way 
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to accomplish that is to find p  from q  using a regression line that contains 
( ),P p q . Another way is to employ the y -coordinate in Formula (25) to obtain 

( )
( )( ) ( )( )

( ) ( )( )
1

1 11
1

11

n
i in ni

n n
n

x x y y
x x

n q y

−
− −=

−

−

− −
= −

− −

∑
.            (30) 

This shows that ( )1n nx x −−  and ( )1nq y −−  are the same function of each other. 

3.3. The Fixed Point as the Intersection of Two Specific Lines 

Theorem 2 gives the location of a fixed point as the intersection of two particular 
regression lines. 

Theorem 2 (The Identity of the Fixed Point as a Particular Point of Intersection). 
For S  in Equation (2) with ( )n nx x≠ , the fixed point  P corresponding to the ob-
servation ( ),n nR x y  is the point of intersection of the regression line for the set S  
and the regression line for ( ){ },n nS x y , i.e., for ( ){ }, | 1, 2, , 1i ix y i n= − . 

Proof. Eliminating ( )1n nx x −−  between Formulas (28) and (30) yields 

( )
( )( ) ( )( )

( )( ) ( )( )
1

1 11
1 121

11

– .
n

i in ni
n nn

i ni

x x y y
q y p x

x x

−
− −=

− −−
−=

− −
= +

−

∑

∑
 

Thus, the fixed point ( ),P p q  is on the least squares line 

( )
( )( ) ( )( )

( )( ) ( )( )
1

1 11
1 121

11

n
i in ni

n nn
i ni

x x y y
y y x x

x x

−
− −=

− −−
−=

− −
= + −

−

∑

∑
         (31) 

for the first 1n −  observations of S . By Theorem 1, P  is also on the regres-
sion line for S .                                                   ∎ 

If ( ),n nx y  is on the line in Equation (31), then the two regression lines coin-
cide.  

If ( )n nx x= , then the fixed point is at infinity by Theorem 1. Also, using Iden-
tities (23) and (24), the slope of the regression line for S  is 

( )( ) ( )( )
( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( )

1
2

1

1
1 1 1 11

2 21
1 11

1
1 11

21
11

1

1

.

n
i in ni

n
i ni

n
i i n nn n n ni

n
i nn ni

n
i in ni

n
i ni

x x y y

x x

nx x y y x x y y
n

nx x x x
n

x x y y

x x

=

=

−
− − − −=

−
− −=

−
− −=

−
−=

− −

−

−
− − + − −

=
−

− + −

− −
=

−

∑

∑

∑

∑

∑

∑

 

which is the slope of the regression line for ( ){ },n nS x y . If in addition, 

( )n ny y= , then the two lines coincide. If ( )n ny y≠ , then the two lines have different 
points of means and are parallel, so that they “meet” at the fixed point at infinity. 

The line in Equation (31) can be expressed with only basic sums as 
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( )

( ) ( )
1 1 1 1 1

1 1 1 1 1
21 12

1 1

1
.

1 11

n n n n n
i i i i i ii i i i i

n n
i ii i

y n x y x y x
y x

n nn x x

− − − − −

= = = = =

− −

= =

 − −
 = + −
 − −− −  

∑ ∑ ∑ ∑ ∑
∑ ∑

       (32) 

4. Additional Replacement Points 

The question addressed in this section is:  
Are there any other points in the plane, besides those described in Theorem 1, 

that together with ( ){ },n nS x y , i.e., ( ){ }, | 1, 2, , 1i ix y i n= − , produce re-
gression lines containing the fixed point ( ),P p q  corresponding to ( ),n nx y ? 

This question is answered in the affirmative by Theorems 3 and 4, where all 
such points are found. 

Theorem 3 (Points on the Regression Line for ( ){ },n nS x y ). Augmenting 
the set ( ){ },n nS x y  with any one point of the line in Equation (32), which is 
the regression line on that set, yields a line containing the fixed point ( ),P p q  
that corresponds to the observation ( ),n nx y . 

Proof. This is immediate from the fact that adding a new point that is on a 
regression line does not alter the identity of the regression line and that P  is on 
the line in Equation (32) by Theorem 2.                                 ∎ 

Theorem 3 shows that the commonplace diagnostic method of deleting a point 
to determine its effect is included in the technique of altering the point as in The-
orem 1. Replacing the point ( ),n nx y  with the point at the intersection of the re-
gression line for ( ){ },n nS x y  and the line nx x=  produces the regression 
line for the set ( ){ },n nS x y . The n th point has been “neutralized,” because it 
no longer has any role in determining the identity of the regression line, which 
has become the line on the other 1n −  observations. This uses the least-squares 
estimate for the observation at nx x=  that is based upon the other data, which is 
a familiar method for missing data [7] ([8], pp. 32-34) and for outliers [9].  

Theorem 4 (All n th Points that Create the Same Fixed Point). Augmenting 
the set ( ){ } ( ){ }, , | 1, 2, , 1n n i iS x y x y i n= = −  with any single point on the 
vertical line in Equation (16) or on the regression line in Equation (32) determines 
a regression line containing the point ( ),P p q , which is the fixed point that is 
determined by the observation ( ),n nx y . Those are the only single points in the 
plane that determine a regression line containing P  by augmenting the set 

( ){ },n nS x y . 
Proof. The proof proceeds by replacing the chosen n th data point ( ),n nx y  of 

S  with the point ( ),A s t  to form the set ( ){ } ( ){ }, ,n nS x y s t∪ . Substituting 
the coordinates of P  from (26) into the regression line for that set yields an 
equation for s  and t , which are the desired coordinates. That equation reduces 
to only two factors. One yields the vertical line in Equation (16). and the other 
represents the line in Equation (32). Because the proof consists principally of al-
gebraic manipulations, it is placed in Appendix.                        ∎ 

5. Geometry of Fixed Points 

It is shown in this section that fixed points are centers about which diagnostic 
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techniques are referenced. 
From Equation (15), the regression line for set S  is 

( )( ) ( )( )
( )( )21

1

1 i n nn
ii n

nk

x x x x
y y

n k x
=

=

 − − = + 
 − 

∑
∑

. 

The coefficients measure the impacts of the x -coordinates on the fitted values. 
The fitted value at the j th observation’s x -value jx  is 

( ) ( )( ) ( )( )
( )( )21

1

1 i jn nn
j ii n

nk

x x x x
y x y

n k x
=

=

 − − = + 
 − 

∑
∑

.           (33) 

The parentheses in Equation (33) contain the terms of the hat matrix, which are 
designated ijh  [4] ([10], pp. 90-92). They show that the farther an observation’s 
first coordinate is from the mean, the larger its impact on a fitted value. This effect 
is called leverage. Most often, the goal is to determine the impact that each obser-
vation has on the fitted value for the observation’s x -value, so the diagonal ele-
ments iih  of the hat matrix are especially important. They are written ih . 

Consider the same n th observation as in the previous sections. Its influence 
on ( )ny x  is n nh y . An interpretation is that changing ny  by one unit changes 
the fitted value ( )ny x  by nh  units. The set { }| 1, 2, ,ih i n=   has desirable 
properties. For example, 

1
2n

ii
h

=
=∑ , which supplies a finite scale for these pos-

itive terms. Two approaches to diagnosing whether an observation’s x -value 
has high leverage is to compute the n  values in the set { }ih . The large values 
would indicate that their observations have high leverage. There are rules of 
thumb, as well [4] ([10], p. 91). One is that any observation with 0.5ih >  is 
problematical.  

Sometimes, an observation is deleted in order to determine the observation’s 
impact on some feature of the fit. From Theorem 3, deleting an observation yields 
the line for the remaining observations and that is the same line as the one ob-
tained by adding a point on the line for the remaining observations. There are 
other properties and statistics that may be of interest in a study, such as the cor-
relation coefficient. Those might be altered by the addition of a point. If the iden-
tity of the line or its slope are the attributes under study, an alternative to deletion 
is moving the point to the fit of the remaining observations [9].  
Theorem 5 fleshes out the geometric picture. 

Theorem 5 (Three Collinear Points). The point of means ( ) ( )( )1 1,n nx y− −  for 
( ){ }, | 1, 2, , 1i ix y i n= − , the point of means  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 1
1 11 1

, 1 , 1n n
i i n ni i

x s n y t n n x s n n y t n− −
− −= =

+ + = − + − +∑ ∑   

for ( ){ } ( ){ }, | 1, 2, , 1 ,i ix y i n s t= − ∪ , and the point ( ),s t  are collinear or else  
coincide. 

Proof. Assuming the three points do not coincide, the line containing the two 
points of means is 
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( )

( ) ( )( ) ( )

( ) ( )( ) ( )
( )( )1 1

1 1
1 1

1
,

1

n n
n n

n n

n y t n y
y y x x

n x s n x

− −

− −

− −

− + −
= + −

− + −
 

i.e.,  

( )
( )

( )
( )( )1

1 1
1

.n
n n

n

t y
y y x x

s x
−

− −
−

−
= + −

−
               (34) 

The point ( ),s t  satisfies Equation (34).                             ∎ 
In Theorem 5, if ( )1ns x −≠  and ( )1nt y −= , then the line is horizontal. If ( )1ns x −=  
and ( )1nt y −≠ , then the line is vertical. If ( )1ns x −=  and ( )1nt y −= , the three 
points coincide. 

To summarize, by Theorem 1, the fixed point P , which corresponds to the 
chosen datum ( ),n nR x y  for observations S , is a “center of rotation” with 
“spokes” being all the regression lines on the sets ( ){ } ( ), ,n n nS x y T x t∪ . See 
Figure 1 and Figure 2. Theorem 2 says that the regression line for ( ){ },n nS x y  
is one of these spokes. The point of intersection V  of nx x=  and that regres-
sion line can be used to form the set ( ){ },n nS x y V∪ , whose regression line is 
the same line as the regression line for ( ){ },n nS x y  by Theorem 3. Point V  
is an example of a point that is generically labeled T . There are two points of 
means on this regression line. One is ( ) ( )( )1 1,n nN x y− − , and the other one, W , is 
for the set ( ){ },n nS x y V∪  and is on the line ( )nx x= . The point of means for 
the set ( ){ },n nS x y T∪  is ( ) ( ) ( )( )( )1 1, 1n nM x n y t n− −− + . 

Figure 3 contains the regression line for ( ){ }, | 1, 2, , 1i ix y i n= − , which is 
the line with the larger positive slope in the graph, the points ( ),n nR x y , N , W , 
and V , and fixed point P  corresponding to R . The righthand (dashed) ver-
tical line nx x=  contains ( ), ,nR T x t , and V . The lefthand (dashed) vertical 
line is ( )nx x= , which contains M  and W . Points M , N , and T  are col-
linear by Theorem 5. The line containing P  and M  is the regression line for 
( ){ }, | 1, 2, , 1i ix y i n T= − ∪ . 
The “motion” in the system is obtained by varying up and down the position of 

T . This moves the regression line’s intersection with nx x=  proportionally with 

nh  through the method of least-squares fitting. As T  is moved, the point of 
means  M of ( ){ }, | 1, 2, , 1i ix y i n T= − ∪  moves and is on the regression line 
that is being created, so that the regression line contains P  and M . This can 
be performed with linkages; as T  moves, the line containing M , N , and T  
rotates about N  as the center and, thus, moves M  vertically on ( )nx x= . The 
line containing M  and P  rotates about fixed point P  as the center and is 
the regression line. 

Figure 4 illustrates a mechanical device that is a physical embodiment of the 
effect that one datum has on the location of the regression line. The datum’s fixed 
point is a center. The blue slider on the right is moved by the operator and the 
green slider on the left follows, being controlled by the rods. The yellow items are 
centers of rotation; the red and the tan rods are attached there like hands of a 
clock. The goal of the device is to move the tan rod in a manner so that its locations 
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reflect least-squares fitting of a regression line as the position of an observation, 
i.e., the blue slider, is altered vertically by the operator.  
 

 
Figure 3. The observation ( ),n nR x y  is replaced by ( ),nT x t . 

 

 
Figure 4. Mechanism to “move” the regression line (tan rod) by “moving” a data point 
(blue slider). See Figure 3, where the configuration of the points and lines is the same. In 
this figure, some points and lines are omitted. In particular, point R  and the line con-
taining points , , ,P N W  and V  are omitted, because they are not directly involved in the 
mechanism. 
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When the mechanism is being run, the blue slider (T ) is moved up and down 
continuously in a controlled manner on the righthand vertical rectangular grey track 
( nx x= ). The red rod (line containing M , N , and T ), which passes through 
swiveling eyebolts, rotates about the upper yellow center ( N ), guided by and drag-
ging along the green slider ( M ) on the lefthand vertical rectangular grey track 
( ( )nx x= ). As the green slider ( M ) is thusly moved up and down indirectly by the 
movement of the blue slider (T ), the tan rod (line containing P  and M ) moves 
freely through a swiveling eyebolt, rotating about the lower yellow center (fixed point 
P ) and is aligned with the regression line (for ( ){ }, | 1, 2, , 1i ix y i n T= − ∪ ). 

6. Numerical Example 

Consider the set of seven artificial bivariate observations 

( ) ( ) ( ) ( ) ( ) ( ) ( )1,3 , 2,2 , 3,3 , 3,5 , 5,8 , 5,9 , 7,6 .          (35) 

The selected point is ( )7,6R . These data were used to create Figure 1. From 
Formula (26), the fixed point corresponding to R  is 

( ) ( )( ) ( )
( )( )( )

( )( ) ( )( )
( )( )

26 73 19 6 116 19 3019 30 60 94, , , .
6 6 6 7 19 23 236 6 7 19

P p q
 − −   = − − =   −−   

 

Replacing 7 6ny y= =  with 14, 124/11, 9, 6, 1, −2, and −4 in turn, the regres-
sion lines in Figure 1 are obtained. As the replacement value decreases, the slopes 
of the corresponding lines in that graph decrease. The value 124/11 is the y -co-
ordinate of the intersection of the regression line in Equation (32) on the first six 
observations and the line in Equation (16), 7 7nx x x= = = . From Theorems 2 
and 3, the replacement value 124/11 yields the regression line on the first six ob-
servations, which is one of the regression lines that are found with the construc-
tion in Theorem 1 and contains the fixed point. In Figure 1, it is the line with the 
second largest slope. Among the regression lines displayed in Figure 1, the regres-
sion line for the original set of all the Observations (35) is the central line with 
slope that is approximately one. 

The elements ih  of the hat matrix in the same order as the Observations (35) 
are 0.433, 0.259, 0.326, 0.326, 0.416, 0.416, 0.568.  

Only 7h  is greater than 0.5, indicating that it has high leverage. This high lev-
erage is in the context of the best-fit line. The z -score of 7x =  among the x -
values is just 1.60, so that the point ( )7,6  would not be considered an outlier as 
a member of the univariate set of x -values, but it appears to be impactful for the 
linear fitting. 

7. Concluding Comments 

The fixed points are far more fundamental and influential than previously real-
ized. Literally, they are at the centers of regression diagnostic tests that involve 
altering or deleting an observation. The mechanical device in Figure 4 supplies 
clear insight into the movements of points in the processes of alteration and dele-
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tion of an observation and shows the scales of related measurements. This can be 
useful for visual learners. Instead of just line graphs, the movements can be ob-
served or imagined with the mechanical device. 

The two main facts that make the construction in Figure 3 and the mechanical 
device in Figure 4 possible are Theorem 1, giving the existence of the fixed point 
P , and Theorem 5, giving collinearity of N , M , and T . The figures show that 
there are two centers, which are the yellow items in Figure 4. Careful examination 
of the formulas, shows that they can be written so that every occurrence of x - 
and y -values has the appropriate coordinate of ( ) ( )( )1 1,n nN x y− −  subtracted 
from it. Thus, N  is a center and a natural choice for the origin, if a translation 
of the coordinates were contemplated. The other center is the fixed point P . 

Often, the experimental design mandates that the x -values are pre-selected, 
while most often considered to be without error as well, and the y -values are 
measurements regarded as realizations of a random variable. That is one reason 
that the direction of prediction is perpendicular to the x -axis and that direction 
is of interest here. In those cases, the leverages and the x-coordinates of the pivot 
points can be computed before the data are taken. 

The distinction between an observation having a potentially large or an actually 
large impact on the fitted line should be emphasized ([3], pp. 384-420) [4] ([10], 
pp. 90-92). A high leverage point has a substantial potential to greatly alter the 
position of the best-fit line. A high leverage point has a sizeable lever arm, i.e., it 
is an inordinately large horizontal distance from the point of means within the 
framework of linear fitting. This is shown by the effect of each point on the slope 
as expressed in Formula (14) for example, where points with the largest numera-
tors in the fractions have the highest leverage. Often, leverage is assessed using the 
set { }| 1, 2, ,ih i n=   of elements of the hat matrix, as seen in Section 5. How-
ever, high leverage points may not have a large impact on the fitted line, if their 
y -values place them near the line that would be determined by the remainder of 

the observations.  
An influential point actually has a strong effect on the equation of the regression 

line for a given data set. One way to detect a single influential data point is to move 
it as is done above on a vertical line or to delete it and evaluate the sizes of the 
changes in the line. It is natural to examine the effect of varying the y -coordinate 
of a data point, because that action reflects procedures used to examine the influ-
ence of a point on a linear fit. Also, the impact of the deletion of a point can be 
assessed with the movement of the data point vertically to the regression line for 
the remainder of the observations, so that the slope snaps from its original value 
to the value it would have without the chosen point. All of these changes in the 
y -coordinate produce changes that have a fixed point as their center. 

Any family of lines, whose coefficients can be parameterized as in Equation (19) 
has a fixed point. For example, all bivariate observations whose systems of fitted 
lines have coefficients that are linear functions of the observations’ y -values have 
fixed points. A set of observations that is fitted with a simple least-squares regres-
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sion line is an example, as shown with the second proof of Theorem 1. More gen-
erally, all lines 

( )( ) ( ) ,y q pm r m r x= − +  

where r  is a real parameter that may be multidimensional, contain the point 
( ),p q . Since models in general linear modeling and multiple regression have a 
linear dependence on the y -values, there are fixed lines and planes of one less 
dimension than the number of parameters or coefficients in the model [11]. 

In [11], the author considers a different problem in which the chosen observa-
tion occurs with a multiplicity and the regression line pivots about a point as the 
multiplicity changes. This is closely related to moving a single point [1]. In [11], 
the multiplicity is discrete, but here the selected observation can be moved con-
tinuously.  
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Appendix 
Proof of Theorem 4 

Replacing the n th data point ( ),n nx y  of S  with ( ),A s t , which is to be de-
termined, the least-squares regression line for the set  

( ){ } ( ){ } ( ){ } ( ){ }, , , | 1, 2, , 1 ,n n i iS x y s t x y i n s t∪ = = − ∪  

is 

( ) ( )( )
( ) ( )

1 1 11 1
1 1 11 1

21 12 2
1 1

–
–

–

n n nn n
i i i ii i ii ii i

n n
i ii i

n x y st x s y ty t x s
y x

n nn x s x s

− − −− −
= = == =

− −

= =

+ + +  + +
 = +
 + +  

∑ ∑ ∑∑ ∑
∑ ∑

 

(compare with the regression line in Equation (10)). In order to find the possible 
coordinates for point A , the coordinates of P  as expressed in Formula (26) are 
substituted for ( ),x y  in the last equation, giving 
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Then, 
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or 
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This becomes 
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Multiplying yields 
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Observing that the first terms on the two sides of the last equation are the same, 
as are the fourth terms the same, this becomes 
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subsequent to dividing by n . Re-arranging yields 
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and, by re-arranging further and dividing by 1 0n − ≠ , 
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The first factor in square brackets gives the vertical line in Equation (16); the 
second factor gives the regression line in Equation (32); and there are no other 
solutions. 
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