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Abstract 
Starting from two mutually alternative definitions of Hermite polynomials, we 
derive new relations between these polynomials for arbitrarily stretched argu-
ments. Furthermore, some operational identities with Hermite polynomials 
are derived and proved by complete induction. The main result is a quite gen-
eral integral with an arbitrary Gaussian distribution and the product of two 
Hermite polynomials with general linear arguments which generalize almost 
all known special integrals of such kind contained in the most comprehen-
sive tables of integrals. Furthermore, some multi-dimensional integrals with 
Gaussian distributions are derived. Special representations are developed for 
two-dimensional integrals in complex and complex-conjugate variables which 
are important for the treatment of the phase space of harmonic oscillators.  
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1. Introduction 

Integrals with Gaussian distributions (bell functions) together with Hermite and 
Laguerre polynomials play a great role in different branches of physics, in partic-
ular, in quantum optics, and also multi-dimensional integrals of such kind are 
important. The most comprehensive collections of integrals to our knowledge are 
that of Ryzhik and Gradshteyn [1] (1st ed. Ryzhik, 3rd ed. Gradshteyn, 4th ed. 
revised with participation of Geronimus and Tseitlin) and the 3-volume work of 
Prudnikov, Brychkov and Marichev from which the 2nd volume about Special 
functions [2] is of most interest for us in connection with the present article. To 
an essential part, they rest on the 2-volume set of Integral transforms of Bateman 
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and Erdély (with participation of Magnus, Oberhettinger and Tricomi) from 
which we cite the 2nd volume [3] because it contains a chapter about Orthogonal 
polynomials (Chapter XVI) with integrals of the mentioned kind. Most of the in-
tegrals there with Hermite polynomials ( )Hn x  use them in the elder form 

( )Hen x . Formulae for Hermite polynomials are to find in many works about Spe-
cial functions from which we cite Bateman and Erdélyi [4], Szegö [5], Rainville [6] 
and Bell [7]. 

The basic aim was to calculate a quite general definite integral with a Gaussian 
distribution (bell function) and the product over two Hermite polynomials with 
an arbitrarily stretched and displaced argument. Most of the integrals with Gauss-
ian distributions and products up to two Hermite polynomials in cited works but 
not all can be derived as special cases from this quite general formula which pos-
sesses an interesting structure and which we prove in the present article. Integrals 
with products of more than two Hermite polynomials are up to now, of lower 
interest and are seldom needed in applications since a main branch of using them 
is quantum optics of modes of a harmonic oscillator for which the phase space is 
a two-dimensional one. As preparation, we derive in Section 2 some formulae for 
Hermite polynomials, in particular, a relation between two Hermite polynomials 
with arbitrarily stretched arguments which we did not find in cited works. Similar 
formulae in comparably simple form should be possible, else only for Laguerre 
polynomials for which the Laguerre 2D polynomials are the most appropriate 
form [8]-[10]. For the Hermite polynomials themselves besides the well-known 
Rodrigues-type definition exists an up-to-now little known alternative definition 
[7] which sometimes is of advantage and which we discuss in Section 2 together 
with some other little known relations. Hermite polynomials also play an im-
portant role in operator ordering in quantum theory and this leads to so-called 
operational identities from which we discuss a few basic ones in Section 3. The 
Fourier transformation of Gaussian distributions (Section 4) leads to a favorable 
starting point for the evaluation of integrals with Hermite polynomials (Sections 
4 and 5). Their main categories of special and limiting cases are considered in 
Section 6. In Section 7, we discuss the derivation of an alternative formula for the 
quite general integral of Section 5 in the form of a double sum. In Section 8, we 
discuss a multi-dimensional generalization of Gaussian integrals. In Section 9, we 
discuss a few such two-dimensional integrals. The peculiarity of this case is that 
we can use then a description by a pair of complex-conjugate variables, which is 
applicable to the two-dimensional phase space of a harmonic oscillator. To the 
Appendices, we sent some proofs of formulae with long calculations, in these 
cases, with complete inductions. 

2. Alternative Definition of Hermite Polynomials and Some  
Basic Identities 

Hermite polynomials ( ) ( )H , 0,1,2,n x n =   are usually introduced by the Ro-
drigues-type definition (e.g., [4])  
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In the early nineties, I found independently from others the following alterna-
tive definition of Hermite polynomials  
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and extended it in published form to the whole complex of Hermite 2D and La-
guerre 2D polynomials (see Section 9). Later it was seen that an equivalent relation 
was already derived from a generating function for Hermite polynomials by W. 
W. Bell [7] (pp. 159, 160)1 and after acquaintance with Hong-yi Fan and now a 
friend of mine from China and when we became coauthors of a few common pa-
pers I realized that he used it also in some of his papers. Sometimes, this alterna-
tive definition (2.3) possesses advantages for derivations in comparison with (2.1). 

From the explicit representations of the Hermite polynomials in (2.1) one de-
rives in a simple way the differentiation formula  
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2 !H 2 H H H ,
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j j

n n n n jj

nx n x x x
x n jx− −
∂ ∂

= ⇒ =
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and the recurrence relation  

 ( ) ( ) ( ) ( )1 1H 2 H 2 H 2 H .n n n nx x x n x x x
x+ −
∂ = − = − ∂ 

 (2.5) 

The operators 
x
∂
∂

 and 2x
x
∂

−
∂

 are the lowering and raising operators for 

the indices of Hermite polynomials, respectively. 
The inversion of the alternative definition of Hermite polynomials (2.3) pro-

vides immediately  
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For the Hermite polynomials with the sum of two variables in the argument 

 

 

1After the turn in GDR in 1990 we could privately order and buy books from Western countries. 
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( )Hn x y+  one finds  
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From this formula, one derives for the Hermite polynomials with a stretching 
factor λ  of the variable x  in the argument ( )Hn xλ  
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Interestingly, one can also derive an essentially different formula for ( )Hn xλ  
using the inversion of the alternative definition (2.6) of the Hermite polynomials 
in addition to the explicit definition as follows  
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and using the binomial formula with the result  
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A generalization of this relation is easily obtained by substitutions, first 
x xκ→  and then κλ λ→  and is2 
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In particular, for 1κ =  and 
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2Analogous relations are likely possible for Laguerre polynomials, in the simplest form, for Laguerre 
2D polynomials.  
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and for 1κ =  and 2λ =  
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where the connection to the sometimes defined “modified Hermite polynomials” 
( )Hen x  is added. Thus, the modified Hermite polynomials can be alternatively 

defined by  
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with the orthonormality relations  
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The differentiation of the “modified Hermite polynomials” ( )Hen x  leads to  
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x −
∂

=
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 (2.16) 

and the recurrence relations are  

 ( ) ( ) ( )1 1He He He .n n nx x x n x+ −= −  (2.17) 

The “modified Hermite polynomials” ( )Hen x  are the most reduced form 
within the kinship of Hermite polynomials concerning possible integer factoriza-
tions and factors in the basic relations of differentiation and recurrence relations. 

For the expansion of Hermite polynomials of imaginary argument into that of 
real argument, we set iλ =  in (2.10) and find  
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If 2λ  is an integer (i.e., 2λ ∈ ) then the polynomials ( )Hn
n xλ λ  and 

( )H , 0n
n

xλ λ
λ

  ≠ 
 

, respectively, related to ( )Hn x  possess also integer coeffi-

cients as one can see from (2.10). 

3. Hermite Polynomials and Related Operational Identities 

All identities derived in last section were identities between different represen-
tations of functions with Hermite polynomials. In present section, we derive 
identities between different representations of operators in the form of  

functions of the differential operator 
x
∂
∂

 and variable x  which can be applied  

to arbitrary functions. The background for these formulae is the following general 
operator identity for arbitrary linear operators A  and B  acting onto vectors in 
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a vector space and which may be considered as a precursor to the Baker-Camp-
bell-Hausdorff theorem for Lie groups and is easily to prove (e.g., B. Hall3 [11], p. 
61)  
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If we specify in the theorem (3.1) the operators A  and B  by  
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In the same way, if we specify in the theorem (3.1) the operators A  and B  
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that leads to (2.3). In both special cases, one has to take only the first two non-
vanishing sum terms on the right-hand side of (3.1). 
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3Under the many possible citations which give this identity we choose [11] also for its profound in-
vestigation of the much more difficult genuine Baker-Campbell-Hausdorff theorem. 
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where all powers of the differentiation operators 
x
∂
∂

 stand behind the functions  

of variable x . We call this the normally ordered form of the operators on the left-
hand side. The Formula (3.7) can be proved by complete induction where one has 
to use already known properties of Hermite polynomials derived in Section 2 that 
is presented in Appendix A. Other orderings may also be useful in some cases. 
The identity (3.7) can now be applied to arbitrary functions ( )f x  according to  
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and therefore such forms of identities with differential operators will be called 
operational identities. 

A kind of inversion of the Formula (3.6) is  
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Similarly to (3.6) the right-hand side is the application of an operator to a func-
tion. The operator in front of the function can be normally ordered and one ob-
tains the operational identity  
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Its right-hand side is normally ordered and it can be applied to arbitrary func-
tions. In analogy to the proof of (3.6) given in Appendix A it can also be proved 
by complete induction that is made in Appendix A. 

In most application of the Hermite polynomial in the following considerations 

we use them with a stretched argument. If one substitutes xx
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and, for example, the operational identity (3.7) to the more general form  
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The operational identity (3.10) with this extension takes on the form  
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The sum in round brackets can be evaluated using (2.12) with 
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This operational identity generalizes the identity (3.13) and thus also its special 

case (3.12). To show this, one has to set 1 , 2 1
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applied to (3.17) leads to (3.13). Choosing 1 ,
2
a

a
µ ν= = −  leads to the opera-

tional identity  

 
( ) ( )

0

!H 2 H .
2 ! ! 2

jn n j

n n j
j

x a n x a
a x j n j x

µ−

−
=

∂ ∂    − = −    ∂ − ∂    
∑  (3.19) 

An example for the application of this operational identity leads to the formula  
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( ) ( ) ( )

{ } ( )
( ) ( ) ( ) ( )

0

,

0

1 !
H H H

! !

2 ! !
H H ,

! ! !

j jm

m n m j nj
j

jm n

m j n j
j

m
x x x

j m j x

m n
x x

j m j n j

+ −
=

− −
=

− ∂
=

− ∂

−
=

− −

∑

∑
 (3.21) 

where we used the Formula (2.4) for the derivatives of the Hermite polynomials. 
Some kind of inversion of this relation is (Bateman and Erdélyi [4] Chapter 
10.14.37)  

 ( ) ( )
{ }

( ) ( ) ( )
,

2
0

2 ! !H H H .
! ! !

m n j

m n m n j
j

m nx x x
j m j n j + −

=

=
− −∑  (3.22) 

It is not in simple way to prove by the derived operational identities. Both rela-
tions (3.21) and (3.22) can be proved by complete induction. 

Let us make an addition to the notion “operational identities” which is not di-
rectly connected with Hermite polynomials but which makes it clearer what it 
means. In all of the cited works to orthogonal polynomials [4]-[7]) one finds the 
following (Rodrigues) definition of Legendre polynomials ( )Pn x  (in [5] in the 
more general form for Jacobi polynomials ( ) ( ),Pn xα β , Chapter IV, (4.3.1))  

 ( ) ( )21P 1
2 !

n n

n n nx x
n x

∂
= −

∂
 (3.23) 

This is not fully consequent because on the left-hand side one has a function, 
the polynomial ( )Pn x , and on the right-hand side a differential operator  

( )21 1
2 !

n n

n n x
n x

∂
−

∂
 which has to be applied onto a function to get a new function.  

This operator can be transformed to normal ordering by multiplying it with an 
arbitrary function ( )f x  and with reordering of all the differential operators  

k

kx
∂
∂

 in a way to bring them to the right-hand side of functions of x . 

In the first step of this programme to bring to normal ordering the differential 
operator (3.23) one may use the Leibniz rule of differentiation of a product  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

0

0

1 1 !1 1
! !2 ! 2 !

1 ! 1 1 .
! !2 !

n n k knn n

n n n n k k
k

n k kn
n n

n n k k
k

nx f x x f x
k n kn x n x x

n x x f x
k n kn x x

−

−
=

−

−
=

 ∂ ∂ ∂
− = − −∂ ∂ ∂ 

 ∂ ∂
= − + − ∂ ∂ 

∑

∑
 (3.24) 

In the second step, we apply again the Leibniz rule for differentiation of a prod-
uct, in this case, to the product in big round brackets leading to a double sum  

( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2

0 0

2
,

0

1 1
2 !

1 ! !! ( 1) 1
! ! ! ! ! ! ! 12

! 1 P .
! ! !

n n

n n

n lk kn n k

n k
k l

kn
k k k

n k
k

x f x
n x
x n k n kn x x f x

k n k n k l n l n k l k l x x

n x x f x
k n k n k x

−

= =

−

=

∂
−

∂
 − − ++ + ∂ =    − + − − − + − ∂  

∂
= +

− + ∂

∑ ∑

∑

(3.25) 

The inner sum could be represented by the Jacobi polynomial with lower index 
n  and with integer upper indices ( ),k k− . For Jacobi polynomials with, at least, 
one integer upper index (say the first kα = − , ( k n≤ )), the following transfor-
mation formula is true and easily to prove from the explicit representations (see 
also Szegö [5], Chapter IV, (4.22.2))  

 ( ) ( ) ( ) ( )
( )

( ) ( ) ( ), ,! ! 1P P , , 1,0,1, , ,
! ! 2

k
k k

n n k
n k n xx x k n
n n k

β ββ
β

−
−

− + − = = − + −  
 

 (3.26) 

in addition to the general symmetry  

 ( ) ( ) ( ) ( ) ( ), ,P 1 P ,n
n nx xα β β α= −  (3.27) 

making possible further transformations. Applying (3.26) to (3.25) with kβ =  
one obtains the identity of functions  

 ( ) ( ) ( ) ( ) ( ) ( ),2 2

0

1 11 1 P .
2 ! 2 !

n knn k k k
n kn n k k

k
x f x x x f x

n x k x−
=

∂ ∂
− = −

∂ ∂∑  (3.28) 

This relation becomes the operational identity normally ordered under omis-
sion of ( )f x  on both sides. It seems that this interesting and somehow beautiful 
relation is also provable by complete induction, however, not in simpler way. We 
checked it by computer for some low numbers n . 

Applying relation (3.28) to the function ( ) 1f x =  one has only to take sum 
term to 0k =  as non-vanishing and finds  

 ( ) ( ) ( ) ( )0,021 1 1 P P .
2 !

n n

n nn n x x x
n x

∂
− = ≡

∂
 (3.29) 

If one applies the operational identity (3.28), for example, to the function 
( )f x x=  the first two sum terms are non-vanishing and one obtains  

 ( ) ( ) ( ) ( ) ( ) ( )0,0 1,12 2
1

1 11 P 1 P .
22 !

n n

n nn n x x x x x x
n x −

∂
− = + −

∂
 (3.30) 

Thus it would be more consequent to write the Rodrigues definition of Legen-
dre polynomials instead of the form (3.23) similar to (3.29) to have functions on 
both sides. 
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4. Fourier Transformation of a Normalized Gaussian  
Function and Its Importance for Gaussian Integrals 

We define the Fourier transform ( )f u  of an arbitrary function ( )f x  together 
with its inversion by  

 ( ) ( ) ( ) ( )i i1d e , d e .
2

ux uxf u x f x f x u f u
+∞ +∞−

−∞ ∞−
= =

π∫ ∫   (4.1) 

The Fourier transformation of a one-dimensional normalized Gaussian (distri-
bution or bell) function with parameter a  as it is well known is described by the 
formulae  

( ) ( )
2

22

1 exp , d 1,xf x x f x
aa

+∞

∞−

 
≡ − = 

π  
∫  

 

( )
2

22

22 2 2

22

2 2

1 d exp i

1 1exp d exp i
4 2

exp .
4

xf u x xu
aa

a u ax x u
aa

a u

+∞

∞

−

+∞

∞

−

 
= − − 

π  
     = − − +    π    

 
= − 

 

∫

∫



 (4.2) 

Then an integral over the normalized Gaussian function multiplied by an arbi-
trary function ( )F x  can be calculated by the following special approach  

 

( ) ( )

( )

( )

2 2

2 22 2
0

2

22
0

2 2

2
0

1 1d exp d exp

1 d exp i i

exp ,
4

u

u

u

x xx F x x F u x
a aa a

xx x F u
uaa

a F u
u

+∞ +∞

∞ ∞

+

−

∞

∞

−
=

−
=

=

     − = − +    
 π π    

  ∂  = − −   ∂  π   
  ∂ =   ∂   

∫ ∫

∫  (4.3) 

where was used the displacement operator exp x
u
∂ 

 ∂ 
 of the argument of an ar-

bitrary function ( )F u  according to ( ) ( )exp x F u F u x
u
∂  = + ∂ 

 and the ex-

plicit form (4.2) of the Fourier transform of the Gaussian function with the sub-

stitution iu
u
∂

→
∂

. That this relation is true can be verified by Taylor series ex-

pansion of the function ( )F x  according to  

 

( ) ( )
( ) ( )
( )
( ) ( )
( )

( ) ( ) ( )

2

22 0
2 2

2
220

2 2 2
2

2
0 0

1 d exp  0
!

0 1 d exp
2 !

0 2 ! 1 0 ,
2 ! ! 2 ! 2

n
n

n
m

m

m
m m m

m
m

m m

x xx F
naa

F xx x
m aa

F m a a F
m m m

∞

−
=

∞

−
=

∞ ∞

=

+∞

∞

+∞

∞

=

 
− 

π  
 

= − 
π  

 = = 
 

∑∫

∑ ∫

∑ ∑

 (4.4) 

where the order of integration and summation is changed and where one has  

https://doi.org/10.4236/jmp.2025.165040


A. Wünsche 
 

 

DOI: 10.4236/jmp.2025.165040 730 Journal of Modern Physics 
 

 ( ) ( ) ( )
2 2 2

2
2 2

00

1exp 0 .
4 ! 2

m
m

m
mu

a aF u F
mu

∞

==

  ∂  =  ∂   
∑  (4.5) 

The operator 
2 2

2exp
4
a

x
 ∂
 ∂ 

 in (4.3) formed from the Fourier transform of the  

normalized Gaussian function is of the same kind as the operator in the alternative 
definition of the Hermite polynomials in (3.11) but with different signs in expo-
nent. This can be used for the calculation of the following definite integral  

( )

0 1

2
0 1

22

2
0 1

22

2 2

2

2 2 2 2 2 2

2 2 2

1 d exp H

1 'd exp H

exp H
4

2exp exp exp 1exp
4 4 4

m

m

m

u x x

m

x x x xx
baa

x x xxx
baa

a u
bu

a b u b
bu u u

+∞

∞

+∞

−

−

= −

∞

 − −  −     π  
′  + − ′= −   

 π  
  ∂  =     ∂     

     ∂ ∂ ∂ = −      ∂ ∂ ∂      

∫

∫

0 1

0 1

2 2

2

2 2 2 2 2 2 2 2

2 22 2

2 2
0 1
2 2

4

2exp exp 1
4 4

H .

u x x

m m

u x x

m

m

a
u

b a b a u b a
b u ub a

x xb a
b b a

= −

= −

  ∂ −  
∂   

       − − ∂ − ∂  = −         ∂ ∂−         

   −−
 =     −  

(4.6) 

This calculation shows by comparison with the proof of the formula by com-
plete induction in Appendix B that it obviously provides the correct result. We do 
not stay for a long discussion at this formula because it is well known and is for 
us only an intermediate step to a more general formula which is the proper aim. 

5. A Quite General Integral Formula over a Gaussian Function  
Multiplied by Two Different Hermite Polynomials 

In this section, we discuss the calculation of the following integral over a Gaussian 
distribution (or bell function) multiplied by two different Hermite polynomials 
with displaced arguments  

 

( )
( )

( )

0 1 2

2
0 1 2

22

2
0 1 0 2

22

0 1 0 2

, ; , , ; , ,

1 d exp H H

1 d exp H H

, ; , , ;0, , .

m n

m n

f m n a b c x x x

x x x x x xx
b caa

x x x x x xxx
b caa

f m n a b c x x x x

+∞

∞

+∞

∞

−

−

 − − −    ≡ −         π  
′ ′ ′ + − + −   ′= −     

   π  
= − −

∫

∫
 (5.1) 

It contains 2 discrete parameters ( ),m n , 3 continuous, in general, complex 
stretching parameters ( ), ,a b c  and furthermore 3, in general, also complex shift 

https://doi.org/10.4236/jmp.2025.165040


A. Wünsche 
 

 

DOI: 10.4236/jmp.2025.165040 731 Journal of Modern Physics 
 

parameters from coordinate origin of the arguments of the involved bell function 
and of the two Hermite polynomials ( )0 1 2, ,x x x . The shift parameters are not fully 
independent on each other in the result according to (5.1) that reduces them to 2 
independent parameters ( )0 1 0 2,x x x x− − . The parameters within each group 
( ), ,a b c  and ( )0 1 2, ,x x x  and of the two groups possess the same dimension. The 
integral comprises almost all special and limiting cases of definite integrals over 
the product of a Gaussian function with no more than two Hermite polynomials 
which one may find in tables of integrals [1] [2] (and in [3] in the special chapter 
XVI, 16.5 about Hermite polynomials in the modified form of ( )Hen x , see 
(2.12)). 

The result of the calculation of the integral (5.1) in two different representations 
is  

( )
{ }

( ) ( )

{ }

( ) ( )

0 1 2

,2 2 2 2 2

2 2 2 2
0

0 1 0 2
2 2 2 2

, 2 2 2
0 1
2 2

0

, ; , , ; , ,

! ! 2
! ! !

H H

! ! 2 H
! ! !

m n jm n

j

m j n j

m jjm n

m j
j

f m n a b c x x x

b a c a m n a
b c j m j n j b a c a

x x x x
b a c a

x xm n a b a
j m j n j bc b b a

=

− −

−

−
=

     − −
   =      − − − −    

   − −
⋅    

− −   

    −−
 =    − − −   

∑

∑

{ } { }( )
2 2

0 2
2 2

H , , min , ,
n j

n j
x xc a m n m n

c c a

−

−





   −−
 ⋅ ≡   −  

 (5.2) 

that will be proved in Appendix C and is discussed in the following considerations. 
The integral is symmetric under interchange of variables in the Hermite polyno-
mials as follows  

 ( ) ( )0 1 2 0 2 1, ; , , ; , , , ; , , ; , , ,f m n a b c x x x f n m a c b x x x=  (5.3) 

and, therefore, also in its result where, however, not every possible representation 
of the result must show this symmetry in obvious way (Section 7). 

All continuous parameters ( )0 1 2, , ; , ,a b c x x x  can be complex numbers but pa-
rameter a  in restricted way due to necessary convergence of the integral. For 
this purpose 2a−  should possess a squared Real part bigger than its squared Im-
aginary part4. Likely, in most applications a  is a real parameter. However, by 
experience, when something (integral or sum) does not converge in “usual sense” 
it, nevertheless, has some importance in the sense of weak convergence of the the-
ory of Generalized functions. 

It is easy but cumbersome to write instead of the parameters ( ), ,a b c  equiva-
lent reciprocal parameters ( ), ,α β γ  into the numerators of the corresponding 
functions in the integral. The integral becomes then  

 

 

4If one sets with separation of Real and Imaginary parts ia a a′ ′′= +  then 
( )

2 2

22 2 2

1 i2 ,a a a a
a a a

′ ′′ ′ ′′− −
=

′ ′′+
 

that requires 2 2,a a′ ′′>  for the convergence of the integral (5.1). 
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( )

( )( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
( )

0 1 2

2
22

0 1 2

2
2 2

0 1 0 2

0 1 0 2

, ; , , ; , ,

d exp H H

d exp H H

, ; , , ;0, , ,

m n

m n

f m n x x x

x x x x x x x

x x x x x x x x

f m n x x x x

α β γ

α α β γ

α α β γ

α β γ

−

−

+∞

∞

+∞

∞

′

= − − − −
π

′ ′ ′ ′= − + − + −
π
′= − −

∫

∫
 (5.4) 

with the result  

( )
{ }

( ) ( )

( ) ( )

{ }

( ) ( )

0 1 2

,2 2 2 2

2 2 2 2
0 0

0 1 0 2

2 2 2 2

, 2 2

2
0

, ; , , ; , ,

! ! 2
! ! !

H H

! ! 2 H
! ! !

m n j
m nn

j j

m j n j

m jjm n

j

f m n x x x

m n
j m j n j

x x x x

m n
j m j n j

α β γ

α β α γ βγ
α α α β α γ

αβ αγ

α β α γ

α ββγ
αα

= =

− −

−

=

′

     − −
     =
     − − − −     

   − −
   ⋅
   − −   

 −   =    − −    

∑∑

∑
( )

( )

0 1

2 2

2 2
0 2

2 2
H .

m j

m j

n j

x x

x x

αβ

α β

αγα γ
α α β

−

−

−

 −
 
 − 

   −−
   ⋅
   −   

(5.5) 

In similar form we found it in our elder calculations made by stepwise general-
ization from simpler integrals involving transformations of the variables and 
parameters that is also a lengthy way. Therefore, we prove the form (5.1) in 
Appendix C by complete induction ( ) ( ), , 1m n m n→ +  using that it is already 
proved in previous Section 4 and Appendix B for general m  and special 0n =  
by complete induction ( ) ( ),0 1,0m m→ + . We wanted to derive the result (5.2) 
from the Formula (4.3) and found also some essential elements of the structure of 
this result but it was not fully successful and convincing compared with the proof 
by complete induction in Appendix C. Problem could be that the operator  

2 2

2exp
4
a

u
 ∂
 ∂ 

 in (5.2) acts on the whole function ( )F u  whereas analogous op-

erators in this function act only within itself. 
We made intensive numerical checkups of the basic result (5.2)5. 

6. Special Cases of the Quite General Gauss-Hermite Integral 

We consider now some special cases of the integral (5.1) where the general struc-
ture of the result (5.2) simplifies in nontrivial way. The special case  
( )0 1,0; , ,0; , ,0f m a b x x  was already considered in Section 4 with proof in (C.1). 

 

 

5In the checkups one has to write equal square roots in the same way since computer chooses a certain 

sign of the roots and products, for example, of the signs of 2 2 2 2b a c a− −  and of  

( )( )2 2 2 2b a c a− −  for numbers ( ), ,a b c  can be differently chosen by computer. We met such 

cases. 
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6.1. Special Case x x x0 1 20, 0≠ = =  and General ( )a b c, ,  

If the shift parameters of the Hermite polynomials 1x  and 2x  are vanishing the 
general structure of the integral (5.1) does not simplify essentially  

 

( )
( )

{ }

( ) ( )

0

2
0

22

, 2 2 2
0

2 2
0

2 2
0

2 2

, ; , , ; ,0,0

1 d exp H H

! ! 2 H
! ! !

H .

m n

m jjm n

m j
j

n j

n j

f m n a b c x

x x x xx
b caa

xm n a b a
j m j n j bc b b a

xc a
c c a

−

−

−
=

−

+∞

∞

−

 −     ≡ −         π  

     −
 =     − − −    

   −
 ⋅    −  

∫

∑
 (6.1) 

However, if in addition the shift parameter 0x  of the Gaussian function van-
ishes the structure of the result is changed radically. 

6.2. Special Case x x x0 1 2 0= = =  and General ( )a b c, ,  

If all argument of the Hermite polynomials are vanishing then only the Hermite 
polynomials with even indices are non-vanishing in this case according to  

 ( ) ( ) ( ) ( ) ( )2 2 1
2 !

H 0 1 , H 0 0, 0,1,2, .
!

n
n n

n
n

n += − = =   (6.2) 

Due to necessary symmetry of the integrand under interchanging the signs of its 
variable x  it has to be symmetric and one must distinguish 3 partial cases of the 
indices ( ),m n  of the Hermite polynomials: 1) both indices are even  
( )2 , 2m m n n→ → , 2) both indices are odd ( )2 1, 2 1m m n n→ + → + , one of the 
indices is even and the other is odd, say ( )2 , 2 1m m n n→ → + .  

1) 2 , 2m m n n→ → :  

 

( )

{ } ( ) ( ) ( )
( ) ( ) ( )

2

2 222

2, 2 2 2 2 2

2 2
0

2 , 2 ; , , ;0,0,0

1 d exp H H

1 2 ! 2 ! 2 ,
2 ! ! !

m n

j m j n jm nm n

j

f m n a b c

x x xx
b caa

m n a b a c a
j m j n j bc b c

−

−

∞

=

∞

−+

+      = −     
   π  

−      − −
=      − −      

∫

∑

 (6.3) 

2) 2 1, 2 1m m n n→ + → + :  

 

( )

{ } ( ) ( ) ( )
( ) ( ) ( )

2

2 1 2 122

2 1, 2 2 2 2 2

2 2
0

2 1,2 1; , , ;0,0,0

1 d exp H H

1 2 1 ! 2 1 ! 2 ,
2 1 ! !

m n

j m j n jm nm n

j

f m n a b c

x x yx
b caa

m n a b a c a
j m j n j bc b c

+ +−

+ − −+

+∞

∞

=

+ +

     = −     
   π  

− + +      − −
=      + − −      

∫

∑

 (6.4) 

3) 2 , 2 1m m n n→ → + :  
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( )

2

2 2 122

2 , 2 1; , , ;0,0,0

1 d exp H H 0.m n

f m n a b c

x x xx
b caa

+−

+∞

∞

+

     = − =     
   π  

∫
 (6.5) 

This last result is trivial and follows from antisymmetry of the integrand under 
interchanging x x→− .  

Setting a b c= =  in the above relations one finds the orthonormality relations 
for Hermite polynomials specialized in other way and discussed below in (6.23). 
Integrals of the kind (6.3) and (6.4) in other representations one finds in [2] (from 
p. 502 on). 

6.3. Special Case m n=  and x x x0 1 2 0= = =  with General  
( )a b c, ,  

Since in considered special case all shift parameters ( )0 1 2, ,x x x  are vanishing in 
the result (5.2) of the integral the arguments of Hermite polynomials are also van-
ishing and only the Hermite polynomials with even indices contribute to this in-
tegral. Therefore, one may set in (5.2)  

 2 , 0,1, , ,
2

n jm j n j k k −  − = − = =    
  (6.6) 

and have to apply (6.2) with n k→ . Then from (5.2) follows  

 

( )

( )
( )( )

( )( )
( ) ( )( )

2

22

2 2 2 22 22

2 4
0

2
2 2 2 2 2 22

2 2 2 2 20

, ; , , ;0,0,0

1 d exp H H

2 !
! 2 ! 4

! 2 .
! 2 !

n n

n kn

k

n n kn

n

f n n a b c

x x xx
b caa

b a c aa n
bc k n k a

b a c a n a
bc k n k b a c a

+∞

∞−

 
  

=

− 
  

=

     = −     
   π  

 − −   =    −   

   − −   =    −   − −   

∫

∑

∑

 (6.7) 

Using now the following representation of the Legendre polynomials ( )Pn z 6 

 ( ) ( )

22 2

2 2
0

1 ! 2P ,
2 ! 2 ! 1

nn n k

n
k

z n zz
k n k z

 
−  

=

   −
 =    − −  

∑  (6.8) 

one may represent the result (6.7) in the following form  

 

 

6I do not know whether or not it is known. Apparently it follows from one of the many representations 
of the Legendre polynomials by the Hypergeometric function and their transformations given in [4] 
(Chapter 10.10.). Furthermore, I published already the narrowly related formula found in my records 

( ) ( )
( ) ( )

2
22

22
0

1 !
2 1 P 2 .

! 2 !1

n
kn n k

n
k

nzz z
k n kz

 
  

−

=

  −
+ = 

−+ 
∑  A similar remark concerns also the generalization 

of (6.8) to (6.13) given below. 
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( )

( )
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2 2 2 2 2 2

2 2 2 2 2

, ; , , ;0,0,0

2
! P .

n

n

f n n a b c

a b c b c an
bc a b c b c

   + −   =       + −   

 (6.9) 

With the reciprocal parameters ( ), ,α β γ  instead of ( ), ,a b c  the result for 
the integral takes on the form (see (5.4) and (5.5))  

 

( ) ( ) ( ) ( )
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2 2
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, ; , , ,0,0,0 d exp H H
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n n
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α α β γ α

∞

∞−

+
′ = −

π

   + −
   =
   + −   

∫
 (6.10) 

In similar form one finds a closely related integral in [2] (p. 502, Chapter 2.20.16 
(2)) which, however, is not yet contained in [1]. 

6.4. Special Case m n≠  in General and x x x0 1 2 0= = =  with  
General ( )a b c, ,  

The case m n≠  is a generalization of the case 0m n= =  of last Subsection and 
instead of (6.6) the result involves two different Hermite polynomials with argu-
ment zero and for non-vanishing of the integral one has to set their two different 
indices equal to an even number  

( )2 , 2 2 2 ,m j l n j k m n l k i− = − = ⇒ − = − ≡  

 2 , , 2 .m n i l k i j n k= + = + = −  (6.11) 

Therefore, for non-vanishing of the integral the difference m n−  has to be a 
(positive or negative) even number which is written as ( )2 , 0, 1, 2,i i =    . Then 
from the general result (5.2) follows specialized to the considered case  
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α
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+∞
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=

=

+

     = −     
   π  

 − −+   −  = −     + −     

 − −+  −  = −   +    
 

∫

∑
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( ) ( )
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! ! 2 !

2 .
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a
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−

+
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 ⋅  − − 

∑

 (6.12) 

In special case 0i =  it makes the transition into (6.7). Using now the Ul-
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traspherical polynomials ( ),Pn zα α  which among others possess the following ex-
plicit representation  

 ( ) ( ) ( )
( ) ( )

22 2
,

2
0

!1 2P ,
2 ! ! 2 ! 1

nn n k

n
k

nz zz
k k n k z

α α α
α

 
−  

=

   +−
 =    + − −  

∑  (6.13) 

one finds the following representation of the considered integral by the Ul-
traspherical polynomials  

( )

( )
( )

( ) ( )
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2 2 2 2 22 2 2
,

2 2 2 2 2 2

2 , ; , , ;0,0,0

2! 2 !
P .
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n
i

i i
n

f n i n a b c

a b c b cn n i b a a
n i bcb a b c b c

+

   + −+  −    = −     +      + −   
(6.14) 

This result generalizes the integral (6.9) and seems to be new. 
The Ultraspherical polynomials ( ) ( ),Pn zα α  are the special case α β=  of the 

Jacobi polynomials ( ) ( ),Pn zα β . The Legendre polynomials ( )Pn z  according to  
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=
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 − − − 
 =

 − − 
 

= − −

∑  (6.15) 

are the special case 0α =  of the Ultraspherical polynomials ( ) ( ),Pn zα α  [4]-[7]. 
The Ultraspherical polynomials ( ) ( ),Pn zα α  possess a one-to-one correspondence 
to the Gegenbauer polynomials ( )Cn zν  as follows  
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−
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= − −

∑  (6.16) 

The Chebyshev polynomials of first and second kind ( )Tn z  and ( )Un z  are 

other special cases of the Ultraspherical polynomials ( ) ( ),Pn zα α  but with semi-

integer 1
2

α = −  and 1
2

α = + , respectively. They are not involved in Formula  

(6.14) because there are contained only integer 0, 1, 2,iα = = ± ±   plus propor-
tionality factors. 

Such as in Subsection 6.3, we give here also the representation of Formula (6.14) 
by reciprocal parameters ( ), ,α β γ  to parameters ( ), ,a b c  
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( ) ( ) ( ) ( )
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2 2 22 2
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2 , ; , , ;0,0,0 d exp H H
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∞
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π
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∫
 (6.17) 

All other integrals ( ), ; , , ;0,0,0f m n a b c′  with integer ( ),m n  are vanishing. 
The specialized integrals in Subsections 6.3 and 6.4. possess a symmetric or an 

antisymmetric integrand with respect to transformations x x→−  depending on 
the product of the two unshifted Hermite polynomials and only that with sym-
metric integrand are non-vanishing. For these integrals with symmetric integrand 
the value of the integrals over the positive (or negative) semi-axis is half the cal-
culated value of the corresponding given integrals over the full real axis. 

6.5. Special Case a b c= =  and General ( )x x x0 1 2, ,  

In the special case  

 2 2 2 2 0,a b c b a c a= = ⇒ − = − =  (6.18) 

the arguments of the Hermite polynomials in (5.1) become infinite and the factors 
in front of them become equal to zero and one has to consider this as the limiting 
case (compare (3.18))  
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∑  (6.19) 

The result of the specialization of (5.1) is then  
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∫

∑

 (6.20) 

This can be further specialized. 
If in addition to a b c= =  the shift parameters 1 2 0x x= =  are vanishing but 

0 0x ≠  then one finds from (6.20)  
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∫

∑

 (6.21) 

If, for example, the shift parameters 0 1x x=  are equal then only the sum term 
to j m=  is non-vanishing and one finds from (6.20)  
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∫  (6.22) 

If all shift parameters are the same 0 1 2x x x= =  then the integral is non-van-
ishing only for m n=  and one obtains from (6.22) and also from (6.21)  
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∫

 (6.23) 

These are the well-known orthonormality relations for Hermite polynomials. 
From these orthonormality relations setting 1a =  and interchanging the or-

der of summation and integration in the following relation  
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 (6.24) 

and with introduction of the Hermite functions ( )hn x  according to  

 ( ) ( ) ( )
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1
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1h exp H , 0,1,2, ,
2
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n n

n

xx x n
n

 
≡ − = 

 π
  (6.25) 

follows the completeness relation7 

 ( ) ( ) ( )
0
h h .n n

n
x y x yδ

∞

=

= −∑  (6.26) 

Then the orthonormality relations (6.23) can be written  

 ( ) ( ) ,d h h .m n m nx x x δ
−

+∞

∞
=∫  (6.27) 

The completeness relation (6.26) can be also obtained from the sum formula 
Mehler [4] (Chapter 10.13. Equation (22))  
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∑  (6.28) 

 

 

7In analogous way follows, for example, from the well-known orthonormality relations for the Legen-

dre polynomials ( )Pn x  ( ) ( ) ( ) ( )1
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2m n m n n nx x x x n xδ
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= − − ≤ ≤∑  in the interval from −1 to 

+1. 
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by the limiting transition 1t →+  which with the abbreviation 2 21 t ε− ≡ ⇒

( )
2

2 41 1
2

t oεε ε= − ≈ − +  on the right-hand side leads to  
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(6.29) 

and where one has to bring the factor 
2 2

exp
2

x y +
π 

 
 to the left-hand side of 

the Equation (6.29) to obtain (6.26). 

6.6. Limiting Case a 0ε≡ →  

In the limiting case 0a ε≡ →  function 
2

22

1 exp x
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− 

π  
 goes to a delta func-

tion according to  
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 (6.30) 

For the integral (5.1) then follows  
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∫  (6.31) 

In connection with (6.30) we mention that the derivatives of the delta function 
may be represented by  
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 (6.32) 

where the Rodrigues-type definition (2.1) of the Hermite polynomials is used. 

6.7. Extension of the Integral to Inclusion of Cosine or Sine  
Functions 

One can make an extension of the quite general integral (5.1) by substituting the 
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shift 0x  from the coordinate origin in the Gaussian distribution by 0 0 0ix x y→ ±  
leading to  
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 (6.33) 

with the result  
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∑  (6.34) 

From this one finds  
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 (6.35) 

where the functions ( )0 0 1 2, ; , , ; i , ,f m n a b c x y x x±  must be taken from (5.2) and 
are not explicitly written down here within the big round brackets due to their 
lengths. 

7. Alternative Formula and Its Derivation for the Quite  
General Gauss-Hermite Integral by a Double Sum 

In this section we derive an alternative formula for the Gauss-Hermite integral 
(5.1) with an essentially different form of the solution in comparison to (5.2). The 
solution is in the form of a double sum. 

Starting from the second representation of the integral in (5.1) and using the 
Formula (2.7) for the Hermite polynomials for the sum of two arguments as var-
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iable one finds  
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 (7.1) 

where a well-known integral was used for the evaluation. Due to factor  

( )( )1 1 1
2

k l++ −  which is equal to 1 for even k l+  and 0 for odd k l+  and is  

caused by the symmetry of the integral one may exclude the terms with odd k l+  
by the substitution 2k l j+ =  and obtains from (7.1) the following result  
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 (7.2) 

This form of the solution for the integral is a more inconvenient double sum in 
comparison with the simple sum in (5.2). Furthermore, it does not show in obvi-
ous way the symmetry (5.3) of the integral and, therefore, is unattractive. An easy 
direct transformation of this double sum into the simple sum (5.2) seems to be 
hopeless. We have numerically checked the identity of (7.2) with (5.2). 

8. Transition to Multi-Dimensional Integrals with Gaussian  
Functions 

Integrals over Gaussian distributions play an important role in different branches 
of natural sciences, in particular, in quantum optics (e.g., squeezing of light modes 
in phase space). My scientific colleague Hong-yi Fan from China applied them in 
almost all of his papers up to the millennium turn and later in a method of inte-
gration which he abbreviated IWOP (Integration within ordered products) and 
which is roughly speaking the possibility of interchange of the order of operator 
ordering and of integration and was very successful with it [12]. For this purpose 
one needs a great supply of multi-dimensional integrals with Gaussian functions. 
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In the following we consider a few multi-dimensional generalizations of integrals 
with Gaussian distributions. 

In Section 4 we defined the one-dimensional Fourier transformation ( )f u  of 
functions ( )f x  by (4.1). It is well known and easily to see that under this choice 
of the factors in the Fourier transformation the convolution of two functions 
( ) ( )g x h x∗  makes the transition into the product of the Fourier transforms 
( ) ( )g u h u  of the two functions ( )g x  and ( )h x  that is  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d .f x g x h x yg x y h y f u g u h u
+∞

∞−
= ∗ ≡ − ⇔ =∫  

  (8.1) 

In special case of two normalized Gaussian functions  
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4 4
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a u b ug u h u

   
= − = −   

π π   
   

⇔ = − = −   
   





 (8.2) 

this leads to (e.g., Vladimirov [13], p. 150)  

 ( )
( )

( )
( )

2 2 2 2

2 22 2

1exp exp .
4

a b u xf u f x
a ba b

 +   = − ⇔ = −   + π + 

  (8.3) 

In the following this will be generalized to n  dimensions and to shift param-
eter in the Gaussian function. 

The n -dimensional Fourier transform ( )f k  of a function ( )f r  we define 
in analogy to (4.1) by  

 ( ) ( ) ( ) ( )
( )

( ) ( )1d exp i , d exp i .
2

n n
nV V

f r f f k f= − =
π∫ ∫k r kr r k kr



   (8.4) 

The integrals go over the whole volume V  of n -dimensional linear space of 
vectors r  or volume V  of dual space of co-vectors k , respectively (usually 
Euclidean spaces). As in one-dimensional case (8.1) the convolution of two func-
tions ( )g r  and ( )h r  makes then the transition into the product of the Fourier 
transforms ( )g k  and ( )h k  of these functions  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d .n
V

f g h sg h f g h= ∗ ≡ − ⇔ =∫r r r r s s k k k 

  (8.5) 

We consider a normalized n -dimensional Gaussian function shifted from the 
coordinate origin with vector parameter 0r  

 ( ) ( ) ( )( ) ( ) ( )1
0 0

1 exp exp i , d 1,n
Vn

f r f−= − − − =
π

∫r r r r r kr rA
A

 (8.6) 

where A  in an Euclidian space is a symmetric second-order tensor equivalent to 
an operator and A  its determinant8. The value 0r  of the shift vector does not 
possess an influence onto the value of the normalization integral. Its Fourier trans-
form is (compare [13], p. Chapter II, & 9, p. 172)  

 

 

8In coordinates: k l
klr A r→r rA  with T

kl lkA A= ⇒ =A A  a symmetric two-rank tensor to a quadratic 
form. 
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( ) ( ) ( )( ) ( )

( )

1
0 0

0

1
0 0

0

1 d exp exp i

exp exp i
4

1 i id exp
2 2

exp i .
4

n
Vn

n
Vn

f k r

r

−

−

= − − − −
π

 = − − 
 

    ⋅ − − + − +    
    π

 = − − 
 

∫

∫

r r r r kr

k k kr

r r k r r k

k k kr

 A
A

A

A A A
A

A

 (8.7) 

Such as in one-dimensional case the Fourier transform of a normalized central-
ized Gaussian distribution ( 0 =r 0 ) is again centralized Gaussian distribution and 
the presence of a shift vector 0r  multiplies this Fourier transform by a phase fac-
tor. 

We now consider two normalized n -dimensional Gaussian functions dis-
placed from coordinate origin  

( ) ( ) ( )( ) ( ) ( )1
0 0

1 exp exp i , d 1,n
Vn

g r g−= − − − =
π

∫r r r r r kr rA
A

 

 ( ) ( ) ( )( ) ( ) ( )1
0 0

1 exp exp i , d 1.n
Vn

h r g−= − − − =
π

∫r r s r s kr rB
B

 (8.8) 

The Fourier transforms of these functions according to (8.7) are  

 ( ) ( )0 0exp i , exp i ,
4 4

g h   = − − = − −   
   

k k k kk kr k ks



A B  (8.9) 

with their product  

 ( ) ( ) ( ) ( ) ( )0 0exp i .
4

f g h
+ 

= = − − + 
 

k k
k k k k r s 



A B
 (8.10) 

The back translation to the convolution of the two functions ( )g r  and ( )h r  
is now very simple and provides the value of the integral as follows  

 

( ) ( ) ( )

( ) ( )( )

( ) ( )( )
( )( ) ( )( )

1
0 0

1
0 0

1
0 0 0 0

1 d exp

exp

1 exp ,

n
n V

n

f g h

s −

−

−

= ∗

= − − − − −
π

⋅ − − −

= − − − + − −
π +

∫

r r r

r r s r r s

s s s s

r r s r r s

A
A B

B

A B
A B

 (8.11) 

and in special case without argument shifts of the Gaussian functions  

 

( ) ( )( ) ( )

( )( )

1 1

1

1 d exp exp

1 exp .

n
n V

n

s − −

−

− − − −
π

= − +
π +

∫ r s r s s s

r r

A B
A B

A B
A B

 (8.12) 

The expressions for the determinant and for the inverse of the sum of two op-
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erators A  and B  by the separate operators are specific for the dimension n  
and are in coordinate-invariant way:  

1) Two-dimensional case: ( [ ]→A A  is determinant, I  is two-dimensional 
identity operator, A  is complementary operator to A )  

[ ] [ ] [ ],+ = + − +A B A A B AB B  

( ) [ ]
( ) ( )

[ ] [ ]
1 ,− + − ++

+ = =
+ + − +

A B I A BA BA B
A B A A B AB B

 

 [ ], , , = − = = A A I A A A A A  (8.13) 

2) Three-dimensional case: ( A  is determinant, I  is three-dimensional iden-
tity operator, A  is complementary operator to A )  

,+ = + + +A B A AB AB B  

( )

( ) ( )

1

,

− +
+

+

+ + + − + + −
=

+ + +

=
A BA B
A B

A AB BA B B A A B A B AB I
A AB AB B

 

 [ ] [ ] 22 , , , . = − + = = = A A I A A A A A A A A A A  (8.14) 

3) Four-dimensional case: ( →A A  is determinant, I  is four-dimensional 
identity operator, A  is complementary operator to A )  

[ ][ ] [ ]( ) [ ]( )
[ ]

2 2

,

= + + − − + − +

+

+

+ +

A B A AB A B A I A A A B I B B B

AB AB B
 

( )

[ ]( ) ( ) ( )

1

2 3

,

− +
+ =

+

+ − + + + + + − +
=

+

A BA B
A B

A B I A B A B A B A B A B
A B

 

[ ] [ ]2 3, , , = − + − = = A A I A A A A A A A A A A  

 2 3, .= =A A A A A  (8.15) 

The formula for the complementary operator +A B  to the sum of two general 
operators +A B  written more in detail in four-dimensional case and in coordi-
nate-invariant form is already quite complicated but we write it down to  
give an impression. It takes on 4 lines as follows  

 

[ ]( ) ( ) [ ]
( ) ( )

( ) [ ] ( )

( ) [ ]( )

2

2 2 2

2

2 2 2 ,

= + − + − − −

+ + + − + +

− − − + + +

− + + + +

+

− +

A B A A I A A A B A B AB A A B

B A A AB BA A B ABA BA

A B AB B B A A B B BA AB

B A BAB AB A B I B B B B

 (8.16) 

https://doi.org/10.4236/jmp.2025.165040


A. Wünsche 
 

 

DOI: 10.4236/jmp.2025.165040 745 Journal of Modern Physics 
 

and the danger to make errors becomes fastly increasing with the dimension. 
From the four-dimensional case on the coordinate-invariant calculations depend-
ing on the problem can become already immense and, moreover, corresponding 
coordinate calculations become almost impossible. The way out of the dilemma is 
then only the computer which, however, up to now calculates only with coordi-
nate representations of the operators. 

The invariants of operators are formally independent from the dimension and 
reflect the cycle structure of permutations of the symmetric group nS  of the !n  
elements together with their signs  

( )trace ,i
iA≡ =A A  

[ ] ( )2 21 ,
2!

= −A A A  

( )3 2 31 3 2 ,
3!

= − +A A A A A  

 ( )24 2 2 2 3 41 6 3 8 6 ,
4!

= − + + −A A A A A A A A  (8.17) 

but the operators themselves with their invariants become more complicated with 
increasing dimension and the operators 0≡I A  are the identity operators in the 
considered dimension. Though last formulae are already hardly complicate this, 
nevertheless, is much simpler than to write them down in coordinate representa-
tion. 

9. Two-Dimensional Case of Integrals with Gaussian  
Distributions in Representation by Complex Conjugated  
Variables 

The two-dimensional case of integrals over Gaussian distributions plays a role in 
quantum optics of phase-space variables of one mode of a harmonic oscillator. Its 
treatment possesses some specifics and it is favorable to deal with them by intro-
duction of a pair of complex-conjugate variables. The extension to multi-modes 
of n  harmonic oscillators is then possible by introduction of n  pairs of com-
plex-conjugate variables. Instead of Hermite polynomials in one-dimensional case 
a main role play here Laguerre polynomials which are best introduced as Laguerre 
2D polynomials. 

Special Laguerre-2D polynomials were introduced as follows (e.g., [8]-[10])  

 

( ) ( ) ( ) ( )

{ } ( )
( ) ( )

* * *
, *

2
*

*

,
*

0

L , 1 exp exp

exp

1 ! !
.

! ! !

m n
m n

m n m n

m n

jm n
m j n j

j

z z zz zz
z z

z z
z z

m n
z z

j m j n j

+
+

− −

=

∂
≡ − −

∂ ∂
 ∂

= − ∂ ∂ 

−
=

− −∑

 (9.1) 

They are related to usual generalized Laguerre polynomials ( )Ln zν  by  
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( ) ( ) ( )

( ) ( )

* *
,

* *

L , 1 ! L

1 ! L .

n m n m n
m n n

m n m n m
m

z z n z zz

m z zz

− −

− −

= −

= −
 (9.2) 

The first definition in (9.1) corresponds to the Rodrigues-type definition (2.1) 
and the second to the alternative definition (2.3) of Hermite polynomials. 

A first basic integral over a two-dimensional Gaussian distribution and powers 
of the complex conjugate variables ( )*,z z  is  

 

( )( )

{ }

( ) ( )

( )

* *
* *

2 2

,
2 *

0

*

,

1 i d d exp
2

! !
! ! !

i L i , i ,

m n

m n
j m j n j

j

m n
m n

z w z w
z z z z

a a

m n a w w
j m j n j

w wa
a a

− −

=

+

 − −
 ∧ −
 π  

=
− −

 
= −  

 

∫

∑  (9.3) 

where *i d d
2

z z∧  is the area element over the 2-dimensional complex space  

 ( ) ( )* *i ii , i , d d d id d id d d .
2 2

z x y z x y z z x y x y x y= + = − ∧ = + ∧ − = ∧  (9.4) 

A more general two-dimensional integral in complex coordinates in compari-
son to (9.3) is  

 

( )( )* * *
*

,2 2

2 2 *

, 2 2 2 2

1 i d d exp L ,
2

L , .

m n

m n

m n

z w z w z zz z
b ba a

b a w w
b b a b a

+

 − −   ∧ −   π   

   −
 =    − −  

∫
 (9.5) 

The proof of this integral can be made as follows  

 

( )( )

( )( )

( )

* * *
*

,2 2

* * *
*

,2 2

2 *
2

,*

2
2 2 *

*

2 2

, 2 2

1 i d d exp L ,
2

1 i d d exp L ,
2

exp L ,

1 exp

L ,

m n

m n

m n

m n
m n

m n

m n

z w z w z zz z
b ba a

w z w z z zz z
b ba a

w wa
b bw w

b a w w
b w w

b a w
b b a

+

+

 − −   ∧ −   π   
 − −   = ∧ −   π   

   ∂
=    ∂ ∂   

 ∂
= − − ∂ ∂ 

 −
 =
  − 

∫

∫

*

2 2
.w

b a

 
 

− 

 (9.6) 

The second line is written down to show that this integral may be considered as 
a convolution. 

10. Conclusion 

Starting from two alternative definitions of Hermite polynomials, we derived a 
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new relation which connects these polynomials with arbitrarily stretched argu-
ments. Then there are derived some operational identities with the variable and 
its differential operator in Hermite polynomials polynomials disentangled to their 
normally ordered form. The main purpose was the evaluation of a quite general 
integral (5.1) with a generally shifted Gaussian distribution and the product of two 
Hermite polynomials with general linear arguments with the result (5.2). It gen-
eralizes almost all special cases of such integrals considered in the best-known 
tables of integrals. The further sections of this paper deal with multi-dimensional 
integrals with Gaussian distributions and partially with Hermite or Laguerre 2D 
polynomials. The proofs are mostly made by complete induction and are placed 
in the Appendices. The two-dimensional case of integrals over Gaussian distribu-
tions multiplied by Laguerre 2D polynomials is not nearly as general as it was 
achieved with the Hermite polynomials and one has to think about a good repre-
sentation of these last cases. 

It is intended to use a special case of the derived integral with Hermite polyno-
mials in a paper of quantum optics in preparation. 
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Appendix A: Proofs of Two Operational Identities 

In this Appendix, we prove first the operational identity  

 ( )
( ) ( )

0

1 !
2 H .

! !

jn jn

n j j
j

n
x x

x j n j x−
=

−∂ ∂ − = ∂ − ∂ 
∑  (A.1) 

by complete induction using the differentiation Formula (2.4) and the recurrence 
relation (2.5) for Hermite polynomials. 

The theorem (A.1) is true for 0n =  (and obviously 1n = ) as initial term of 
the complete induction. Assuming that it is true for arbitrary n  one proves that 
it is also true for 1n +  as follows  

 

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

1

0

0

1
0

1
0 0

1 !
2 2 H

! !

1 !
2 H H

! !

1 !
2 H 2 H H

! !

1 ! 1 !
H

! ! ! !

jn jn

n j j
j

j jn

n j n j j
j

j jn

n j n j n j j
j

j jjn n

n j j
j j

n
x x x

x x j n j x

n
x x x

j n j x x

n
x x n j x x

j n j x x

n n
x

j n j j n jx

+

−
=

− −
=

− − − −
=

+ −
= =

−∂ ∂ ∂   − = −   ∂ ∂ − ∂   

− ∂ ∂ = − − ∂ ∂ 

− ∂ ∂ = − − − − ∂ ∂ 

− −∂
= −

− −∂

∑

∑

∑

∑ ∑ ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

1

1

1 1

1 1
0 0

1

1
0

H | 1

1 ! 1 1 !
H H

! 1 ! ! 1 !

1 1 !
H .

! 1 !

j

n j j

j jj jn n

n j n jj j
j j

j jn

n j j
j

x j j
x

n n j n j
x x

j n j j n jx x

n
x

j n j x

+

− +

+ +

+ − + −
= =

+

+ −
=

∂
→ −

∂

− + − −∂ ∂
= +

+ − + −∂ ∂

− + ∂
=

+ − ∂

∑ ∑

∑

 (A.2) 

In one sum term is made a substitution of the summation index j  such as 
shown. 

We prove now by complete induction a second operational identity (3.12)  

 
( ) ( )

0

1 !H 2 .
2 ! !

jn
n j

n j
j

nx x
x j n j x

−

=

∂ ∂ + = ∂ − ∂ 
∑  (A.3) 

It is easily to see that it is true for 0,1,2n = . Assuming that it is correct up to a 
certain n  one obtains for 1n +  

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )

1 1

0 0

1
1

0

1
1

0 0

1 1 1 1H 2 H 2 H
2 2 2 2

! !2 2 2
! ! ! !

1 !
2 2

! 1 !

! !2 2 2
! ! ! 1 !

n n n

j jn n
n j n j

j j
j j

jn
n j

j
j

jn n
n j

j
j j

x x x n x
x x x x

n nx x x
j n j j n j xx x

n
n x

j n j x

n nx
j n j j n jx

+ −

− −

= =

−
− −

=

−
+ −

= =

∂ ∂ ∂ ∂       + = + + − +       ∂ ∂ ∂ ∂       
∂ ∂ ∂

= +
− − ∂∂ ∂

− ∂
−

− − ∂

∂
= +

− − −∂

∑ ∑

∑

∑ ∑ ( )

( ) ( ) ( )
( ) ( )

1

1 1
1

1
0 0

1 !! 2 2 2 | 1
! ! ! 1 !

j
n j

j

j jn n
n j n j

j j
j j

x
x

nn x n x j j
j n j j n jx x

− −

+ −
− − −

+
= =

∂
∂

−∂ ∂
+ − → −

− − −∂ ∂∑ ∑
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( )
( ) ( ) ( ) ( )

( )
( ) ( )

1 1
1 1

0 0

1
1

0

! 1 !2 2
! 1 ! ! 1 !

1 !
2 .

! 1 !

j jn n
n j n j

j j
j j

jn
n j

j
j

n n j n jx x
j n j j n jx x

n
x

j n j x

+ +
+ − + −

= =

+
+ −

=

+ − ∂ ∂
= +

+ − + −∂ ∂

+ ∂
=

+ − ∂

∑ ∑

∑
        (A.4) 

Thus (A.3) is proved for general n . 

Appendix B: Proof of a Definite Gauss-Hermite Integral by  
Complete Induction 

In this Appendix we prove the integral  

 

( ) ( )2
0 1

0 1 22

2
0 1

22

2 2
0 1
2 2

1,0; , ,0; , ,0 d exp H

1 'd exp H

H .

m

m

m

m

x x x xf m a b x x x
baa

x x xxx
baa

x xb a
b b a

−

−

+∞

∞

+∞

∞

 − −  ≡ −     π  
  + − ′= −   

 π  

   −−
 =    −  

∫

∫  (B.1) 

by complete induction from 1m m→ + . In view of its extension in Section 5 with 
proof in Appendix C we abbreviated it by ( )0 1,0; , ,0; , ,0f m a b x x  as special case 
of the more general integral ( )0 1 2, ; , , ; , ,f m n a b c x x x . 

Obviously, the given solution of the integral is true for 0,1m = . Assuming that 
it is true for arbitrary m  one has to prove that it is also true for 1m + . Using the 
recurrence relation (2.5) for Hermite polynomials one derives as first step  

 

( )0 1

2
0 1 0 1

22

0 1
1

1,0; , ,0; , ,0

1 d exp 2 H

2 H .

m

m

f m a b x x

x x x x x xxx
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x x xm
b

+∞

∞−

−

+

′ ′ ′  + − + −   ′= −      
   π  

′ + −  −  
 

∫  (B.2) 

Since we do not have or did not introduce the first part of the sum of two inte-
grals in (B.1) we try to transform it by partial integration to a form of an integral 
with a part which vanishes as follows  

( )0 1

2 2
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2
0 1 0 1 0 1
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2
0 1 0 1

22

2
0 1

12

1 d exp 2 H

2 1 H ,

m

m

x x x x xxx
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x x xam
bb

−

−

+∞

∞

′ ′  − + −   ′= −      
   π  

′  + − − −    
   

∫
            (B.3) 

where the integral of the form ( )
2

2d exp m
xx P x

x a
+∞

∞−

 ′∂′ ′− ′∂  
∫  with a polynomial  

( )mP x′  of degree m  vanishes at the boundaries ±  infinity. In the second final 
step one has to apply to (B.3) the Formula (B.1) for indices m  and 1m − . Tak-
ing in addition into account  

 0 1 0 1 0 1 0 1
1 12 2 2 2 2 2 2 2

H 2 H 2 H ,m m m
x x x x x x x xm
b a b a b a b a

+ −

     − − − −
= −     
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 (B.4) 

from (B.3 follows)  
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 (B.5) 

Thus it is proved that (B.1) is true also for 1m +  supposed that it is true for a 
certain m . 

Appendix C: Proof of a Quite General Definite Gauss-Hermite  
Integral by Complete Induction 

In this Appendix we prove the quite general Gauss-Hermite integral (C.1)  
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 (C.1) 

by complete induction from n  to 1n + . Due to prove of (B.1) in last Appendix 
B it is proved for initial value 0n = . Supposed it is proved for an arbitrary n  
one has to prove that it is also true for 1n = . As in Appendix B we first derive an 
equation for the integral ( )0 1 2, 1; , , ; , ,f m n a b c x x x+  which may serve as starting 
point for the proper complete induction. Using the recurrence relation (2.5) for 
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Hermite polynomials one finds  
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(C.2) 

The first integral of this intermediary result vanishes at the boundaries in infin-
ity and can be omitted. In the remaining integral one has to perform the differen-
tiation of the product of two Hermite polynomials and then to collect analogous 
terms that lead to  
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 (C.3) 

This relation may serve as starting point for the proper complete induction. 
Inserting the conjectured result (C.1) into (C.3) one obtains after substitution of 
the summation index 1j j′ → −  
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(C.4) 

The 3 sum terms with products of two Hermite polynomials with complicated 
arguments take on here two lines each that makes it so difficult to write down the 
proof by complete induction due to its length. In principle, it is simple. By further 
collection of analogous sum terms in (C.4) this simplifies to  
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(C.5) 

The recurrence relation for Hermite polynomials (2.5) is applied in this last 
transformation. 

Thus, the basic result (5.2) for the evaluation of the integral (5.1) expressing its 
symmetry is proved. We intend to apply a special case in a following paper to 
quantum optics. 
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