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Abstract 
With the deep penetration of modern technology into the agricultural field, 
greenhouses have become an indispensable part of agricultural production, 
and the demand for internal navigation and positioning technology is increas-
ingly prominent. Due to the shielding nature of the internal environment of 
greenhouses, traditional single navigation positioning methods often fall short 
in pursuing high-precision positioning. Therefore, this article aims to address 
the navigation and positioning challenges in greenhouse environments by 
conducting in-depth research on multi-source information fusion positioning 
methods to improve positioning accuracy and stability. This article establishes 
a novel multi-source navigation algorithm. This algorithm integrates data from 
multiple sensors, including but not limited to GNSS signals, IMU data, and 
magnetic field information, to achieve more accurate positioning results. To 
verify the correctness and effectiveness of the proposed algorithm, a naviga-
tion and positioning device was designed and extensively tested through ex-
periments. Through the experimental verification of this device, the perfor-
mance and reliability of the algorithm can be more accurately evaluated. After 
experimental verification, the multi-source information fusion positioning 
method adopted in this article demonstrates higher positioning accuracy and 
stronger robustness in greenhouse environments, providing strong support 
for precise management of greenhouse agricultural production and effectively 
responding to complex and changing greenhouse environments. In addition, 
simulation testing and functional testing have been completed, further con-
firming the practical application effect of the algorithm. This article not only 
provides innovative solutions for precise navigation of greenhouses, but also 
brings new inspiration and methods to the research of positioning technology 
in related fields, promoting the further development of positioning technol-
ogy. 
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1. Introduction 

With the continuous increase of global population and the increasing scarcity of 
arable land resources, improving agricultural production efficiency and precision 
has become particularly crucial, which is of great significance for ensuring food 
security and sustainable development. The continuous advancement of modern 
agricultural technology has brought new opportunities for agricultural produc-
tion, and greenhouse is one of the important technologies [1]. However, with the 
continuous expansion of greenhouse scale and the increasingly complex internal 
structure, how to accurately locate and navigate inside the greenhouse has become 
a key issue that urgently needs to be solved in the current agricultural production 
field. Many scholars have begun to focus on how to use modern technological 
means to improve the positioning accuracy and efficiency of greenhouses [2]. 
Among them, Wireless Sensor Network (WSN) technology is a widely studied di-
rection by domestic researchers [3]. The greenhouse wireless sensor network po-
sitioning algorithm based on Received Signal Strength Indicator (RSSI) improves 
the positioning accuracy between nodes by optimizing the measurement method 
of signal strength [4]. However, WSN technology still faces problems such as high 
node deployment costs and significant signal interference in practical applications. 
In addition to WSN technology, ultrasonic positioning technology has also been 
favored by domestic scholars. A researcher designed a greenhouse positioning sys-
tem based on ultrasound, which achieves target positioning by measuring the 
propagation time of ultrasound signals [5]. However, the application of ultrasonic 
positioning technology in greenhouse environments is still affected by factors 
such as multipath effects and temperature drift, which may lead to certain devia-
tions in positioning results, affecting the accuracy and reliability of positioning. 
To compensate for the shortcomings of a single positioning technology, a research 
team proposed a multi-source information fusion positioning method based on 
Wireless Sensor Network (WSN) and ultrasound technology [6]. By combining 
the advantages of both, the accuracy and stability of positioning were effectively 
improved. This article focuses on the special environment inside greenhouses and 
develops a greenhouse positioning technology based on multi-source information 
fusion. Due to the shortcomings of current methods, many or all, in order to com-
pensate for the shortcomings of a single sensor, this article develops a greenhouse 
positioning technology based on multi-source information fusion for the special 
environment inside the greenhouse. It comprehensively uses multiple sensors, in-
cluding GNSS, IMU (Inertial Measurement Unit), magnetic field sensors, etc., and 
improves the accuracy and stability of positioning through data fusion and pro-

https://doi.org/10.4236/as.2025.165029


Z. X. Guo 
 

 

DOI: 10.4236/as.2025.165029 451 Agricultural Sciences 
 

cessing [7]. 

2. Related Work 

In 2022, another research team proposed a greenhouse localization algorithm based 
on deep learning [8]. This algorithm can accurately determine the location infor-
mation inside the greenhouse by training a large number of data samples, provid-
ing important technical support for agricultural production. Johnson and Smith de-
veloped a greenhouse positioning technology based on image recognition, which 
achieves high-precision positioning of targets in complex environments [9]. This 
provides a new approach for precise management of greenhouses. This system uses 
cameras to capture image data inside the greenhouse and achieves precise target 
positioning through image processing technology, providing an effective means 
for greenhouse management. Robinson and Davis designed a greenhouse naviga-
tion system based on LiDAR in the field of laser navigation [10]. The system uses 
LiDAR to scan the surrounding environment, construct a three-dimensional map 
of the greenhouse, and plan and navigate the path based on the map information. 
In addition to single positioning technology, multi-source information fusion 
technology has also been widely studied abroad. Miller and Wilson proposed 
a multi-source information fusion positioning method based on GNSS, IMU, and 
LiDAR [11]. This method integrates data from multiple sensors to achieve high-
precision positioning in complex environments, providing important support for 
precision agriculture management in greenhouses. Jackson and Anderson pro-
posed a neural network-based greenhouse localization algorithm [12]. This algo-
rithm learns and predicts the position of the target in the greenhouse by training 
a large amount of historical data. 

3. Establishment of Multi-Source Information Fusion  
Navigation Algorithm 

3.1. Data Preprocessing and Synchronization 

In multi-source navigation systems, data preprocessing and synchronization play 
a crucial role in ensuring the accuracy and effectiveness of information fusion. 
The system integrates a variety of sensors, including GNSS, IMU, and magnetic 
field sensors [13]. These sensors have significant differences in sampling fre-
quency, data format, and data transmission timeliness. Therefore, careful pre-
processing and synchronization of data from different sources are necessary to 
lay a solid foundation for subsequent information fusion and accurate posi-
tioning. 

For GNSS data, in order to improve this situation, methods such as Kalman 
filtering or extended Kalman filtering can be used to smooth GNSS signals through 
dynamic modeling and prediction, thereby reducing errors and improving po-
sitioning accuracy [14]. IMU data typically includes readings from accelerom-
eters and gyroscopes, which are crucial for determining the posture and motion 
state of the device. When preprocessing IMU data, it is generally necessary to 
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calculate parameters such as velocity and displacement through integration, and 
to remove deviations caused by the sensor’s own characteristics. This usually in-
volves de-biasing the raw data and applying appropriate filtering techniques to 
reduce noise. Magnetic field sensor data also has important applications in nav-
igation, especially indoors or in areas with poor GNSS signals. However, the read-
ings of magnetic field sensors are easily affected by metallic objects in the surround-
ing environment, resulting in interference from hard and soft iron [15]. In the 
preprocessing stage, in order to obtain more accurate magnetic field strength and 
direction information, various interferences must be corrected to ensure the accu-
racy and reliability of the data. The calibration process may involve collecting 
readings from multiple locations, identifying and removing interfering com-
ponents through algorithms. 

Mathematically, data preprocessing can be seen as applying one or more trans-
formation functions preX  to the raw data rawX , resulting in the preprocessed 
data raw preX X= : 

 ( )pre pre rawX f X=   (3.1) 

here, pref  may represent a series of complex operations, including but not limited 
to filtering, denoising, normalization, and data conversion. 

After completing the preprocessing of various sensor data, the next key step 
is to achieve synchronization of these data over time. In view of the difference 
in sampling frequency between different sensors, and the possible delay in data 
transmission and processing, these factors have an impact on the system per-
formance, and need to be processed and optimized by corresponding technical 
means. The core of data synchronization is to align the data from different sen-
sors in time to ensure that they correspond to the same measured value at the same 
time point or time period. This typically involves matching the timestamps of 
each sensor’s data and using interpolation methods to estimate the data values 
at a given point in time. 

Let it  be the timestamp of each sensor data, and ix  be the data value under 
the corresponding timestamp. In order to achieve synchronization, we need to 
establish a common time reference. In most cases, to ensure the accuracy and reli-
ability of the data, the sensor or system clock with the highest accuracy is usually 
selected as the reference. Then, for other sensors, at each reference time point t, 
we use interpolation methods to find the closest data value x: 

 ( ){ }( ), ,i ix Interpolate t x t=   (3.2) 

here, ( )Interpolate  represents the interpolation function, which can effectively 
predict and estimate data values at any time by utilizing known data points and 
their corresponding timestamps, thereby achieving accurate analysis and pro-
cessing of data. The commonly used interpolation techniques include linear in-
terpolation, polynomial interpolation, spline interpolation, and other methods. 
The specific choice of method depends on the characteristics and accuracy re-
quirements of the data. 
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3.2. Multi-Source Information Fusion Strategy 

Multi-source information fusion strategy is the core component of multi-source 
navigation system. It can effectively integrate information from different sensors 
to achieve accurate estimation of key parameters such as target position and atti-
tude. This system integrates multiple information sources such as GNSS, IMU, 
and magnetic field sensors [16], each with its own advantages and limitations. 
Weighted fusion is an intuitive and practical information fusion technique [17]. 
In this method, we assign a corresponding weight to each sensor based on its accu-
racy, reliability, and historical performance. The core idea of weighted fusion method 
is to optimize the allocation of weights, so that the information of all sensors 
can be combined in the most effective way, thereby improving the accuracy of 
overall positioning. 

Mathematically, weighted fusion can be simply represented as a weighted aver-
age of data from various sensors. Let ix represent the data value of the i-th sensor, 

iw  be the weight of that sensor, and satisfy the condition that the sum of the 
weights is 1, that is 

 
1

1
n

i
i

w
=

=∑   (3.3) 

The weighted fused data value fusedx  can be calculated by the following equa-
tion: 

 
1

n

fused i i
i

x w x
=

= ⋅∑   (3.4) 

Kalman filter is an efficient recursive data processing algorithm, particularly 
suitable for state estimation of dynamic systems [18]. In multi-source naviga-
tion system, Kalman filter is widely used to fuse data from different sensors to 
provide optimal estimation of system state. The Kalman filter achieves iterative 
estimation of the system state through two consecutive steps of prediction and 
update, thereby accurately grasping the dynamic changes of the system. In the 
prediction stage of the estimation process, the filter uses the dynamic model of 
the system to predict the state at the next moment. In the update process, the 
filter uses the latest observation data to correct the predicted values, in order 
to obtain more accurate state estimation values, thereby enhancing the position-
ing accuracy and stability of the system. 

In a multi-source navigation system, constructing a comprehensive state vec-
tor can comprehensively cover key information such as position, velocity, and atti-
tude of the system, providing a solid data foundation for subsequent navigation 
and positioning. Then, the data from GNSS, IMU, and magnetic field sensors are 
fused using a Kalman filter to achieve optimal estimation of the state vector. 

The update equation and prediction equation of the Kalman filter can be spe-
cifically expressed as: 

Update equation: 

 ( )| 1 | 1ˆ ˆ ˆk k k k k k k kx x K z H x− −= + −   (3.5) 
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Among them, ˆkx  is the estimated state value corresponding to time k, | 1ˆk kx −  is 
the predicted state value at time k based on the state at the previous time point 
and the dynamic model, kK  is the Kalman gain, which determines the degree 
of influence of new observation data on state estimation, kz  is the observation 
value at time k, kH  represents the observation matrix, which can map the state 
space to the observation space. 

Prediction equation: 

 1|ˆ ˆk k k kx F x+ =   (3.6) 

Among them, 1|ˆk kx +  represents the estimated state value ˆkx  at time point 
k and the predicted state value at time point k + 1 based on the dynamic model. 

kF  represents the state transition matrix, which can describe the evolution law 
of the system state change from time point k to time point k + 1. 

In practical applications, it is necessary to design and adjust the parameters 
required for the Kalman filter based on the specific system model and sensor char-
acteristics, such as the corresponding state transition matrix kF , observation matrix 

kH , process noise covariance matrix, and observation noise covariance matrix. 
The selection of these parameters mentioned earlier will directly affect the per-
formance of the filter and the accuracy of state estimation. 

3.3. Implementation and Optimization of Positioning Algorithm 

The implementation and optimization of positioning algorithms is undoubtedly 
a core link in the development process of multi-source navigation systems. It not 
only concerns the positioning accuracy of the system, but also the real-time per-
formance is crucial for the navigation system [19]. With the continuous advance-
ment of technology, more and more advanced positioning algorithms are being 
integrated into multi-source navigation systems, aiming to improve the accuracy 
and response speed of positioning, thereby optimizing user experience and system 
performance. 

In GNSS positioning, the least squares method is used to estimate the precise 
position of the receiver. Clearly define the actual position coordinates ( ), ,x y z  
of the receiver, namely the position coordinates ( ), ,i i ix y z  of the i-th satellite 
and the pseudorange observation value iρ . The pseudorange equation can be ex-
pressed as: 

 ( ) ( ) ( )( )
2

2 2 22

1 1

n n

i i i i i i
i i

r x x y y z zρ ρ
= =

= = − − + − + −∑ ∑   (3.7) 

Among them, c is the speed of light, and tδ  represents the deviation between 
the receiver and the satellite clock. Due to sources of error such as atmospheric 
interference and multipath effects, the observed iρ  may deviate from the true 
value. 

Using the least squares method, seek to minimize the sum of squared differences 
between all observed pseudoranges and calculated pseudoranges, in order to ob-
tain the optimal position estimate for the receiver. If r is the residual between the 
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observed and estimated values, then the objective function corresponding to the 
least squares method can be expressed as: 

 ( ) ( ) ( )( )2
2 2 22

1 1

n n

i i i i i
i i

J r x x y y z zρ
= =

= = − − + − + −∑ ∑   (3.8) 

By solving: 
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=

∂
∂

=
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∂

=
∂

  (3.9) 

The position estimation of the receiver can be obtained. 
When dealing with nonlinear systems, the extended Kalman filter has demon-

strated its unique advantages, providing an efficient and accurate state estimation 
method [20]. The state equation and observation equation corresponding to the 
selected system are as follows: 

 
( )
( )

1 1k k k

k k k

x f x w

z h x v
− −= +

= +
  (3.10) 

Among them, f and h are nonlinear functions, and 1kw −  and kv  are process 
noise and observation noise, respectively. 

The essence of extended Kalman filter lies in linearly approximating nonlinear 
functions at each time node to achieve more accurate state estimation. Assuming 
that | 1ˆx kx −  corresponds to the state estimation at the previous time point, the state 
prediction at this time point can be expressed as: 
 ( )| 1 1ˆ ˆx k kx f x− −=   (3.11) 

The linearized system matrix and observation matrix are: 

 1

| 1

ˆ

ˆ

k

k k

k
x

k
x

fF
x

fH
x

−

−

∂
=
∂

∂
=
∂

  (3.12) 

Subsequently, the state estimation is performed using standard Kalman filtering 
update steps. 

To improve positioning accuracy, optimization techniques such as gradient de-
scent, Newton’s method, and quasi-Newton’s method can be used [21], which can 
effectively enhance the performance of navigation systems and ensure the accuracy 
and stability of positioning. 

Gradient descent minimizes the loss function through iterative updates: 

 ( )1k k kx x a f x+ = − ∇   (3.13) 

Among them, a  is the learning rate, and ( )kf x∇  is the gradient of the loss 
function at kx . 

Newton’s method relies on the second-order derivative information of the loss 
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function to perform update operations: 

 ( )1
1k k k kx x H f x−
+ = − ∇   (3.14) 

Among them, kH  is a Hessian matrix. 
The quasi-Newton method iteratively approximates the inverse matrix of the 

Heisenberg matrix, avoiding the complexity and computational complexity of di-
rectly calculating the Heisenberg matrix, thereby improving the efficiency and prac-
ticality of optimization algorithms. 

4. Experimental Result 
4.1. Testing Process and Algorithm Establishment 

This article uses the Extended Kalman Filter (EKF) technique to process data parsed 
from images. Extended Kalman Filter is a Kalman filtering method designed spe-
cifically for nonlinear systems [22]. Nonlinear systems are vastly different from 
linear systems, and specific methods and techniques are required to ensure accu-
racy and effectiveness when dealing with such systems. 

The principle of extended Kalman filter is based on the model of nonlinear sys-
tem, and its form is: 

 
( )

( )
1k k k

k k k

x f x w

z h x v
+ = +

= +
  (4.1) 

Among them, f  and h  are non-linear functions, corresponding to the system’s 
state transition and observation model, respectively. kw  and kv  correspond to 
process and observation noise, respectively. 

The extended Kalman filter and the classical linear Kalman filter have similari-
ties in algorithm steps and structure, but the former exhibits unique advantages 
in dealing with nonlinear systems [23]. However, the main difference lies in the 
way they handle nonlinear system models and matrices A and H. In the extended 
Kalman filter, a nonlinear system model equation is used instead of the traditional 
linear system equation, and new matrices A and H are obtained by solving the 
partial derivatives of the system model. In the process of solving the partial deriv-
atives, the estimated value obtained at the previous time point is used as a reference 
point to complete linearization. 

The algorithm structure of Extended Kalman Filter can be summarized as fol-
lows: Firstly, the nonlinear function f is biased towards the state vector x at the 
estimated value kx  to obtain matrix A; similarly, the observation function h is 
biased towards x at the predicted value kx  to obtain matrix H. Then, these ma-
trices are used for filtering updates and prediction steps. 

To verify the performance of the extended Kalman filter, it is planned to build 
a simulation environment. This environment will simulate a dynamic system with 
nonlinearity and generate corresponding observation data. By applying the extended 
Kalman filter in this simulation environment, its effectiveness in practical appli-
cations can be evaluated, including positioning accuracy, convergence speed, and 
stability. This will provide valuable reference information for us to further optimize 
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filter parameters and algorithms. 
 

 

Figure 1. Test data processing flow. 
 

As shown in Figure 1, importing from various sensors such as GPS odometry 
IMU, experimental data on image features. Initialize filter parameters, including 
state vector X (representing the position and orientation of the robot), error co-
variance matrix P (representing the uncertainty of state estimation), measurement 
noise covariance matrix R, process noise covariance matrix Q, etc. Filter out key 
information for positioning from the data, including GPS odometer data, IMU, 
and image feature data. Perform necessary conversions and formatting on the fil-
tered data to ensure the efficiency and accuracy of subsequent processing. Use 
odometer data (i.e. robot’s movement distance and steering angle) to predict the 
new position of the robot. This is usually done based on the motion model of the 
robot, such as the differential drive model. Use feature data obtained from images 
as observations. These data include the position information of the target relative 
to the landmark obtained by identifying specific landmarks. The above prediction 
and update steps are iteratively performed on the entire dataset, with each itera-
tion using new observations to correct the robot’s position estimation. Through mul-
tiple iterations, the filter can gradually reduce the uncertainty of state estimation, 
thereby improving the positioning accuracy. 
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4.2. Functional Testing and Validation 

This function mainly implements a positioning algorithm based on multi-source 
information (GPS odometer data and image feature data), and evaluates the accu-
racy of the positioning algorithm by comparing it with the real path. The program 
finally outputs a comparison chart between two paths and the real path, as well as 
a comparison chart between odometer error and fusion error, as shown in Figure 2. 

 

 

Figure 2. Path comparison diagram. 
 

The real path is a path obtained through some high-precision method (such as 
GPS, motion capture system, etc.), used as a benchmark for evaluating other po-
sitioning methods. The odometer path is a path calculated solely based on GPS 
odometer data. Due to the cumulative error of the odometer, this path may grad-
ually deviate from the true path. The fusion path is a path calculated through a fu-
sion algorithm that combines GPS odometer data, IMU, and image feature point 
data. Ideally, this path should be closer to the real path. From the path comparison 
chart, the differences between the three paths can be visually observed. If the fusion 
path is closer to the real path than the odometer path, it indicates that the fusion 
algorithm effectively improves the positioning accuracy. 

As shown in Figure 3, the error comparison chart illustrates the variation of 
odometer error and fusion error with the number of data points. 

As the distance traveled increases, the cumulative error of the odometer may 
gradually increase. This usually manifests as a gradually rising curve. If the fusion 
algorithm is effective, this curve should be lower than the odometer error curve, 
indicating that the fused positioning data is more accurate than using odometer 
data alone. By comparing these two curves, the performance of the fusion algorithm  
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Figure 3. Error comparison chart. 

 

in reducing positioning errors can be intuitively evaluated, thereby verifying its 
effectiveness. 

5. Conclusion 

The theme of this article is to solve the problem of navigation and positioning in 
greenhouses. Through in-depth exploration of multi-source information fusion po-
sitioning technology, we strive to improve the accuracy and stability of position-
ing. This article successfully establishes a new multi-source navigation algorithm. 
This algorithm achieves more accurate positioning by integrating GNSS signals, 
IMU data, and image feature data. The mutual compensation between IMU and 
GNSS signals effectively avoids their respective shortcomings and promotes their 
respective advantages. Experimental data shows that using multi-source information 
fusion positioning method can significantly improve positioning accuracy in green-
houses, while exhibiting high robustness. This method can effectively cope with 
the variability of greenhouse environment and provide strong support for precise 
management of greenhouses. In addition, simulation testing and functional test-
ing have been completed to further confirm the practical application effect of the 
algorithm. These experimental results fully demonstrate the excellent performance 
of the multi-source information fusion navigation algorithm in practical applica-
tions, highlighting its advantageous position in the field of navigation and position-
ing. This article not only provides a new solution for precise navigation inside green-
houses, but also offers new ideas and methods for positioning technology research 
in related fields. This research achievement is expected to inject new impetus into 
the development of modern agricultural technology, promote its continuous ad-
vancement, and achieve higher efficiency and wider application. In future devel-
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opment, laser radar can be introduced into the system to improve its positioning 
accuracy. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this paper. 

References 
[1] Chen, Q., Xie, Y., Guo, S., Bai, J. and Shu, Q. (2021) Sensing System of Environmental 

Perception Technologies for Driverless Vehicle: A Review of State of the Art and Chal-
lenges. Sensors and Actuators A: Physical, 319, Article ID: 112566.  
https://doi.org/10.1016/j.sna.2021.112566 

[2] Ma, W.F., Shi, J.Z., Ge, L.H., Dai, K., Zhong, S.R. and Wu, L. (2020) Research Progress 
on Monocular Visual Odometry for Autonomous Vehicles. Journal of Jilin University 
(Engineering and Technology Edition), 50, 765-775. 

[3] Wu, X.Y. (2018) Research on Pose Estimation of Autonomous Vehicles Based on La-
ser Odometry. Master’s Thesis, Chang’an University. 

[4] Li, X., Li, Q., Yin, C. and Zhang, J. (2022) Autonomous Navigation Technology for 
Low-Speed Small Unmanned Vehicle: An Overview. World Electric Vehicle Journal, 
13, Article 165. https://doi.org/10.3390/wevj13090165 

[5] Qiao, X., Li, X.M. and Xiao, D.Y. (2019) Indoor Positioning Design Based on Ultrasonic 
Ranging. Electronic Design Engineering, 27, 102-105. 

[6] Li, B.X., Qi, H.R., Lu, Y. and Tang, Y. (2020) Overview of Indoor Positioning Algorithms 
and Technologies. Electronic Components and Information Technology, 4, 47-50. 

[7] Babak, E.S., Mahdi, R.,Rodolfo, V., Arash, R. and Yaser, P.F. (2022) High-Definition Map 
Representation Techniques for Automated Vehicles. Electronics, 11, Article 3374.  
https://doi.org/10.3390/electronics11203374 

[8] Peng, Y.S., Li, J.L., Xu, Z.F., He, G.H. and Jia, P. (2021) Overview and Prospect of Blue-
Tooth Indoor Positioning Technology. Household Appliances, No. 12, 58-64. 

[9] Ge, M.J. and Zhao, Z.H. (2021) Indoor Positioning System for the Internet of Things 
Based on Bluetooth Technology. The Internet of Things, 11, 52-57. 

[10] Mair, N. and Mahmoud, Q. (2012) A Collaborative Bluetooth-Based Approach to Lo-
calization of Mobile Devices. Proceedings of the 8th IEEE International Conference on 
Collaborative Computing: Networking, Applications and Worksharing, Pittsburgh, 14-
17 October 2012, 1-9. https://doi.org/10.4108/icst.collaboratecom.2012.250437 

[11] Wang, W. and Zhu, Q.S. (2021) Research on Circular Triangle Localization Algorithm 
in Wireless Sensor Networks. Modern Electronic Technology, 44, 47-50. 

[12] Zhang, J. and Chen, W.L. (2021) Research on Indoor Personnel Positioning System Based 
on ZigBee Node Technology. Scientific and Technological Innovation, No. 20, 173-174. 

[13] Li, H. (2018) Research on LTE Indoor Positioning Based on Regional Division. Master’s 
Thesis, Xiangtan University. 

[14] Challa, N.S.R., Kesari, P., Ammana, S.R., Katukojwala, S. and Achanta, D.S. (2019) 
Design and Implementation of Bluetooth-Beacon Based Indoor Positioning System. 
2019 IEEE International WIE Conference on Electrical and Computer Engineering 
(WIECON-ECE), Bangalore, 15-16 November 2019, 1-4.  
https://doi.org/10.1109/wiecon-ece48653.2019.9019997 

[15] Shi, G.T., Wang, B.Y. and Wu, B. (2015) Overview of Indoor Positioning Methods Based 
on Wi-Fi and Mobile Intelligent Terminals. Computer Engineering, 41, 39-44. 

https://doi.org/10.4236/as.2025.165029
https://doi.org/10.1016/j.sna.2021.112566
https://doi.org/10.3390/wevj13090165
https://doi.org/10.3390/electronics11203374
https://doi.org/10.4108/icst.collaboratecom.2012.250437
https://doi.org/10.1109/wiecon-ece48653.2019.9019997


Z. X. Guo 
 

 

DOI: 10.4236/as.2025.165029 461 Agricultural Sciences 
 

[16] Luo, Y.F., Wang, P.F. and Chen, Y.F. (2017) Research on Wi-Fi Indoor Positioning Al-
gorithm Based on RSSI Ranging. Measurement and Control Technology, 36, 28-32. 

[17] Tang, Y., Bai, Y., Ma, Y. and Lan, Z.L. (2016) Research on the Application of Wi-Fi Based 
Fingerprint Matching Algorithm in Indoor Localization. Computer Science, 43, 73-75. 

[18] Guo, X., Elikplim, N.R., Ansari, N., Li, L. and Wang, L. (2020) Robust Wi-Fi Localiza-
tion by Fusing Derivative Fingerprints of RSS and Multiple Classifiers. IEEE Transac-
tions on Industrial Informatics, 16, 3177-3186.  
https://doi.org/10.1109/tii.2019.2910664 

[19] Wang, H., Deng, Z., Zheng, X. and Fu, X. (2021) DOP Analysis for Indoor Hybrid 
TDOA/TOA Positioning Based on Mobile Communication Network. In: Yang, C. and 
Xie, J., Eds., China Satellite Navigation Conference (CSNC 2021) Proceedings, Springer, 
576-585. https://doi.org/10.1007/978-981-16-3142-9_55 

[20] Ma, D.J., Li, M. and Zhang, R.J. (2022) TOA Estimation of Wi-Fi Indoor Positioning 
Signals Based on Waveform Edge Detection. Journal of Zhengzhou University (Engi-
neering Edition), 43, 15-20. 

[21] He, C.W., Yuan, Y.B. and Tan, B.F. (2021) An Iterative Least Squares Algorithm Based 
on UWB TDOA Positioning Mode. Geodesy and Geodynamics, 41, 806-809. 

[22] Chen, D.L., Zhu, G.M., Huo, Y.Z. and Wang, J.B. (2021) Research on Azimuth Prediction 
Method Based on Terminal Sampling Data AOA. Jiangsu Communication, 37, 32-
36. 

[23] Zhang, B.S., Tong, Z.Y., Tang, S.F., Tong, M.L. and Xu, C.L. (2018) Overview of Indoor 
Positioning Technology Based on RSSI. Computer Age, No. 7, 1-4, 8. 

https://doi.org/10.4236/as.2025.165029
https://doi.org/10.1109/tii.2019.2910664
https://doi.org/10.1007/978-981-16-3142-9_55

	Research on Greenhouse Positioning Based on Multi-Source Information Fusion
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Establishment of Multi-Source Information Fusion Navigation Algorithm
	3.1. Data Preprocessing and Synchronization
	3.2. Multi-Source Information Fusion Strategy
	3.3. Implementation and Optimization of Positioning Algorithm

	4. Experimental Result
	4.1. Testing Process and Algorithm Establishment
	4.2. Functional Testing and Validation

	5. Conclusion
	Conflicts of Interest
	References

