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Abstract 
The application of artificial intelligence in stock price forecasting is an im-
portant area of research at the intersection of finance and computer science, 
with machine learning techniques aimed at predicting future price movements, 
seeking consistent and profitable financial outcomes. However, due to the vol-
atile nature of financial markets, generating predictions regarding an equity’s 
future performance is challenging due to the complex and diverse factors that 
influence stock price dynamics, particularly concerning intraday movements. 
Prior research primarily focuses on hyperparameter optimization, feature en-
gineering, and hybridization, often overlooking fundamental modifications to 
model and data architecture. Altering model and data architecture during 
model creation can significantly enhance model performance under real-time 
market conditions, to a greater extent than the aforementioned methods. Time-
series forecasting in equity prices consists of two dimensions: magnitude and 
direction. Current algorithms used for stock price prediction have reduced ef-
ficiency as they attempt to forecast both dimensions with a single model. This 
paper introduces the Multi-forest model, a novel approach to stock price pre-
diction that implements a bilayer machine learning algorithm combining se-
quential binary classification processes and regression processes to increase 
prediction accuracy. Although the classification process disrupts the continuity 
of the time-series data, the regressor effectively generates valid predictions, dis-
pelling notions that a complete time-series is required for accurate predictions. 
The Multi-forest Trading Algorithm (MTA) demonstrates effectiveness during 
temporal deployments, providing success rates of 93.4%, 94.1%, and 84.0% for 
April 2024, June 2024, and October 2024, respectively, months differing greatly 
in volatility and overall performance. When compared to models currently im-
plemented in stock price prediction, the MTA outperformed all by a minimum 
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margin of 15%, providing consistent results and exhibiting cautionary behavior 
when faced with volatile market conditions. Regarding profitability, the algo-
rithm produced profit factors of 28.8, 31.0, and 15.0 for each respective month 
in the temporal deployments, indicating a projected profitability between 5 - 7 
times greater than that of current algorithms. 
 

Keywords 
Stock Price Prediction, Machine Learning, Time-Series Forecasting, Binary 
Classification, Disrupted Time-Series Data 

 

1. Introduction and Background 

Time-series forecasting using machine learning techniques has applications not 
only in equity price prediction but in other financial markets. However, for re-
search purposes, the stock market is a viable starting point due to its high trading 
volume, volatility, and speculation compared to other financial markets. Machine 
learning models commonly used in stock price prediction include the Long Short-
Term Memory (LSTM) network, the Support Vector Machine (SVM) model, and 
the K-Nearest Neighbors (KNN) model. Although effective in training and test-
ing, these models are less efficient in real-time execution, primarily due to their 
reliance on a single model to predict both dimensions of price movement. Recent 
studies have aimed to improve these models through surface-level techniques, 
which marginally improve model performance. Hybridization between machine 
learning models is a frequently used optimization technique, with the LSTM-
ARIMA model (Kashif & Ślepaczuk, 2024) being a notable example applied to 
stock price prediction. As evaluated by S. Kulshreshtha and Vijayalakhsmi A., the 
LSTM-ARIMA hybrid algorithm (Kulshreshtha & Vijayalakshmi, 2020) outper-
forms baseline models in effectiveness. However, the model demonstrates a Mean 
Absolute Percentage Error (MAPE) of 2.8% and requires 10 years of historical 
price data to generate predictions. Therefore, for intraday price movements, such 
models may not accurately predict future closing prices and are unsuitable for 
integration with trading algorithms. Despite its limitations, this hybrid model ap-
proach outperforms standalone models. A study by Prashant Pilla and Raj Me-
konen predicting S&P 500 Index (S&P Dow Jones Indices, n.d.) prices using a 
standalone LSTM network (Pilla & Mekonen, 2025) reports a MAPE of 6.4%. Alt-
hough the numerical metric is not explicitly provided in the paper, the MAPE is 
approximated based on the Mean Absolute Error (MAE) and the index’s average 
valuation during the prediction period (2015-2019). Another study by H. Y. Kim 
and C. H. Won integrates a Generalized Autoregressive Conditional Heteroske-
dasticity (GARCH) model and an LSTM network to predict stock price volatility 
(Kim & Won, 2018). The logic behind this combination is that the GARCH model 
accurately captures the statistical properties of stock returns while the LSTM net-
work incorporates these statistics as well as historical price data to generate pre-
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dictions. The hybrid model, named GEW-LSTM, produced a Mean Absolute Er-
ror (MAE) of 0.0107 when predicting future volatility of the KOSPI 200 Index 
(Korea Exchange, n.d.), 37.2% less than the MAE produced by the E-DFN (Kim 
& Won, 2018) model, the best-performing model at the time. The model also pro-
duced a Heteroscedasticity Adjusted Mean Absolute Error (HMAE) and Hetero-
scedasticity Adjusted Mean Squared Error (HMSE) which are 24.8% and 48.0% 
lower than those of that produced by the E-DFN model, respectively. Hybrid 
models exhibit greater predictive power than baseline models, and the evidence 
provided by both prior studies was the catalyst for this study’s exploration of hy-
bridization and bilayer algorithms. 

2. Methods 
2.1. Software Architecture 

 
Figure 1. Algorithm workflow for the MTA implementing a series of binary classification and en-
semble regression 1) A depiction of training and testing processes involved in model creation; 2) An 
outline of prediction processes in the algorithm as well as its usage of errors generated in defining 
bounds; 3) The rules governing trade signal generation. 

 
The Random Forest Regressor (RFR) and the Random Forest Classifier (RFC) are 
well-suited for daily equity price prediction due to their ability to: a) handle non-
linearity in feature variables and b) mitigate overfitting through ensemble deci-
sion trees. The Multi-forest model integrates a combination of both a Random 
Forest Classifier and a Random Forest Regressor. After training, the Random For-
est Classifier categorizes each trading session based on its 09:30 AM Open price 
and 09:30 AM Close (10:30 AM Open) price as either a good or bad session. By 
supplying the classifier with the 09:30 AM Open price and 09:30 AM Close (10:30 
AM Open) price of the current session, the model predicts whether the session 
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will be good or bad. The classified sessions are then separated into two datasets 
each serving as the respective training/testing dataset for its corresponding regres-
sion model. Specifically, the Good Sessions regressor trains and tests on the Good 
Sessions dataset, and the Bad Sessions regressor utilizes the Bad Sessions dataset. 
Following the classifier’s prediction, the scaled and transformed feature variables 
are provided to the corresponding to generate the final closing price prediction. If 
the model predicts the current session to be a good session, then the Good Ses-
sions regression model is employed to predict the closing price of the next good 
session, which it treats as the current session. If the model classifies the current 
session as a bad session, the Bad Sessions regression model is applied to predict 
the closing price of the next bad session. A detailed workflow map of the Multi-
forest model architecture appears in Figure 1 for reference. 

2.2. Model Training/Testing Dataset 

The Multi-forest model trains on one year of historical price data for the security 
being evaluated. For each execution, two datasets are imported via the YFinance 
API (Roussi, 2018): one containing hourly price data and the other containing 
daily price data. The daily price dataset includes a security’s Open and Close prices 
for each trading session, while the hourly dataset captures trading data at hourly 
intervals beginning at the market open of 14:30 PM GMT (09:30 AM EST). The 
hourly dataset filters for the 14:30 PM GMT entry, collecting the session’s 09:30 
AM EST Open price and the 10:30 AM EST Open price of the security. In both 
datasets, the High, Low, and Volume columns are omitted since they do not con-
tribute to the model’s training or predictions. After filtering, the data is divided, 
with 90% used for training purposes (225 sessions), and 10% for testing purposes 
(25 sessions). The securities used to evaluate the MTA are all constituents of the 
Standard & Poor’s 500 (S&P 500) Index. For each security in the index, price data 
is imported, filtered, and transformed similar to the Multi-forest model. 

2.3. Data Transformation 

The imported price data undergoes transformation for classifier training by com-
paring the 4:00 PM EST closing price with the 9:30 AM EST opening price for 
each session in the dataset. Trading sessions are classified as good sessions if the 
closing price exceeds the opening price and as bad sessions if the closing price falls 
below the opening price. The data is then split into a 90% - 10% distribution for 
training and testing purposes, respectively, before being scaled for processing by 
the classifier and the regressor. 

2.4. Stationarity 

During real-time implementation of the Multi-forest model, the initial version, 
which forecasts an equity’s closing price, was effective for a substantial majority 
of equities in the S&P 500 but generated anomalous predictions for a small subset 
of securities. Identifying these anomalous errors within the prediction dataset is 
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straightforward, as the predicted price range deviates from the actual price by a 
substantial percentage that is uncommon during intraday price movements. How-
ever, when implementing the Multi-forest model in real-time scenarios or inte-
grating it into a trading algorithm, consistency in predictions is prioritized. A po-
tential hypothesis regarding these anomalous predictions is the influence of non-
stationary data on the regressor’s performance, as regression models typically re-
quire stationary data to generate accurate predictions. 

Stock price data is inherently non-stationary due to several factors including: a) 
long-term directional trends affecting its price movements, b) seasonality in price 
data, and c) changes in volatility. The non-stationarity of the data is further exac-
erbated when divided into separate datasets, as periods with continuous sequences 
of good or bad sessions are entirely placed into one dataset, generating gaps in the 
other dataset, thus disrupting the time-series data provided to both models. The 
differences variation of the Multi-forest model mitigates the effects of non-sta-
tionarity by training, testing, and predicting upon the difference factor between 
the 09:30 AM Open price and the 04:00 PM Close price, rather than the actual 
closing price. The differences variation is implemented by generating interaction 
terms within the dataset. A new column, variable difference, is generated by de-
termining the difference factor between the 09:30 AM and 10:30 AM Open prices, 
serving as the feature variable for the model. Another column, target difference, 
is calculated as the difference factor between the 09:30 AM Open price and 04:00 
PM Close price, serving as the target variable. This approach reduces non-station-
arity in the datasets by removing trends, seasonality, and stabilizing variance. 

2.5. Trading Algorithm Logic 

The logic governing the MTA is as follows: subsequent to the Multi-forest model 
predicting the current session’s closing price, the Mean Absolute Deviation (MAD) 
is added to and subtracted from the predicted price to determine the predicted 
upper error bound and lower error bounds. The errors generated by the RFR dur-
ing testing follow a normal distribution, a trend consistent across all predicted 
securities. Figure 2 provides a Q-Q plot visualization for a randomly selected sam-
ple of four securities from the S&P 500 index, illustrating how the errors align 
with a theoretical normal distribution. 

In all four cases, the distribution of data points across the theoretical quantile 
lines in the Q-Q plot indicates that the error data follows a normal distribution. 
Increased spread from the reference line at the extremes is due to a few extreme 
data points recorded in the error data; however, the majority of error data pro-
duced during predictions adheres to a normal distribution. The adherence of the 
model’s error data to a standard distribution demonstrates stability in its perfor-
mance and allows for the implementation of the empirical rule (Walpole, Myers, 
Myers, & Ye, 2011). While the empirical rule serves as the basis for the MTA logic, 
the algorithm utilizes the MAD rather than Standard Deviation (STD) due to its 
relative robustness during temporal deployments when evaluating the upper and 
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lower bounds for the predicted closing price. For a normal distribution of data 
points, the typical relationship between MAD and STD is a 4:5 ratio (Kenney & 
Keeping, 1962). As a result, using MAD as the basis of the algorithm generates 
bounds of reduced deviation relative to the predicted price, while still yielding 
more favorable trade signal datasets than those based on STD. The algorithm has 
three variations based on the number of MAD multiples used in predicted error 
bound calculation: MAD_1 (1 multiple of the MAD determines predicted error 
bounds), MAD_2 (2 multiples of the MAD determine predicted error bounds), 
and MAD_3 (3 multiples of the MAD determine predicted error bounds). When 
implementing the three variations of the algorithm in real-time execution, it was 
observed that increasing the number of MAD multiples led to a decrease in the 
number of signals generated by the algorithm. For example, in real-time imple-
mentation, the MAD_1 variation typically generates over 150 signals per session, 
covering approximately 30% - 40% of the S&P 500 Index. The MAD_2 variation, 
however, typically generates fewer than 40 signals per session (8% - 10% of the 
index), while the MAD_3 variation generates approximately 10 signals per session 
(2% - 3% of the index). Increasing the number of multiples of the MAD used to 
determine error bounds filters out lower-confidence signals, leaving only signals 
that best represent the algorithm’s confidence in their potential profitability. For 
this reason, the MAD_3 variation was selected for the study, as it most accurately 
reflected the algorithm’s confidence while still providing sufficient monthly data 
for research purposes. 
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Figure 2. A layout of four Q-Q plot graphs of stocks [NDAQ:MSFT; NYSE:ORCL; 
NDAQ:MAR; NYSE:GIS], each depicting a normal distribution observed in error data, the 
basis of the trading algorithm; Errors were recalculated as percentage error to address dis-
tortion in the Q-Q plot due to long-term directional price movement frequently observed 
in equities. 

3. Results and Discussion 
3.1. Temporal Deployment of the Trading Algorithm 

The differences variation of the MTA was deployed across three prior trading 
months to evaluate its performance over a substantial timeframe. The selected 
trading windows were April 2024, June 2024, and October 2024. The month of 
April 2024 represented a downward market with the S&P 500 index declining 
4.0% overall. In contrast, the month of June 2024 represented an advancing mar-
ket with the S&P 500 index increasing by 3.6% overall. The month of October 
2024, however, represented a neutral market, declining only 0.9% over the month, 
the lowest absolute monthly percentage change observed in the 2024 fiscal year. 
The contrasting market performance during these months, alongside data impor-
tation limitations, informed the selection of these trading periods for evaluation. 
Figure 3(A) below presents the overall performance statistics for signals gener-
ated by the differences variation of the algorithm. 

The CBOE Volatility Index (VIX) (Chicago Board Options Exchange, n.d.) av-
eraged 16.1 per day in April 2024, reflecting an increase of 17.7% from the previ-
ous month’s average volatility of 13.7. In June 2024, the average volatility was 12.7, 
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marking the least volatile month of the 2024 financial year. Although the S&P 500 
Index experienced the lowest cumulative change in October 2024, the market ex-
perienced a significant increase in volatility, with the average daily VIX being 19.4 
for the month. Thus, the varying number of signals generated by the algorithm 
can be attributed to market fluctuations and overall volatility levels. During the 
higher-volatility months of April 2024 and October 2024, the model recommended 
more trades compared to June 2024, a month of low volatility in the markets. The 
success rates for trade recommendations during these periods were 73.5% (April 
2024), 71.4% (June 2024), and 66.3% (October 2024). This reflects an approximate 
70% success rate for potential future trades using the differences variation of the 
algorithm. Collected performance statistics for the original version of the MTA 
are displayed in Figure 3(B) below. The original version of the MTA, which pre-
dicts closing prices rather than difference factors, was deployed across the same 
three timeframes: April 2024, June 2024, and October 2024. The success rates of 
trade recommendations during these periods were 93.4% (April 2024), 94.1% 
(June 2024), and 84.0% (October 2024). This models an approximate 90% success 
rate for potential future trades by the original version of the algorithm. Therefore, 
this version of the Multi-forest algorithm is better suited for real-time application 
than the differences variation due to its higher accuracy rate. 

 

  
Figure 3. (A) A table displaying performance statistics of the differences variation from the tem-
poral deployment across the three months used in the study; (B) A display of collected performance 
statistics of the original version of the algorithm for the same period. 

 
Based on deployment results, the differences variation of the model generated 

an average of 8.25 trade signals per trading session and the original version of the 
model presented 15.22 trade signals per trading session. Combining these aver-
ages as well as the success rates from the evaluation, the algorithm predicts an 
average of 5.78 winning trades and 2.48 losing trades per trading session for the 
differences variation, compared to an average of 13.70 winning trades and 1.52 
losing trades per trading session for the original algorithm. When accounting for 
outlier predictions, typically limited to two signals per trading session, the original 
algorithm remains more profitable than the variation. The inclusion of these two 
trades as losses adjusts the averages to 13.70 winning and 3.52 losing trades per 
session. Considering the most unfavorable scenario in which all outlier predic-
tions are losses, the adjusted win rate for the original version is 79.6%, still exceed-
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ing the success rate of the differences variation, and therefore serves as the basis 
for continued research. 

3.2. Comparative Performance Analysis 

 
                      (A) 

 
(B) 

Figure 4. (A) A visualization of results of the samples evaluated during temporal deployments 
for comparison regression models relative to the results of the MTA. (B) A visualization of the 
results of samples evaluated during temporal deployments for comparison neural network 
models in relation to the results of the MTA. 

 
The Multi-forest model was benchmarked against standalone regression models 
and artificial neural networks to evaluate its performance relative to other models 
frequently utilized in time-series forecasting. However, the Mean Absolute Error 
(MAE) produced by all comparison models for each predicted equity were of sub-
stantial nature. Consequently, the 10:30 AM price rarely lies outside the defined 
interval given by the predicted error bounds. Thus, the previous trading algorithm 
logic implemented in the MTA logic was ineffective. All evaluations provided in 
this paper are not on the basis of tuned hyperparameters, but rather on the default 
hyperparameter configuration provided during model creation. It was also ob-
served that hyperparameter tuning did not significantly impact the Multi-forest 
model performance during temporal deployments. Primarily, the predictive per-
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formance of the comparison models in comparison to the Multi-forest algorithm 
was at question, and therefore the algorithm logic for each comparison model was 
reduced in complexity as a result. Specifically, the upper and lower predicted error 
bounds were excluded in the algorithm structure, and the predicted price was di-
rectly compared to the 10:30 AM price. In cases where the predicted price was 
greater than the 10:30 AM price, a buy signal was issued, and a sell signal was 
issued otherwise. As a result, the algorithm generates trade signals for all stocks in 
the index, omitting the selection process used by the Multi-forest algorithm. Fig-
ure 4 presents the success rates for each comparison model relative to the MTA 
when deployed on three randomly chosen trading sessions from each of the 
months of April 2024, June 2024, and October 2024—the same time periods used 
in the study. The chosen sessions were April 3, April 17, and April 24 (April 2024); 
June 12, June 21, and June 27 (June 2024); and October 4, October 14, and October 
29 (October 2024). Due to the architectural constraints of the neural network models 
implemented in the study, the usage of both the 09:30 AM Open price and the 10:30 
AM Open price as feature variables was not feasible. Therefore, predictions for the 
neural network models were generated solely based on the 09:30 AM Open price. 

The Multi-forest Algorithm is a more effective approach for stock price predic-
tion than all evaluated models as the MTA outperforms all comparison models 
when evaluated based on success rate. The algorithm is also successful in adapting 
to the effects of consistent volatility, producing fewer signals when faced with 
higher volatility markets. During October 2024, a month of higher volatility in 
financial markets, the algorithm generated only 64 signals for the sample days 
evaluated. This contrasts significantly with the number of trades generated by the 
algorithm for the sample days evaluated from June 2024, a month of low volatility 
in financial markets, as there were 220 signals generated for this period. 

4. Conclusion 

This paper introduces the Multi-forest Model, a bilayer machine learning algo-
rithm that integrates binary classification and regression processes to predict in-
traday price movements for equities. Although the algorithm’s classification tech-
nique disrupts the continuity of time-series data, it is more effective than other 
regression and neural network models that rely on a complete time-series. While 
prior research focuses on hyperparameter optimization, feature engineering, and 
hybridization to improve prediction accuracy, this study explores a classification–
before–regression architecture as a method for generating more accurate predic-
tions. The classifier predicts the direction of intraday movement, while the regres-
sor predicts the magnitude of movement. The Multi-forest model’s performance 
was evaluated against six machine learning models commonly used for stock price 
prediction: the Random Forest Regressor (RFR), the Gradient Boosting Regressor 
(GBR), the Bagging Regressor (BR), the LSTM network, the Autoregressive Inte-
grated Moving Average (ARIMA) model, and the Convolutional Neural Network 
(CNN) model. Results from temporal deployments demonstrate that the Multi-
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forest model is more efficient and profitable in comparison to many algorithms 
currently in use. It should be noted that, in its current state, the Multi-forest model 
cannot be directly integrated with trading mechanisms for real-time order execu-
tions, as the current algorithm lacks API integrations with major trading plat-
forms. The results presented in this paper are based on a specific view of financial 
markets, emphasizing the model’s applicability solely to the S&P 500 Index. How-
ever, the Multi-forest model’s usability extends beyond the stock market, encom-
passing financial instruments such as currency pairs, exchange-traded funds 
(ETFs), and commodities. The Multi-forest model is not recommended for deriv-
ative instruments such as futures contracts, options contracts, and swaps due to 
time-based factors such as theta-decay and extreme levels of volatility frequently 
observed in these instruments. In conclusion, the Multi-forest algorithm is an ef-
fective approach to stock price prediction, accurately predicting the future direc-
tion of trading signals for the remainder of the session in many cases, delivering 
desirable and consistent returns. 

5. Extensions 
5.1. Weightage of Trades 

In its current state, the MTA selects stocks from the S&P 500 Index for the current 
trading session that it predicts will make a definitive shift in the predicted direction. 
However, the trading algorithm does not prioritize trade signals, assigning equal 
weighting to each security. To optimize this aspect of the algorithm, a numerical 
index score can be calculated at the time of prediction, allowing the algorithm to 
assign greater or lesser weighting to specific signals. The index score is calculated by 
evaluating the geometric mean of the predicted minimum profit percentage (MPP) 
and the predicted expected profit percentage (EPP). The portion of the daily trading 
volume allocated to each security in the portfolio is calculated by totaling the index 
scores for all securities and calculating the percentage composition of the total for 
the equity in question. Figure 5 illustrates an example containing weighted, ranked 
predictions from the trading session of January 28th, 2025. 

 

 
Figure 5. Captured output from model execution in which the index score of all trade signals are calculated 
for weightage purposes. 

 
As shown in Figure 5, the algorithm evaluates the geometric mean of each sig-

nal’s projected minimum profit percentage and its expected profit percentage. Do-
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ing so categorizes trades with higher projected profitability as favorable choices 
for potential trades. The index score serves as a mechanism to evaluate the algo-
rithm’s confidence in the potential returns of a trade. The system calculates the 
index score for each trade signal and, using the data from Jan 28th, 2025 as an 
example, allocates the portfolio trading volume as shown in Figure 6. 

 

 
Figure 6. Captured output from weightage of trades execution in which the index scores 
for all signals were totaled and each trade percentage was in direct proportion to the signal’s 
index score relative to other signals predicted. 

5.2. Profit Thresholds and Drawdown Control 

The current version of the trading algorithm does not execute real-time orders but 
predicts the stock’s daily performance direction and closing price, with the latter 
based on the prediction category of the former. Therefore, when evaluating the 
algorithm’s performance from a monetary perspective, implementing profit thresh-
olds and drawdown control would enhance the model. Ideally, for a buy signal, 
the profit threshold would align with the algorithm’s upper error bound, and the 
drawdown control point would be set at one multiple of the MAD below the lower 
error bound. 

5.3. Parallelization for Runtime Optimization 

During real-time evaluations, the algorithm required significant runtime to gen-
erate predictions, taking an average of 11 minutes to produce trade signals for the 
current session. Due to second-by-second price fluctuations and the dynamic na-
ture of markets, runtime must be optimized and reduced to secure trades closest 
to the 10:30 AM price of the equity. Parallelization is a runtime optimization tech-
nique that enables the algorithm to fully utilize resources of the host machine. 
Process-based parallelization, implemented using the built-in multiprocessing li-
brary, distributes processes across the CPU cores of the host machine, maximizing 
computational resources to reduce runtime. Though less effective for this use case 
than process-based parallelization, thread-based parallelization uses the threading 
module to optimize computational resources. The Global Interpreter Lock (GIL) 
(McMullin & Zeitz, 2019) is the primary hindrance to implementing thread-based 
parallelization in the algorithm. Only one thread can have possession of the GIL 
at a given time, limiting the potential of multiple cores available and is therefore 
an unsuitable approach for CPU-intensive tasks as required by the algorithm. 

Abbreviations, Terms & Definition(s) 

Minimum Profit Percentage (MPP): The percentage difference between the 10:30 
AM price of a security and either the lower or upper predicted bound, based on 
the directional signal given by the Multi-forest model. 
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Expected Profit Percentage (EPP): The percentage difference between the 10:30 
AM price of a security and the actual predicted price provided by the Multi-forest 
model. 

Standard & Poor’s 500 Index (S&P 500): An abbreviation for the Standard & 
Poor’s 500 Index, a collection of the top 500 largest corporations traded on stock 
exchanges in the United States, ranked by market capitalization. 

Global Interpreter Lock (GIL): A mechanism used by the CPython interpreter 
to ensure thread safety by permitting only one thread to execute Python bytecode 
at a given time.  

1_MAD Variation (MAD_1): A manipulation of the Random Forest Regressor 
error data in which 1 multiple of the Mean Absolute Error (MAD) are both added 
and subtracted from the predicted price to determine the upper and lower error 
bounds of the closing price.  

2_MAD Variation (MAD_2): A manipulation of the Random Forest Regressor 
error data in which 2 multiples of the Mean Absolute Error (MAD) are both added 
and subtracted from the predicted price to determine the upper and lower error 
bounds of the closing price.  

3_MAD Variation (MAD_3): A manipulation of the Random Forest Regressor 
error data in which 3 multiples of the Mean Absolute Error (MAD) are both added 
and subtracted from the predicted price to determine the upper and lower error 
bounds of the closing price.  

Disclaimer 

The results outlined in this paper do not guarantee future outcomes, and the al-
gorithm is presented for academic and educational purposes only. Financial mar-
kets inherently involve volatility and uncertainty that artificial intelligence may 
not detect during training and execution but will nonetheless influence model 
predictions. Therefore, the model may not always be accurate for financial deci-
sion-making. This model does not provide certified financial advice, and individ-
uals and third-parties seeking financial advice should consult a financial advisor. 
The authors affirm that this model is not a substitute for financial advice and are 
not liable for any financial decisions made by individuals or third parties based on 
the model’s prediction or statistics. 

Data Limitations & Availability 

The primary limitation when importing data via the YFinance API is the API re-
striction on hourly data, allowing only two years of prior data to be downloaded 
relative to the present date. While there are no such limitations for daily price data 
importation, only two years of daily price data can be used due to the hourly da-
taset restriction. Counterintuitive to generally conceived notions, providing only 
one year of price data to the model for training and testing was more beneficial 
than providing two years of data when evaluating training and testing metrics. 

One possible explanation is that, due to the dynamic nature of financial mar-
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kets, machine learning models train more accurately when provided only with re-
cent data rather than a mix of recent and marginally outdated data. 

Model Limitations 

The primary limitation of the Multi-forest Trading Algorithm is its inability to de-
tect sudden price shifts, particularly those in relation to earnings reports (Medya, 
Manish, & Jain, 2022). Sudden fluctuations in equity price observed in trading ses-
sions following earnings reports are more pronounced than those observed during 
regular trading sessions. As a result, the algorithm may interpret these irregular 
price movements as indicators of either undervaluation or overvaluation for the 
current session, issuing buy or sell signals accordingly. The algorithm does not 
acknowledge these reports nor considers the outlined results when generating pre-
dictions, and therefore any produced signals may not be representative of any up-
surges in purchase or sale volume throughout the remainder of the session. Con-
sistent volatility, while less detrimental than the sudden volatility following earnings 
reports, also reduces the algorithm’s performance. Performance evaluations for Oc-
tober 2024, for both the original version and the differences variation, show that 
consistent volatility reduces the algorithm’s performance, as the ratio of profitable 
trades to losing trades for both versions is lowest in October 2024. The 2024 Presi-
dential Elections (Securities Industry and Financial Markets Association [SIFMA], 
2024), held on November 6th, increased overall volatility due to tensions over poten-
tial changes in foreign and domestic economic policies. As a result, consistent vola-
tility, though lesser in magnitude than the volatility experienced during earnings 
reports anticipation, is nonetheless detrimental to the algorithm’s performance 
when evaluated across a significant timeframe. 
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Infrastructure Specifications 

Package Dependencies: NumPy (v1.26.4), Pandas (v2.2.2), scikit-learn (v1.6.1), 
yfinance (v0.2.52) CPU Specifications: (2) Intel Xeon single-core vCPUs with hy-
per-threading, 2.20 Ghz, 56 MB cache Platform Specifications: x86_64 Linux OS 
6.1.85+ with glibc 2.3.5 Python Version: 3.11.11. 
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