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Abstract 
Properties of Hilbert spaces, projections and spectral measures are introduced 
and studied. Spectral integrals and the related operator are considered, and 
their relationship with the spectrum of an operator is given. The theorems that 
result yield a version of the spectral theorem which is suited to infinite dimen-
sions. 
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1. Introduction 

One of the main aims of functional analysis is to study the spectra of various op-
erators on Hilbert spaces [1]-[3]. Some basic mathematical properties of Hilbert 
spaces and spectral measures are developed and used to generalize a particular 
version of a spectral theorem in infinite dimensions. The study of the spectral 
properties of operators has always been of great interest since such results have 
applications in other areas of science [4] [5]. This subject has come up again in 
differential geometry, such as Ricci flow [6]-[10]. Moreover, there are numerous 
applications of these theorems and other ideas from functional analysis all 
through quantum mechanics as well. 

Let ( )C X  denote the set of complex-valued continuous functions on the space 
X  and ( )0C X  the subset of functions of ( )C X  which go to zero at infinity. 

Suppose X  is a set with a specified Boolean σ -algebra S  of subsets. A spectral 
measure is a function E  whose domain is S  and whose values are idempotent 
Hermitian operators usually called projections which satisfy ( ) 1E X =  and 

( ) ( )n nnn
E M E M=∑

 whenever { }nM  is a disjoint sequence of sets in S . 

How to cite this paper: Bracken, P. (2025) 
Results on Spectral Measures and an Appli-
cation to a Spectral Theorem. Advances in 
Pure Mathematics, 15, 339-349. 
https://doi.org/10.4236/apm.2025.155017 
 
Received: May 3, 2025 
Accepted: May 28, 2025 
Published: May 31, 2025 
 
Copyright © 2025 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2025.155017
http://www.scirp.org
https://www.scirp.org/
https://orcid.org/0000-0003-3483-6407
https://doi.org/10.4236/apm.2025.155017
http://creativecommons.org/licenses/by/4.0/


P. Bracken 
 

 

DOI: 10.4236/apm.2025.155017 340 Advances in Pure Mathematics 
 

Such a set X  and σ -algebra S  of subsets is called a measurable space, 
( ),X S . An example of a spectral measure is to take X  a measure space with 
measure µ  and Hilbert space ( )2H L µ=  and write ( ) ME M f fχ=  where 

Mχ  denotes the characteristic function of M  with M S∈  and f H∈ . If E  
is a spectral measure then ( )0 0E =  and E  is finitely additive. 

It can be shown that a projection-valued function E  on the class of measura-
ble subsets of a measure space X  is a spectral measure if and only if ( ) 1E X = , 
and moreover for each pair of vectors x  and y , the complex-valued set func-
tion µ  defined for any M  in S  by ( ) ( )( ),M E M x yµ =  is countably ad-
ditive. 

Some important theorems are required at the end in the proof of the spectral 
theorem and they are stated now so they may be used later. First, the Stone-Weier-
strass theorem states that for a given compact set K , suppose   is an algebra 
of continuous functions :f K →  closed under conjugation and separates 
points of K  and there are no elements of K  on which all functions in   
vanish, then   is dense in ( )C K . The Riesz theorem also appears: if X  is a 
locally compact Hausdorff space and ϕ  is a bounded linear functional on 

( )0C X , there is a unique complex Borel measure µ  such that ( ) df fϕ µ= ∫  
and ( )Xϕ µ= . 

Let H  be a Hilbert space such that for any ,v w  in H , the inner product is 
written ( ),v w . A star on the inner product or other complex object denotes com-
plex conjugation whereas on an operator A  it represents the adjoint *A . 

Lemma 1. If ϕ  is a linear functional on H , then ( ) ( ),v v wϕ =  for a partic-
ular choice of w  in H . 

Proof. Let ( )Ker ϕ=  then it suffices to prove that { }0⊥ ≠ , since if not, 
take 0w = . Then w  is a nonzero vector in ⊥  and can be normalized by set-
ting v w=  in ϕ , so ( ) 2w wϕ = . Given any v H∈ , set 1 2v v v= +  where 

( )( )2
1v v w wϕ=  and so 2 1v v v= − . Evaluating ( )vϕ , we get  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 1 2

2 0.

v
v v v v w

w

w
v v v v

w

ϕ
ϕ ϕ ϕ ϕ ϕ

ϕ
ϕ ϕ ϕ ϕ

 
 = − = −
 
 

= − = − =

 

This implies that v∈ , and since v ⊥∈ , it is the case that  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, , , , , , .
v

v w v v w v w v w v w w w v
w
ϕ

ϕ= + = + = = =  

◻ 
Definition 1. A bounded linear functional is a map : H Hϕ × →  which is 

linear in the first term, conjugate linear in the second and such that there exists a 
non-negative constant denoted ϕ  which satisfies  

 ( ), .v w v wϕ ϕ≤ ⋅ ⋅  (1) 
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Lemma 2. If ϕ  is a bounded bilinear functional on H , then there exists a 
unique operator A  on H  such that ( ) ( ), ,v w Av wϕ =  for all ,v w H∈ . 

Proof. Let v H∈  be fixed and nonzero and let ( ) ( )( )*,v w v wψ ϕ= . By 
Lemma 1, there exists a vector denoted Av  such that  

( ) ( ) ( ) ( )* *, , ,v w w Av Av w v wψ ϕ= = = . This implies that  

 ( ) ( ), , .v w Av wϕ =  (2) 

Since ϕ  is a linear functional, A  has to be a linear transformation. It suffices 
to verify that A  is bounded. Set w Av=  in (2) to obtain  

 ( )2 ,Av v Av v Avϕ ϕ= ≤  

or dividing out Av vϕ≤ . This implies that  

 
1

sup .
v

A Av ϕ
=

= ≤  

◻ 
Lemma 2 is often referred to as the Riesz lemma. 

2. Projections 

Both the adjoint of an operator and projection operators as well play an important 
role here. 

Theorem 1. Let A  be an operator, then there exists a unique operator *A  
called the adjoint of A  which satisfies ( ) ( )*, ,Av w v A w=  for all ,v w H∈ . 

Proof. Set ( ) ( ), ,w v w Avϕ = . Then ϕ  is a bounded, bilinear functional 
Hence there exists a unique operator *A  such that ( ) ( )*, ,w v A w vϕ = . This 
must agree with the preceding expression which implies that ( ) ( )*, ,Av w v A w= . 
◻ 

Definition 2. Operator A  is Hermitian if *A A= , and it is normal if 
*Av A v= . 

Proposition 1. An operator A  is normal if, and only if * *AA A A= . 
Proof. Take an arbitrary vector v H∈ , then by the definition of normal oper-

ator, ( ) ( )* *, ,Av Av A v A v= . This implies that ( ) ( )* *, ,A Av v AA v v=  from which 
we conclude that * *AA A A= . ◻ 

Riesz lemma 2 implies that, if ϕ  is symmetric ( ) ( ), ,v w w vϕ ϕ= , then the re-
sulting operator will be Hermitean. 

Definition 3. If M  is a closed subspace of H , then Hilbert space theory 
states that every vector v H∈  has a unique decomposition 1 2v v v= + , where 

1v M∈  and 2v M ⊥∈ . The projection on M  is defined to be the mapping 

1:P v v→ . Note that P  is necessarily an operator. If M  is  , denote P  by 
1 and if { }0M = , define P  as 0. ◻ 

Definition 4. Let the set { }i i I
P

∈
 be projections onto iM  respectively. These 

can be partially ordered by i jP P≤  if i jM M⊂ . Further, the projection onto the 
space ii I

M
∈

 can be defined as ii I P
∈∑ . ◻ 

Theorem 2. An operator P  is a projection if and only if it is Hermitian and 
idempotent, so 2P P= . 
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Proof. Suppose M  is a subset of H  and projection P  projects to the sub-
space M  and for w M∈  we have Pw M∈ . Thus Pv M∈  so 2P v Pv M= ∈  
which gives 2P P= . Let 1 2v v v= +  and 1 2w w w= +  in H  such that 1Pv v=  
and 1Pw w= . It follows that, since 2w M ⊥∈  and 1v M∈ ,  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 1 1 1 1 2 1, , , , , , , , .Pv w w w v w v w v w v w v w v Pw= = + = = + =  

This implies P  is Hermitian. ◻ 
Lemma 3. Suppose that P  is Hermitian and idempotent. Define the space 

{ }:M w H Pw w= ∈ = . Then P  is a projection onto M . 
Proof. To show this, it suffices to prove that, for all v H∈ , ( ), 0Pv v Pv− = . 

Expanding the left-hand side then, since P  is assumed Hermitian, we have  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2, , , , , , , 0.Pv v Pv Pv v Pv Pv Pv v P v v Pv v Pv v− = − = − = − =  

◻ 
Corollary 1. If P  is a projection, then for all v H∈ , ( )2 ,Pv Pv v= . 
Proof.  

 ( ) ( ) ( )2 2, , , .Pv Pv Pv P v v Pv v= = =  

◻ 

3. Spectral Measures 

The final theorem is concerned with spectral measures, and so these are studied 
now. Let ( )B   be the set of Borel sets in   and ( )H  the set of projections 
on the Hilbert space H . 

Definition 5. A complex spectral measure is a function ( ) ( ):E B P H→  
which has the following properties: 1) ( ) 0E ∅ =  and ( ) 1E = , 2) If { }nB  is 
a family of disjoint Borel sets, then ( ) ( )n nnn

E B E B=∑

. ◻ 
It is the case that if 0 1B B⊂ , then ( ) ( )0 1E B E B≤ . Spectral measures also have 

the property that ( ) ( ) ( ) ( )0 1 0 1 0 1E B B E B B E B E B∪ + ∪ = + . Act on both sides of 
this with ( )0E B  and use the corrolary and observation  
( ) ( ) ( )0 1 1 0E B E B B E B∪ =  to arrive at  
( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 0 0 1 0 0 1E B E B B E B E B B E B E B E B∪ + ∩ = +  or  
( ) ( ) ( ) ( ) ( )0 0 1 0 0 1E B E B B E B E B E B+ ∩ = + , which simplifies to  
( ) ( ) ( )0 1 0 1E B B E B E B∩ = . 
Proposition 2. Suppose ( ): B X → E  is any operator such that for all 

,v w H∈ , the related function satisfies ( ) ( )( ),E B E B v w= , 

( ) ( )n nnn
E B E B=∑

 and ( ) 1E X = . Then E  is a spectral measure. 
Proof. Suppose { }nB  is a disjoint family of Borel sets in  , then  

 
( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )

2 2

2

, ,

, , .

n n n n
n n n

n n nn n
n

E B v E B v E B v E B v v

E B v v E B v v E B v

= =

 
= = = 
 

∑ ∑ ∑

∑  

 

The sequence ( )n nv E B v=  is therefore summable. For all disjoint Borel sets 
,B C  and vectors ,v w H∈ ,  
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 ( ) ( )( ) ( )( ) ( )( ) ( )( ), , , , .E B v E C v w E B v w E C v w E B C v w+ = + = ∪  

The statement follows simply by examining the partial sums of ( )nn E B∑ . ◻ 
Definition 6. ( ),X S  represents an arbitrary fixed measurable space and   

the class of all complex-valued bounded measurable functions on X .  
( ) ( ){ }sup :M f f Xλ λ= ∈  when f ∈ . The expression spectral measure al-

ways refers to a spectral measure in X . 
Definition 7. Let E  be a spectral measure then the spectral measure with re-

spect to vectors ,v w H∈  of a measurable function f  is defined to be the 
Lebesgue-Stieltjes integral given by  

 ( ) ( )( )d , .f E v wλ λ∫  (3) 

The spectrum of a spectral measure E  is denoted by ( )Λ \ ii
E X U=



. The 
union is taken over all open sets iU  which satisfy the condition ( ) 0iE U = . If 
the set ( )Λ E  is compact, we say E  is compact. Since ( )0 0E = , when λ  is 
changing, ( )E M λ∩  means λ  must overlap M  to yield a nonzero contri-
bution. ◻ 

Theorem 3. Let f  and g  be complex valued, bounded, measurable func-
tions on X  and E  a spectral measure, then  

 ( ) ( )d d d .f E g E fg E⋅ =∫ ∫ ∫  (4) 

Proof. Suppose we denote the integrals as  

 ( ) ( )d , d .P f E Q g Eλ λ= =∫ ∫  

If the complex measure µ  in X  is defined for every set M  in S  by writ-
ing ( ) ( )( ),M E M Qx yµ =  with ,x y  fixed vectors in H , for every set M  in 
S  we have  

 

( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

,

d ,

d ,

d ,

d , .
M

M Qx E M y

g E x E M y

g E M E x y

g E M x y

g E x y

µ

λ λ

λ λ

λ λ

λ λ

=

=

=

= ∩

=

∫
∫
∫
∫

 

It follows that,  

 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

** ** *

**

, , , d ,

d , d ,

d d , .

P Qx y Qx P y P y Qx f E y Qx

f y E Qx f E Qx y

f f g E x y

λ λ

λ λ λ λ

λ µ λ λ λ λ

⋅ = = =

= =

= =

∫

∫ ∫
∫ ∫

 

The conclusion is that P Q⋅  has to be equal to the integral ( )dfg E λ∫ . ◻ 
The next theorem makes an important connection between the spectral integral 

and a unique operator A  which is normal. 
Theorem 4. Suppose E  is a compact spectral measure, then there is a unique 

normal operator A  such that for all vectors ,v w H∈   
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 ( )( ) ( )d , , .E v w Av wλ λ =∫  (5) 

This is often expressed by writing ( )dA Eλ λ= ∫ . 
Proof. Let ( ) ( )( ), d ,v w E v wϕ λ λ= ∫  which is finite for all ( ),v w  as the set 
( )Λ E  is compact. Moreover, ϕ  is a bilinear functional and ( ),v wϕ  is 

bounded as shown by working out  

 ( ) ( )( ) ( )( )2 2 2, d sup : Λ .v w E v E v vϕ λ λ λ λ β≤ ≤ ∈ ⋅ = ⋅∫  

where ( ){ }sup : Λ Eβ λ λ= ∈ . Applying the parallelogram law, the following 
bound is obtained  

 ( ) ( ) ( )2 2 2 2 2 21, .
2

v w v w v w v iw v iw v wϕ β β≤ + + − + + + − ≤ +  

Thus ϕ  can be computed by evaluating the supremum of this under the con-
straint 1v w= = . This implies that 2ϕ β≤ ⋅ , so ϕ  is bounded. By the Riesz 
lemma, a unique operator A  must exist. 

It remains to show that A  is a normal operator. Construct an operator called 
A  along similar lines by means of the integral  

 ( )*d .A Eλ λ= ∫  (6) 

It follows that  

 
( ) ( ) ( )( )( ) ( )( )

( )( ) ( )

** *, , d , ,

d , , .

v Aw Aw v E w v d v E w

E v w Av w

λ λ λ λ

λ λ

= = =

= =

∫ ∫
∫

 

 

Since the adjoint is unique, it must be that *A A= . 
Suppose a Borel set is taken, then we can calculate, for any elements ,v w H∈ ,  

 
( )( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

* * *

* *

, d , d ,

d , d , .
B

A v E B w E v E B w E B E v w

E B v w E v w

λ λ λ λ

λ λ λ λ

= =

= ∩ =

∫ ∫
∫ ∫

 

This implies that  

 

( ) ( ) ( )
( )( )( ) ( )( )

( )( ) ( )( )

** * * * *

** * *

* *

, , ,

d , d ,

d , d , .

AA v w A v A w A w A v

E w A v A v E w

E A v w E v w

λ λ λ λ

λ λ λλ λ

= =

= =

= =

∫ ∫
∫ ∫

 (7) 

In a similar manner, we calculate  

 

( ) ( ) ( )

( )( )( ) ( )( )
( )( ) ( )( )

**

* *

2* *

, , ,

d , d ,

d , d , .

A Av w Av Aw Aw Av

E w Av Av E w

E v w E v w

λ λ λ λ

λ λ λ λ λ λ

= =

= =

= =

∫ ∫

∫ ∫

 (8) 

Comparing the two results (7) and (8), it follows that ( ) ( )* *, ,AA v w A Av w= . 
Since ,v w  are arbitrary, this implies that * *AA A A= , so A  is a normal oper-
ator. ◻ 
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Theorem 4 is related to a theorem which is just stated and not proved here: If 
E  is a spectral measure and if f B∈ , then there exists a unique operator A  
such that ( ) ( ) ( )( ), d ,Ax y f y E x yλ= ∫  for every pair of vectors x  and y  in 
the space. 

4. Operators and Spectra 

Let us define what is meant by the spectrum of an operator. To get to the form of 
the theorem we want to prove, it is necessary to generalize the concept of eigen-
value. This often comes up very often in the study of both finite dimensional vec-
tor spaces as well as infinite. 

Definition 8. The spectrum of an operator A  is defined to be the set of num-
bers λ∈  such that the operator A Iλ−  is not invertible. ◻ 

In order to use the definition, a characterization of invertible and non-invertible 
operators is required, and leads into the following theorem. 

Theorem 5. An operator A  on H  is invertible if the image of A  is dense 
in H  and as well there exists an 0α >  such that for all v H∈ , A  is bounded 
from below  

 .Av vα>  (9) 

Proof. First suppose that A  is invertible. The image of A  is all of H , which 
is dense in H . Let us define 

11Aα
−−= , and so for all v H∈ ,  

 1 1 .v A Av A Av− −= ≤  

Dividing this on both sides by 1A−  gives Av vα≥ . 
Suppose the range of A  is dense in H  and there exists a real number 0α >  

such that Av vα≥ . It has to be shown that the range of A  is H . It suffices 
to show that it is closed. Suppose that the set { }nv  is a Cauchy sequence in the 
range of A . For all n , choose { }nw  such that n nAw v= , then since A  is lin-
ear,  

 ( ) ,n m n m n m n mv w Aw Aw A w w w wα− = − = − ≥ −  

by hypothesis, dividing by α ,  

 1 .n m n mw w v v
α

− ≤ −  

This result implies that { }nw  is a Cauchy sequence whenever { }nv  is. Hence, 
{ }nw  must converge to a w H∈ . By continuity, nv  has to approach  Aw , 
which implies the range is closed. 

To prove that A  is injective, notice that if 1 2Av Av= , then 

1 2 1 20 Av Av v vα= − ≥ − . From this it follows that 1 2v v= , and so A  is bijec-
tive. The inverse operator 1A−  is also linear, so it suffices to show that 1A−  is a 
bounded operator. This is just a consequence of the fact that  

 1 ,w Av v A vα α −= ≥ =  

which implies that  
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 1 1 .A w wα− −≤  

◻ 
Proposition 3. If A  is any operator which satisfies the condition 1A I− < , 

then A  is invertible. 
Proof. Set 0 1 1A Iα< = − − <  . Then for any v H∈ , we find  

 
( ) ( )

( )1 .

Av v v Av v I A v

v Av v I A v vα

= − − = − −

≥ − − ≥ − − =
 

This implies that A  is bounded from below. 
Let A  be the range of operator A  in H . Define the constant  

inf
A

v H
w

v w∈
∈

= −


 . It suffices to prove that 0= . Suppose this is not the case. 
Since 0 1 1α< − < , there exists a v H∈  and Aw∈  such that  

 .
1

v w
α

− <
−
  (10) 

It follows then that since we have taken 1 A Iα = − − , using (10), we estimate 
that  

 ( ) ( )1 .v w A v w A I v w v wα≤ − − − ≤ − ⋅ − = − ⋅ − <   (11) 

Since   is assumed to be nonzero, a contradiction has been obtained. ◻ 
Theorem 6. If A  is an operator then ( )Λ A  is compact and if ( )Λ Aλ∈ , 

then Aλ ≤ . 
Proof. It is proved that ( )Λ A  is closed so the first statement follows from the 

second. Suppose 0λ  is not an element of ( )Λ A . Let 0δ >  be such that 

0A Iδ λ< −  and that 0λ λ δ− < . Then we have  

 
( ) ( ) ( ) ( ) ( )( )1 1

0 0 0

1
0 0

|

1.

I A I A I A I A A I

A I

λ λ λ λ λ

λ λ λ

− −

−

− − − = − − − −

≤ − ⋅ − <
 

By Proposition 3, the operator A Iλ−  is invertible in a ball of radius δ  
about 0λ . It may be concluded that ( )\Λ A  is open. 

Now suppose that Aλ >  so we have 1A λ <  which, after adding and 
subtracting I  is equivalent to ( ) 1I I A λ− − < . This implies that I A λ−  is 
invertible. Multiply this operator by the scalar λ  and it follows that I Aλ −  is 
invertible and λ  is not an element of ( )Λ A . ◻ 

Theorem 7. If E  is a compact spectral measure and ( )dA Eλ λ= ∫ , then 
( ) ( )Λ ΛE A= . 
Proof. Suppose that ( )0 \Λ Eλ ∈ , so ( )Λ E  is open by definition. Hence 

there exists 0δ >  such that ( ) ( )0 , \ΛB B Eλ δ= ⊂   with ( ) 0E B = . Since 
E  is a spectral measure, ( ) 1E =  and so for any v H∈ ,  

 
( )( ) ( )( )

( )( )

2 2 2
0 0 0/

22 2
/

d , d ,

d , .
B

B

Av v E v v E v v

E v v v

λ λ λ λ λ λ λ

δ λ δ

− = − = −

≥ =

∫ ∫
∫
 



 

Consequently, the operator 0A Iλ−  is bounded from below. 
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It remains to prove that the image of the operator 0 0A A Iλ= −  is dense in H . 
Suppose that 0A  is any normal operator which is bounded from below and has 
range 

0AR . It suffices to show that 
0

0AR⊥ = . Suppose 
0AR⊥  is nonempty set, so 

there is a w H∈  such that 
0Aw ⊥∈ . Then for all v H∈ , it follows that 

( )0 , 0A v w =  and hence  

 ( ) ( )*
0 00 , , .A v w v A w= =  

This implies that *
0 0A w = . Moreover, since operator 0A  is bounded below, 

there exists 0α >  such that  

 *
0 00 .A w A w wα= = ≥  

This means 0w = , hence the operator 0A Iλ−  is invertible so ( )0 Λ Aλ ∉  
and ( ) ( )Λ ΛA E⊂ . 

Suppose now that ( )0 Λ Eλ ∈ . Choose a 0δ >  such that ( )( )0 , 0E B λ δ ≠ . 
For any ( )v E B∈ ,  

 ( )( )2 2 22
0 0 d , .

B
Av v E v v vλ λ λ λ δ− = − ≤ ⋅∫  

However, δ  is arbitrary, so 0A Iλ−  is not bounded from below. Hence it 
cannot be invertible, which means ( )Λ Aλ∈ . It follows that ( ) ( )Λ ΛE A⊂ . 
Combining these two results, ( ) ( )Λ ΛA E⊂  and ( ) ( )Λ ΛE A⊂ , it is con-
cluded that ( ) ( )Λ ΛE A= . ◻ 

5. Spectral Theorem 

Let ( )C X  be the set of complex-valued continuous functions on X  and 
( )0C X  the subset of ( )C X  of functions which approach zero at infinity. A 

spectral theorem is now developed from what has been proved so far. In the pro-
cess, the Stone-Weierstrass and Riesz theorems are used. 

Theorem 8. Let A  be a Hermitean operator so *A A= . Then there exists a 
spectral measure E  such that for all ,v w H∈ .  

 ( ) ( ) ( )( )Λ
, d , .

A
Av w E v wλ λ= ∫  (12) 

Proof. Let v  and w  be two fixed vectors in H  and let p  be a given pol-
ynomial which is used to define a functional ϑ ,  

 ( ) ( )( ), .p p A v wϑ =  (13) 

This functional is bounded above,  

 ( ) ( )( ), ,p p A v w v wϑ ξ= ≤ ⋅  

where ( ) ( )Λsup A pλξ λ∈= . Since ( )Λ A  is compact, the Stone-Weierstrass the-
orem can be used to show these polynomials are dense in ( )( )ΛC A . Therefore, 
ϑ  defines a bounded linear functional on all of ( )( ) ( )( )0Λ ΛC A C A= . Hence 
there exists a unique complex measure ,v wµ  such that, by the Riesz theorem,  

 ( )( ) ( ) ( ) ( ),, d .v wp A v w p λ µ λ= ∫  (14) 

Take a Borel set B  and use it to define ( ) ( ) ( ),,B v wv w Bµ µ= , so Bµ  is a 
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bounded symmetric bilinear form. By the Riesz lemma, there exists a unique Her-
mitean operator ( )E B  such that  

 ( ) ( )( ), , .B v w E B v wµ =  (15) 

So from (14), we have  

 ( )( ) ( ) ( ) ( ) ( )( ), d , d , .Bp A v w p v w p E B v wλ µ λ= =∫ ∫  (16) 

Now let ( )ΛB A=  and set ( ) 1p λ =  in (16),  

 ( ) ( )( )( ), d Λ , .v w E A v w= ∫  

This implies that ( )( )Λ 1E A = . Next set ( )p λ λ=  and substitute it into (16) 
to obtain the important result valid for all ,v w H∈   

 ( )( ) ( )d , , .E B v w Av wλ =∫  (17) 

This can be expressed in an equivalent way,  

 ( )( ) ( )d , , .E v w Av wλ λ =∫  (18) 

It is sufficient to check that E  is projection valued so it can be said to be a 
spectral measure. It is known that E  is Hermitian, so it suffices to verify that it 
is an idempotent operator. To this end, let p  and q  be arbitrary polynomials 
and define a measure ν  as  

 ( ) ( ) ( )( )d , .
B

B p E v wν λ λ= ∫  (19) 

Then based on the construction of E  it follows that  

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

d d , ,

, ,

d , .

q q p E v w q A p A v w

p A q A v w q A v p A w

q E v p A w

λ ν λ λ λ λ

λ λ

= =

= =

=

∫ ∫

∫

 

Since q  was chosen arbitrarily, the Stone-Weierstrass theorem and combined 
with the fact that compactly supported continuous functions are dense in 1L , re-
placing q  by the characteristic function Bχ , leads to the conclusion that for all 
Borel sets B ,  

 ( ) ( ) ( )( ) ( ) ( ) ( )( )d , , .B p E v w B E B v p A wχ λ λ λ ν= =∫  

The Stone-Weierstrass theorem can be employed once again, but with respect 
to p . So using the fact E  is idempotent, it follows that  

 
( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

2, d , d ,

, , .
B BE B v w E v w E v w

E B v E B w E B v w

χ λ λ χ λ λ= =

= =

∫ ∫  

Since ,v w  are arbitrary elements of H , result (12) of the theorem follows. ◻ 

6. Conclusions 

The spectral theorem has become a major part of functional analysis and not with-
out reason, as it has many applications in science such as in quantum mechanics. 
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It comes in different versions depending on such things as compactness of the 
operator and dimension of the space. Some introductory theorems from func-
tional analysis have been proved related to functional, projectors, adjoints and 
spectra. Some new proofs have been given concerning spectral measure and spec-
tra which results in the second last section in a proof of a particular form of a 
spectral theorem. 
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