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Abstract 
In this paper, an SEIR mathematical model of conjunctivitis viral disease is 
formulated. The disease free equilibrium (DFE) and the endemic equilibrium 
points are investigated. The basic reproduction number is computed using 
the next generation matrix method and the local stability of the disease free 
equilibrium is investigated. This threshold characterizes the growth rate of an 
epidemic outbreak and shows that if 0 1R <  the DFE is locally stable and un-
stable when 0 1R > . We analyze the sensitivity of the model according to its 
different parameters. Numerical simulations were performed using the de-
fined parameters to support the theoretical results and compared to one from 
the real data. The results show the suitability of the chosen model of conjunc-
tivitis viral disease that occurred in Burundi for the investigated period of one 
month. 
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1. Introduction 

For a very long time, humankind has been the target of many different kinds of 
illnesses with a range of causes. To protect themselves against these diseases, hu-
man beings have adapted illnesses by taking preventive or curative measures. These 
diseases attack different parts of the human body and, fortunately thanks to their 
ingenuity, humans have been able to develop appropriate countermeasures. Viral 
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conjunctivitis is one of these diseases which have been registered in east Africa 
region. A lot of research has gone into understanding its origins, its development 
and how it spreads through the population. Since March 2024, Burundi has faced 
an epidemic of viral conjunctivitis named also Acute haemorrhagic conjunctivitis 
(AHC) [1]. But this disease has been around for a long time. It was first detected 
in Ghana in 1969 [2]. Conjunctivitis is inflammation of the conjunctiva with three 
causes such as viral, allergic, and bacterial, but most of the cases results from ad-
enovirus [3]. It’s a contagious infectious disease characterized by the rapid onset 
of eye pain, swollen eyelids, foreign body sensation and excessive redness of the 
eyes [4]. It has been observed that mathematical modeling plays a major role in 
the understanding of phenomenon. Mathematical modeling, using data, facilitates 
understanding of how changes can affect results. In combination with data, it helps 
to explain past behavior, predict and forecast future behavior, and assess how 
changes may alter these predictions [5]. Since its outbreak, mathematical researchers 
have developed models to help understand and combat its spread, as well as to 
help decision-makers take appropriate decisions. Reference [6] applies a mathe-
matical optimal control model of haemorrhagic conjunctivitis disease to understand 
its transmission by using two control strategies such as efforts to prevent contact and 
treatment while reference [7] studies the stability of conjunctivitis model with non-
linear incidence term. Authors in [8] study the stability of the model and use iso-
lation and hygiene compliance as control strategies in order to reduce conjuncti-
vitis infection and irritants concentration and the associated cost. Reference [9] 
uses as strategies the sick leaves considered as isolation and treatment to study the 
stability conjunctivitis model. The authors in [10] use outbreak data from 2004-
2015 in China to estimate the effective reproduction number and assess the effi-
cacy of interventions while the authors in [11] study the propagation in western 
sub-Sahara Africa especially during the Harmattan period in public schools, and 
use proper sanitation and training of the educators as mitigating strategies. Also, 
the educational campaign has been used mathematically to study the transmission 
of conjunctivitis [12] while [13] proved that if 0 1R ≤  then this disease will be erad-
icated. Authors in reference [14] applied the effect of under-reporting and behav-
ior changes on the transmission rate to study the transmission dynamics of con-
junctivitis in Mexico. 

The paper is organized as follows. In Section 0, we establish a mathematical model 
for conjunctivitis viral. In Section 1, we investigate the dynamics of our model while 
Section 1 computes the basic reproduction number. Stability and sensitivity of 
the model are analyzed in Section 1 while Section 2 studies numerically the model 
by using its estimate parameters and the collected real data and also make dis-
cussion of the different schema. Finally, We give the conclusion and future per-
spectives.  

2. Mathematical Model Formulation 

This section describes compartmental model of conjunctivitis viral and, identify 
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the parameters used in numerical simulations. The human population at time is 
assumed to be constant because birth rate and death rate of human population 
are approximately equal. From Figure 1, the population is partitioned into four 
compartments: susceptible individuals S , exposed human E, Infected individuals 
I, and recovered individuals R . The total population at any given time is 

( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + + . The following schema was adapted from [11].  
The parameters are defined in Table 1.  
 

 
Figure 1. Conjunctivitis viral scheme. 

 
Table 1. Baseline parameters used in the model. 

Parameters Interpretation Values Units Reference 

b  Birth rate of human population 0.000456 day−1 [12] 

ρ  Transmission rate of infection 0.02 day−1 [7] 

µ  Natural death rate 0.04 day−1 [12] 

δ  
Outflow rate of exposed subjects 

to infectious compartment 
0.3 day−1 Assumed 

γ  Recovery rate 0.08 day−1 [15] 

  
Rate of imminity after recovery 

which is lost and individuals  
become susceptible again 

0.01 day−1 [12] 

 
The resulting explicit equations are as follows  

 
( )

( )

( )

d 1 ,
d
d 1 ,
d
d ,
d
d .
d

S bN SI S R
t bN
E SI E
t bN
I E I
t
R I R
t

ρ µ

ρ µ δ

δ γ µ

γ µ

− = − − + 
 

− = − + 
 

= − +

= − +





 (1) 
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By normalization, we obtain  

 

( )

( ) ( )

( )

( )

1d ,
d

1d ,
d
d ,
d
d .
d

S b SI S R
t b
E SI E
t b
I E I
t
R I R
t

ρ
µ

ρ
µ δ

δ γ µ

γ µ

−
= − − +

−
= − +

= − +

= − +





 (2) 

3. Analysis of the Dynamical Model 
This section determines the boundary of solutions of the System (2). It also com-
putes the disease free equilibrium and the endemic equilibrium point of the same 
system. 

Theorem 1. Let ( ), , ,S E I R  be the solution of the model System (2) with ini-
tial conditions 0S > , 0E ≥ , 0I ≥ , 0R ≥ . The region of epidemiological rele-
vance in the sense of conjunctivitis transmission is given by the set  

( ) 4, , , , bS E I R N
µ+

 
Γ = ∈ ≤ 

 
 .  

Proof. The total population of the model is N S E I R= + + + , therefore we 
have 

 d .
d
N b N
t

µ= −  (3) 

Solving this equation gives  

 ( ) 0 e .tb bN t N µ

µ µ
− 

= − − 
 

 (4) 

When t →∞ , ( ) bN t
µ

→  which implies that 0 bN
µ

< ≤ . Hence all solu-

tions of the model (2) are bounded and enter the region  

( ) 4Γ , , , , bS E I R N
µ+

 
= ∈ ≤ 
 

 . Therefore, Γ  is a positively invariant region. We 

conclude that every solution of our model remains within the region for all 0t > .  
Equating System (2) by zero and solve, we obtain the steady point  

 

( )
( )

( ) ( )( )
( )( )( )

( ) ( )( )
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b bEI
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δ ρ µ γ µ δ µδ
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 (5) 
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In the absence of the disease, meaning when 0I = , we have the following ex-
pression  

 ( )* * * *
0 0, , , ,0,0,0 .bE S E I R E

µ
 

=  
 

 (6) 

In the case where 0I ≠ , we have the endemic disease steady state  

( )* * * *
1 , , ,E S E I R  where * * * *, , ,S E I R  are defined in System (5). 

4. Basic Reproduction Number 

This section computes the basic reproduction number ( 0R ) defined as the average 
number of secondary infections produced by a typical case of an infection in a 
population where everyone is susceptible. Using the next generation matrix de-
fined in [16] (see also [17]), we calculate 0R  for the System (2). Considering X  
and X ′  as the vectors representing infected and uninfected compartments re-
spectively, we have 

 ( ) ( )d ,
d
X
t
= −    (7) 

 ( )d ,
d
X
t
′
=   (8) 

where ( ),X X ′= , ( )  represents the vector of in-flows into infected com-
partments (including new infections) and ( )  is the vector of out-flows. The 
functions   and   are chosen so that ( ) 0≥  and ( ) 0≥ . We de-
note the disease free equilibrium by ( )0, X ′ . Replacing in Equation (7), we have 

( )0, 0X ′ =  and ( )0, 0X ′ = . 
The next generation matrix is given by 1FV − , where  

 
( ) ( )0, 0,

and .
X X

F V
X X′ ′

∂ ∂   = =   ∂ ∂   
 

 

The basic reproduction number 0R  is the spectral radius of the matrix 1FV − . 
From System of equations (2), we define matrices F  and V  as follows: 

 

0 0 0
10 0

0 0 0

F ρ
µ

 
 − =
 
 
 

 (9) 

and 

 

10
.

0 0
0

V

ρµ
µ

µ δ
δ γ µ

− 
 
 =

+ 
 − + 

 (10) 

Computing 1V − , we obtain   

 
( )( )

( )( ) ( ) ( )( )
2 2

1

1 1
1 .

0 0
0

V

µ δ γ µ δ δ ρ µ δ
µ µ µ

µ δ γ µ γ µ
δ µ δ

−

+ + − − + 
− − 

 =
 + + +
 

+ 

 (11) 
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The next generation matrix is then given by 

 ( )
( )( )

( )
( )

1

0 0 0
1 1

0 .

0 0 0

FV
δ ρ ρ

µ γ µ µ δ µ γ µ
−

 
 

− − =  + + +
  
 

 (12) 

From Equation (12), we calculate the basic reproduction number given by 

 ( ) ( )
( )( )

1
0

1
.R FV

δ ρ
ρ

µ µ γ µ δ
− −

= =
+ +

 (13) 

5. Stability and Sensitivity of the Model  

In this section, the stability of the model is treated and the sensitivity of the basic 
reproduction number is analyzed. 

5.1. Stability Analysis of the Model  

This subsection treats the stability of the model (2) using the disease-free equilib-
rium and endemic equilibrium point. It computes the eigenvalues of the Jacobian 
matrix 0J  at each steady point and analyze their signs. 

First, we use the DFE defined in Equation (6) to show that the system of Equa-
tions (2) is locally asymptotically stable. The eigenvalues are the solutions of the 
characteristic equation 

 ( ) 0,iJ E Iλ− =  (14) 

with ( )iJ E  the Jacobian matrix at a given steady state , 0,1iE i =  and I  is de-
fined as the identity matrix of dimension 3 3× . 

Theorem 2. The disease free equilibrium (DFE) is locally stable if 0 1R <  and 
unstable if 0 1R >   

• Consider the DFE 0 ,0,0,0bE
µ

 
 
 

, the Jacobian matrix at this steady point is 

given by 

 ( ) ( )

( )

0

10

1 .0

0

J E

ρµ
µ
ρµ δ

µ
δ γ µ

− − − 
 

− = − + 
 
 − + 

 (15) 

Its characteristic equation is defined as follows:  

 ( ) ( )

( )

0

10

1 0.0

0

J E I

ρµ λ
µ
ρλ µ δ λ

µ
δ γ µ λ

−
− − −

−− = =− + −

− + −

 (16) 

After some algebraic calculations, we obtain  
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 ( ) ( ) ( )( ) ( )2 1
2 0.

δ ρ
λ µ λ δ µ γ λ δ µ γ µ

µ
− 

+ + + + + + + − = 
 

 (17) 

Thus, 1 0λ µ= − <  and ( ) ( )( ) ( )2 1
2 0

δ ρ
λ δ µ γ λ δ µ γ µ

µ
−

+ + + + + + − = . Let 

2
1 2 0a aλ λ+ + =  with 1 2a δ µ γ= + +  and ( )( ) ( )

2
1

a
δ ρ

δ µ γ µ
µ
−

= + + − . 

Writing 2a  in term of 0R , we have ( )( )( )2 01a Rδ µ γ µ= + + − . 

From the criteria of Ruth-Hurwitz [18] for the stability of the systems, if 1 0a >  
and 2 0a > , then the eigenvalues are negative. It is obvious that 1 0a >  and 

2 0a >  if 0 1R < . Therefore, the DFE is asymptotically stable. 
• For this case, consider the Jacobian matrix at the endemic equilibrium point 

given by Expression (5), we have 

 ( ) ( )

( )

* *

* *1

1 10

1 1 .

0

I S
b b

J E I S
b b

ρ ρµ

ρ ρµ δ

δ γ µ

− − − − − 
 

− −=  − + 
 − + 

 (18) 

Computing the eigenvalues associated to ( )1J E , we have 

( ) ( )

( )

* *

* *1

1 10

1 1 0

0

I S
b b

J E I I S
b b

ρ ρµ λ

ρ ρλ µ δ λ

δ γ µ λ

− −
− − − −

− −− = =− + −

− + −

 

3 2
1 2 3 0,c c cλ λ λ⇔ + + + =  

where  

1 02 ,c Rµ γ δ µ= + + +  

( ) ( ) ( )2 0 0 1 ,c R Rµ δ µ µ δ µ δ ρ= + + + − −    

( )( ) ( )2
3 0( ) 1 .c Rµ δ µ γ µ µδ ρ= + + − −  

The above eigenvalues are negative in the case where , 1,2,3ic i =  fulfill the 
conditions of Routh-Hurwitz. One can verify that: 
• 1 0c > ,  
• 2 0c > ,  
• 1 2 3 0c c c− > . 

It is clear that 1c  is positive. For having 2 0c > , it must satisfy  
( ) ( ) ( )0 0 1R Rµ δ µ µ δ µ δ ρ+ + + > −   . For 1 2 3 0c c c− >  to be verified, we have 

( ) ( )( ) ( )2
0 1Rµ δ µ γ µ µδ ρ+ + > − . Therefore the Routh-Hurwitz criteria is satis-

fied and the endemic equilibrium point is locally asymptotically stable. 

5.2. Parameter Sensitivity Analysis  

Sensitivity analysis shows how changing values of independent variables have an 
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impact on particular dependent variables [19]. It helps to distinguish different pa-
rameters that have a high effect on the basic reproduction number 0R  when they 
are changed, and should be taken in consideration when intervention strategies 
are applied. 

Definition 5.1. We defined the normalized forward sensitivity index of 0R  [8] 
which is differentiable with respect to a given parameter Φ , by 

 0 0

0

.R R
RΦ

∂ Φ
ϒ =

∂Φ
 (19) 

Using Definition 5.1, we have 

 

( )( )

( )

0

0

0

0

1 ,
1

,
1

,

2 1 .

R

R

R

R

δ

ρ

γ

µ

δ
µ δ ρ
ρ
ρ
γ

µ γ
µ γ

µ µ γ µ δ

ϒ = −
+ −

ϒ = −
−

ϒ = −
+
+

ϒ = − −
+ +

 (20) 

From Table 2, the positive sign means that 0R  will increase as the parameters 
increase while the negative signs indicate the decrease in 0R  as the parameters 
decrease. Furthermore, parameter with positive sign index means that an increase 
or decrease in the values of this parameter will lead to an increase or decrease in 

0R . Also, the parameters with negative sign indices indicate that increasing or 
decreasing the values will decrease (or increase) 0R . We can see from Table 2 the 
parameters that have the most effect on 0R , and consequently on the entire 
model, are: ,δ γ  and µ . 

 
Table 2. Sensitivity of 0R  evaluated to its parameter values given in Expression (13). 

Parameters Sensitivity index 

δ  +0.099 

ρ  −0.02 

µ  −0.416 

γ  −0.66 

6. Numerical Simulations and Discussion 

We carry out numerical simulations to compare our model with the results of the 
real data obtained from Kamenge University Hospital Center (CHUK). The data 
were collected from February 13th, 2024 which corresponds to the starting point 
of our simulations (day 0), when the CHUK alerts the new virus with already 9 
confirmed cases in one day up to March 25th, 2024. During our survey, 310 new 
cases have been reported in one month (30 days). Note that, according to the spe-
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cialist, the conjunctivitis viral doesn’t cause any death but destabilizes the eye ca-
pacity of seeing. 

We show that our conjunctivitis model describes well the real data of daily con-
firmed cases during one month outbreak. The following list is the number of in-
fected cases who went to consult the ophthalmologist at Kamenge University Hos-
pital Center per day: [9, 2, 10, 3, 11, 19, 29, 16, 26, 16, 14, 17, 9, 19, 10, 8, 11, 7, 20, 
14, 11, 5, 6, 2, 2, 4, 3, 2, 3, 2] represented by the blue line on Figure 2 and Figure 
3. 

 

 
Figure 2. Number of confirmed cases per day. The blue line corresponds to the real data 
obtained from CHUK while the red line has been obtained by solving numerically the Sys-
tem of equations (2) where the parameters are taken from Table 1. 

 

 
Figure 3. Infected cases per day (a) obtained by increasing of 0.01 at each parameter that appears into Expression (13) of 0R  or 
by decreasing those parameters (b) where the original values are in Table 1. 

 
Figure 3(a), Figure 3(b) have been obtained by adjusting the most sensitive 

parameters to the basic reproduction number i.e.: , ,δ γ µ  and ρ  while keeping 
fixed the others parameters that do not appear in the 0R  expression. Those figures 
shows that not only their change has the effect on the reproduction number but 
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also the impact is evident and detected on the infected red curve. 
By increasing the parameters influencing the number of basic reproduction by 

0.01, we can see on Figure 3(a) that the red curve representing the number of 
infected cases per day found numerically reaches its maximum on the fifth day, 
with the maximum number around 28 cases lower than that shown in Figure 2, 
which is estimated at 30 infected cases. Moreover, between days 25 and 30, the 
curve found by the real data and that found numerically are very close to each 
other and tend to converge on the time axis, indicating the immediate extinction 
of the disease. In Figure 3(b), by reducing the parameters influencing the basic 
reproduction number, we can see that the maximum number of infection is found 
on the tenth day, estimated at 22 cases. Between days 25 and 30, there is a remark-
able gap, which means that in this situation, the number of infected will be under 
control beyond 30 days, hence the persistence of the disease. 

7. Conclusion 

In this paper, an SEIR mathematical model of conjunctivitis viral disease has been 
formulated. The basic reproduction number for the model has been calculated and 
explored as a key parameter in understanding the dynamics of disease. Stability of 
the model has been studied and the sensitivity analysis was performed, which 
showed that 0R  is highly sensitive to the infected rate of E  class δ , recovery 
rate γ , death rate µ  and the transmission rate of infection ρ . Numerical results 
are performed in Section 2 where estimated parameters have been confronted 
with the real data. These results show that our model fits enough the real data of 
daily infected cases from conjunctivitis viral disease as shown in Figure 2, which 
reflects the reality in Burundi, especially in Bujumbura town. These results would 
be useful for the decision-makers and to the health NGO or health authorities to 
know better the parameters that need to be controlled than others in order to mit-
igate the transmission of the disease. Our model can also be adjusted and used to 
study the transmission of the conjunctivitis viral disease in other regional coun-
tries where the outbreaks have been noted. In the future, this model can be im-
proved by including control measures and the compartment of the infected cases 
who have taken treatment without a medical prescription. 
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