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Abstract 
The article is devoted to decision making regarding controlling the opera-
tion of tubular gas heaters (TGH) on wood pellets. Experimental results of the 
study of the operation of TGH on pellets are used for decision making. Exper-
iments have shown the dependence of undesirable gas emissions, carbon ox-
ides and nitrogen oxides in combustion products, on the parameters of the 
heater operation. The nature of the dependence is contradictory, it is not pos-
sible to simultaneously minimise emissions of carbon oxides and nitrogen, it 
is necessary to look for compromise solutions. The task was set to find such 
operating modes of pellet heaters that provide acceptable values of gas emis-
sions at different power levels during heater operation. To solve the problem, 
we used expert judgements in the form of matrices of fuzzy pairwise com-
parison of separate results of heater operation with each other. The fuzzy de-
cision selection functions were constructed, which extend not only to the set 
of experimental results, but also to the whole set of possible variation of the 
TGN operation parameters. For each selection function, their maxima are found, 
which provide the operation of TGN at different power modes with acceptable 
gas emissions values. These results can serve for three-stage control of the 
TGN. 
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1. Introduction 

Tube gas heaters (TGH) can be seen as the development of infrared gas tube heat-
ers (IGTH). IGTHs have a long history of development and use. You can specify 
these articles [1]-[3] and this comprehensive scientific report [3]. These heaters 
are serially produced by a number of manufacturers in different countries, for ex-
ample—ROBERTS GORDON [4]. The main components of such heaters are: au-
tomatic gas burner, tube emitter, infrared reflector and exhaust or supply fan. Tech-
nical solutions appeared, and due to the change in the heat exchange part, the field 
of application of gas tube heaters expanded, as reflected in [5]. Finally, pellet tube 
heaters appeared, and the gas burner was replaced by a pellet [6] [7]. The external 
view of a pellet burner unit with pellet bunker and control unit in an operating 
heat supply system and view of the experimental setup for testing pellet burner 
with tubular gas heater are shown in Figure 1 and Figure 2. Experimental stud-
ies have shown that gas emissions from pellet gas burners depend significantly 
on the operating modes of tubular gas heaters. Figure 3 and Figure 4 show the 
operation of gas burners on pellets for two modes of operation. It is of interest 
to find such operating modes of tube heaters that would ensure minimum gas 
emissions. 

In this paper, evolutionary search methods considering fuzzy experimental data 
and binary choice relations are used to solve the control problem of tube heaters. 
Evolutionary search methods have been successfully applied to find solutions to 
various optimisation problems in the presence of one or more criteria, for exam-
ple, [8] discusses the use of evolutionary search to solve a multi-criteria problem. 
Evolutionary algorithms play a dominant role in solving problems with multiple 
conflicting objective functions. They aim at finding multiple Pareto-optimal solu-
tions, thus in [9] a hybrid constrained evolutionary algorithm (HCEA) is pro-
posed which uses two penalty functions simultaneously. Particle swarm optimisa-
tion (PSO) algorithms have been successfully used to solve various complex opti-
misation problems. However, the balance between diversity and convergence is 
still a problem that requires continuous study, so evolutionary particle swarm op-
timisation with dynamic search (EEDSPSO) has been proposed [10]. In [11], a de-
cision-making approach for fuzzy Fermathean soft set based on a score matrix was 
proposed. A numerical example has been given to demonstrate the validity of the 
proposed approach. In [12], the proposed method is used to predict the output value 
in empirical applications where the observed value is a range or average of several 
values rather than a real fixed number. Stochastic optimisation plays an important 
role in the analysis, design and operation of modern systems [13]. A considerable 
number of papers have been devoted to stochastic optimisation, most notably [14] 
[15]. Evolutionary fuzzy systems are one of the greatest advances in the field of 
computational intelligence. They consist of evolutionary algorithms used to de-
sign fuzzy systems [16]. Modelling methods for fuzzy systems have received con-
siderable development in the works [17] [18]. The work [19] uses the developed 
modification of genetic algorithm to optimise the performance of neural network. 
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In [20], the concept of trigonometric similarity measure (SM) for spherical fuzzy 
sets (SFS) is used, which has become very important in solving various pattern 
recognition and medical diagnosis problems. The approach to solve fuzzy nonlin-
ear programming problems was presented in [21] [22]. In [23] proposed a multi-
objective nonlinear programming problem to be solved as a linear programming 
problem. In [24] used evolutionary algorithm for multi-objective optimisation. In 
[25], binary choice relations were used for decision making . This direction was 
further developed, for example, in [26]-[28]. Decision making in complex systems 
by methods of self-organisation was developed in the works of Ivakhnenko O. G. 
[29] and his followers. In the works of Yudin D. Б. [30] [31], as well as in [32], 
computational methods of decision-making theory were considered, in which de-
cision search problems are formulated in terms of binary relations, and the prob-
lems of nonlinear mathematical programming are transformed into generalised 
mathematical programming problems. Methods of evolutionary decision search 
in problems with binary choice relations were first developed in [33], then devel-
oped in [34] [35]. Finally, in [36] [37] a scheme for constructing an evolutionary 
selection mechanism for decision making in multi-criteria systems with a sam-
ple of fuzzy experimental results was proposed. It is of interest to use evolution-
ary search methods for decision making with several criteria to control the op-
eration of a tubular gas heater on pellets, which determined the content of this 
work.  

 

 
Figure 1. External view of a pellet burner unit with pellet 
bunker and control unit in an operating heat supply system. 
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Figure 2. External view of the experimental setup for testing pellet 
burner with tubular gas heater. 

 

 
Figure 3. View of operating pellet gas burner at minimum output. 
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Figure 4. View of operating pellet gas burner at maximum output. 

2. The Problem of Fuzzy Modeling of Pellet Burner 

Mathematical modeling of a pellet burner for tube gas heater is considered. The 
basis for this mathematical modeling is the results of an experimental study of the 
operation of the pellet burner. The results of the study of the work of the pellet 
burner [33] are presented in the form Tables 1-6. There are 5 dimensional param-
eters and 3 dimensionless parameters (complexes) that characterize the operating 
pellet burner. Dimensional parameters are: burner area, S; useful area for primary 
air passage, Sp; primary air flow, Lp; total air flow, L; burner power, W. Outlet 
system functions of the heater: ash transfer by the time, YA; concentration CO at 
exhaust gases, YCO; concentration NOx at exhaust gases, YNOx. A relationship was 
established between dimensionless complexes and parameters in the form 

( ) ( )2
1 2 3 1 2 3; ; ; , , 0P P AS S L L W Y L S φΠ = Π = Π = Π Π Π = ,      (1) 

where  

( ) ( ) ( ) ( )2 3 4 5
3 1 1 2 1 1 1 21 1d d d ddΠ = Π Π −Π Π −Π Π             (2) 

where parameters 1 5, ,d d  are obtained from the condition of minimizing the 
relative error of the model (2) at the points of the training sequence, namely d1 = 
0.0116, d2 = 1.465, d3 = −1.029, d4 = 6.34, d5 = −0.14. 

https://doi.org/10.4236/ojapps.2025.155083


K. Dudkin et al. 
 

 

DOI: 10.4236/ojapps.2025.155083 1201 Open Journal of Applied Sciences 
 

3. Materials and Methods  

We will assume that the system is characterized by a set of parameters  

{ }1 2, , , ,vN
vv v v v v= ∈Ω  and there are also initial parameters (functions, criteria) 

{ }1 2, , , ,wN
ww w w w w= ∈Ω . We will assume that there is the set of experimental 

results in the form , , 1, , ; 1, , ; 1, ,v wi i
j j v v w w fu v w i N i N j N= = = =   , where 

fN  the number of experiments. The total number of experiments fN  was di-
vided into three subgroups 1 2 3, ,u u u , so that 1u  is the subgroup of the minimal 
heater power ( )1- 6 kWW ∈ , 2u  is the average heater power ( )6 -18 kWW ∈ , 
and 3u  is the maximal heater power ( )18 - 50 kWW ∈ , so it may be represent in 
form: 

1

2

3

1 1

2 2

3 3

, , 1, , ; 1, , ; , ,

, , 1, , ; 1, , ; , ,

, , 1, , ; 1, , ; , ,

v v

v v

v v

i i
j j v v w w f

i i
j j v v w w f

i i
j j v v w w f

u v w i N i N j j N

u v w i N i N j j N

u v w i N i N j j N

= = = =

= = = =

= = = =

  

  

  

          (3) 

If we give the experimental results an expert assessment using fuzzy compari-
sons of the results with each other, then we will obtain a fuzzy correspondence 
matrix of experiments, which can be represented in the form  

1 1

2 2

3 3

1

2

3

, 1, , ; 1, ,

, 1, , ; 1, ,

, 1, , ; 1, ,

ij f f

ij f f

ij f f

Z z i N j N

Z z i N j N

Z z i N j N

= = =

= = =

= = =

 

 

 

                  (4) 

For expert evaluation the rating scale was used  
{ }0;0.3;0.4;0.5;0.6;0.8;1.0ijz ∈ , which make sense: {much worse; worse; slightly 

worse; comparable; slightly better; better; much better}. We also assume that the 
fuzzy binary relation 1SR  with the membership function ( )

1
,

SR z zµ is known. We 
assume that the known selection function ( )1 zΓ  is such that  

( )( ) ( )( ) ( ) ( )1 1 1 2 1 1 2 1 2 1, ,Sz x z x z x R z x x xΓ ≥ Γ ≡ ∀ ∈Ω .  
And we assume that the known selection function ( )2 zΓ  with fuzzy binary 

relation 2SR  with the membership function ( )
2

,
SR z zµ  is known, so that 

( )( ) ( )( ) ( ) ( )2 1 2 2 1 2 2 1 2 2, ,Sz x z x z x R z x x xΓ ≥ Γ ≡ ∀ ∈Ω .  
And we assume that the known selection function ( )3 zΓ  with fuzzy binary 

relation 3SR  with the membership function ( )
3

,
SR z zµ


 is known, so that 
( )( ) ( )( ) ( ) ( )3 1 3 2 1 3 2 1 2 3, ,Sz x z x z x R z x x xΓ ≥ Γ ≡ ∀ ∈Ω . 

It is necessary to find a solution 1x∈Ω  and for all 1y∈Ω  so that 

( ) ( )1 1x yΓ ≥ Γ .                          (5) 

And it is necessary to find a solution 2x∈Ω  and for all 2y∈Ω  so that  

( ) ( )2 2x yΓ ≥ Γ .                          (6) 

And it is necessary to find a solution 3x∈Ω   and for all 3y∈Ω  so that 

( ) ( )3 3x yΓ ≥ Γ .                          (7) 
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Algorithm with Mathematical Expectations 

In the binary relations (5)-(7) we replace selection function ( )1 zΓ , ( )2 zΓ , 
( )3 zΓ  the sample mean values, which is calculated in the form  

( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

3 3

, 1 , , , 1 , ,

, 1 , .

i i

i

n n

i i i i
i i
n

i i
i

x n x x n x

x n x

θ θ θ θ

θ θ

Γ = Γ Γ = Γ

Γ = Γ

∑ ∑

∑
         (8) 

where iθ -implementation of a random process, rn -total number of realizations 
of a random process. We replace binary relation (5)-(7) with  

( ) ( ) ( ) ( )
( ) ( )

1 1 2 21 2

3 33

, , , , , ,

, , .
S S

S

xR y x y xR y x y

xR y x y

θ θ θ θ

θ θ

≡ Γ ≥ Γ ≡ Γ ≥ Γ

≡ Γ ≥ Γ

 



        (9) 

The methods for solving the problems are based on the approach to the evolu-
tionary search for SR -optimal solutions. For subset X , X ⊂Ω  we denote the 
function of choice in the form 

( ) ( ){ }| \ , SS X x X y X S X xR y= ∈ ∀ ∈                  (10) 

We shall assume that set ( )S X  contains the concrete number of elements—

opN . 
We shall that for the set Ω it was determined relation GR  with membership 

function ( ),
GR x yµ


: [ ]0,1Ω×Ω→ . Relation GR  will be termed generation re-
lation. For subset X , X ⊂Ω  we denote the function of generation in the form 

( ) ( )HG X X G X=                        (11) 

( ) ( ){ }| , , , 0
GH G RG X y x X yR x x yµ= ∈Ω ∃ ∈ >


             (12) 

We shall assume that set ( )G X  contains the concrete number of elements—NE. 
The algorithm to search SR -optimal solution can be represented as 

( )( )1 , 1,2,k kX S G X k−= =                     (13) 

The iterate algorithm (13) is the general form of evolutionary search. 
According to [34] [35] we will consider the decomposition  

1
,

BN

k jk ik jk
j

X X X X
=

= =∅



                   (14) 

The algorithm (13) takes the form 

( )( )1 , 1,2, ; 1,2, ,jk jk BX S G X k j N−= = =              (15) 

These iterate algorithms (13), (15) are the general form of evolutionary search. 
The evolutionary search algorithm converges to the most preferred solution of 

choice relation. This position has been theoretically and experimentally proven 
for clear choice relationships. For a fuzzy choice, this position is based on experi-
mental results. Suppose that the solutions that passed the selection at some step 
of the iteration for all branches of the evolutionary search have the form { }i

ljx , 
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where i is the number of the variable value, for the selected l-th solution 
1, , ll N=   in the j-th branch of the search 1, , Bj N=  . Average values for all 

selected solutions can be calculated as follows: 

0
1 1

1 lB NN
i i

lj
j lB l

x x
N N = =

= ∑∑                        (16) 

At the same time, the values of the empirical dispersion will be 

( )22
0

1 1

1
1

lВ NN
i i

і lj
j lВ l

x x
N N

σ
= =

= −
− ∑∑                    (17) 

The generation of new solutions at the next step of the iteration is performed 
with a normal distribution for each. 

Parameter ix  and centers in , 1, ,i
lj Bx j N=  , and variance 2

iσ . That is, the 
membership function 

GRµ  for the fuzzy generation relation is the density func-
tion of the normal distribution: 

( )
2

1 1, exp
22G

i i
i i

R
ii

y xy xµ
σσ

  − = −  
   π 

              (18) 

4. Results 
4.1. Isolation of Experimental Data for the Minimum Power of a 

Tubular Heater 

The experimental data for the minimum power of a tubular heater was presented 
in Table 1. 
 

Table 1. Experimental data for the minimum power of a tubular heater. 

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.0025 0.00021 201 2.7 6.4 3.57 2765 89 

2 0.0025 0.00021 168 4.1 9 7 2902 134 

3 0.0025 0.00021 215 2.2 4.7 1.6 1429 146 

4 0.0025 0.00021 178 2.5 5.3 1.8 812 201 

5 0.0025 0.00021 167 2.8 4.5 0.7 2148 160 

6 0.0025 0.00021 155 3 6 1.7 722 265 

7 0.0025 0.00021 127 2.5 8.2 1.9 1099 134 

8 0.0025 0.00021 123 3 9 1 450 188 

9 0.0025 0.00021 210 2.75 3.9 1.3 2926 161 

10 0.0025 0.00021 175 4.1 9 3.4 6663 56 

11 0.0025 0.00021 172 4.3 7.5 5.6 2845 148 

12 0.0025 0.00021 152 2.2 5 5 1826 116 
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All experimental data of Table 1 are divided into two arrays—training and test 
data, Table 2 and Table 3. 

 
Table 2. The experimental data for the minimum power of a tubular heater—training sequence. 

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.0025 0.00021 201 2.7 6.4 3.57 2765 89 

2 0.0025 0.00021 215 2.2 4.7 1.6 1429 146 

3 0.0025 0.00021 178 2.5 5.3 1.8 812 201 

4 0.0025 0.00021 123 3 9 1 450 188 

5 0.0025 0.00021 210 2.75 3.9 1.3 2926 161 

6 0.0025 0.00021 175 4.1 9 3.4 6663 56 

7 0.0025 0.00021 172 4.3 7.5 5.6 2845 148 

 
Table 3. The experimental data for the minimum power of a tubular heater—test sequence. 

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.0025 0.00021 168 4.1 9 7 2902 134 

2 0.0025 0.00021 167 2.8 4.5 0.7 2148 160 

3 0.0025 0.00021 155 3 6 1.7 722 265 

4 0.0025 0.00021 127 2.5 8.2 1.9 1099 134 

5 0.0025 0.00021 152 2.2 5 5 1826 116 

4.2. Isolation of Experimental Data for the Average Power of a  
Tubular Heater 

The experimental data for the average power of a tubular heater is presented in 
Table 4. 

 
Table 4. Experimental data for the average power of a tubular heater. 

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.01 0.00643 633.6 46.8 18 0.21 4500 257 

2 0.0025 0.00021 165 4.3 18 10 7214 109 

3 0.0025 0.00021 151 5.1 18 7 7844 125 

4 0.0025 0.00021 201 2.8 11.3 4.9 1311 193 
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Continued  

5 0.0025 0.00021 182 3.9 12.8 3.6 779 212 

6 0.0025 0.00021 150 3.5 11.2 2.8 617 259 

7 0.0025 0.00021 140 4 18 5.4 1144 240 

8 0.0025 0.00021 111 3.4 11.3 1.9 246 151 

9 0.0025 0.00021 105 3.8 15 3 438 190 

10 0.0025 0.00021 97 4.1 15 4.8 1225 238 

11 0.0025 0.00021 80 6.5 18 10.8 945 217 

 
All experimental data in Table 4 was divided into two arrays—training and test 

data, Table 5 and Table 6. 
 

Table 5. Experimental data for the average power of a tubular heater—the training sequence. 

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.01 0.00643 633.6 46.8 18 0.21 4500 257 

2 0.0025 0.00021 151 5.1 18 7 7844 125 

3 0.0025 0.00021 201 2.8 11.3 4.9 1311 193 

4 0.0025 0.00021 182 3.9 12.8 3.6 779 212 

5 0.0025 0.00021 111 3.4 11.3 1.9 246 151 

6 0.0025 0.00021 80 6.5 18 10.8 945 217 

 
Table 6. Experimental data for the average power of a tubular heater—the test sequence. 

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.0025 0.00021 165 4.3 18 10 7214 109 

2 0.0025 0.00021 150 3.5 11.2 2.8 617 259 

3 0.0025 0.00021 140 4 18 5.4 1144 240 

4 0.0025 0.00021 105 3.8 15 3 438 190 

5 0.0025 0.00021 97 4.1 15 4.8 1225 238 

4.3. Isolation of Experimental Data for the Maximum Power of a 
Tubular Heater 

The experimental data for the maximum power of a tubular heater was presented 
in Table 7. 
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Table 7. Experimental data for the maximum power of a tubular heater.  

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.005 0.00286 572.4 25.2 33.5 2.1 510 293 

2 0.005 0.00286 543.6 23.4 31.3 2.88 6734 207 

3 0.005 0.00286 543.6 21.6 54.7 2.77 43 259 

4 0.01 0.00643 651.6 54 32 0.47 694 205 

5 0.01 0.00643 684 50.4 35.5 5.5 110 230 

6 0.0025 0.00021 196 3 10 5 1019 210 

7 0.0025 0.00021 136 4.5 22.5 10.5 853 257 

8 0.0025 0.00021 128 7 22.5 11.3 783 261 

9 0.0025 0.00021 85 5 22.5 10.3 830 203 

10 0.0025 0.00021 168 5.1 18 35 1986 131 

 
All experimental data in Table 7 was divided into two arrays—training and test 

data, Table 8 and Table 9. 
 

Table 8. Experimental data for the maximum power of a tubular heater—the training sequence. 

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.005 0.00286 572.4 25.2 33.5 2.1 510 293 

2 0.005 0.00286 543.6 23.4 31.3 2.88 6734 207 

3 0.005 0.00286 543.6 21.6 54.7 2.77 43 259 

4 0.0025 0.00021 196 3 10 5 1019 210 

5 0.0025 0.00021 136 4.5 22.5 10.5 853 257 

6 0.0025 0.00021 128 7 22.5 11.3 783 261 

 
Table 9. Experimental data for the maximum power of a tubular heater—the test sequence. 

№ S SP L LP W YA YCO YNOx 

 m2 m2 m3/h m3/h kW g/min mg/m3 mg/m3 

1 0.01 0.00643 651.6 54 32 0.47 694 205 

2 0.01 0.00643 684 50.4 35.5 5.5 110 230 

3 0.0025 0.00021 85 5 22.5 10.3 830 203 

4 0.0025 0.00021 168 5.1 18 35 1986 131 
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4.4. Expert Evaluation the Rating Scale 

For expert evaluation the rating scale was used { }0;0.3;0.4;0.5;0.6;0.7;1.0ijb = ; 
which make sense: {much worse; worse; slightly worse; comparable; slightly bet-
ter; better; much better}. Two sets were identified for expert evaluation: 1) training 
sequence array, 2) testing sequence array. These heater comparison matrices are 
presented below 

Comparison matrix for minimum power heaters training sequence array 
0.5, 0.4, 0.2, 0.1, 0.5, 0.8, 0.5 
0.6, 0.5, 0.3, 0.1, 0.7, 0.8, 0.6 
0.8, 0.7, 0.5, 0.3, 0.7, 0.8, 0.7 
0.9, 0.9, 0.7, 0.5, 0.9, 1.0, 0.9 
0.5, 0.3, 0.3, 0.1, 0.5, 0.8, 0.5 
0.2, 0.2, 0.2, 0.0, 0.2, 0.5, 0.2 
0.5, 0.4, 0.3, 0.1, 0.5, 0.8, 0.5  
Comparison matrix for minimum power heaters testing sequence array 
0.5, 0.6, 0.3, 0.3, 0.4 
0.4, 0.5, 0.3, 0.3, 0.4 
0.7, 0.7, 0.5, 0.4, 0.5  
0.7, 0.7, 0.6, 0.5, 0.6 
0.6, 0.6, 0.5, 0.4, 0.5 
Comparison matrix for average power heaters training sequence array 
0.5, 0.7, 0.4, 0.3, 0.2, 0.3 
0.3, 0.5, 0.3, 0.2, 0.1, 0.2 
0.6, 0.7, 0.5, 0.4, 0.2, 0.4 
0.7, 0.8, 0.6, 0.5, 0.3, 0.6 
0.8, 0.9, 0.8, 0.7, 0.5, 0.7 
0.7, 0.8, 0.6, 0.4, 0.3, 0.5  
Comparison matrix for average power heaters testing sequence array 
0.5, 0.3, 0.4, 0.3, 0.4 
0.7, 0.5, 0.6, 0.3, 0.6 
0.6, 0.4, 0.5, 0.3, 0.5 
0.7, 0.7, 0.7, 0.5, 0.7 
0.6, 0.4, 0.5, 0.3, 0.5 
Comparison matrix for maximum power heaters training sequence array 
0.5, 0.7, 0.2, 0.5, 0.5, 0.5 
0.3, 0.5, 0.1, 0.3, 0.3, 0.3 
0.8, 0.9, 0.5, 0.8, 0.8, 0.8 
0.5, 0.7, 0.2, 0.5, 0.5, 0.5 
0.5, 0.7, 0.2, 0.5, 0.5, 0.5 
0.5, 0.7, 0.2, 0.5, 0.5, 0.5 
Comparison matrix for maximum power heaters testing sequence array 
0.5, 0.1, 0.5, 0.6 
0.9, 0.5, 0.9, 0.9 
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0.5, 0.1, 0.5, 0.6 
0.4, 0.1, 0.4, 0.5 

4.5. Results for Choice Functions 

There are presented results with choice function in the form (19)-(21). 

( ) ( )( )25
1 21 1 i i iix a a r

=
Γ = + −∏                    (19) 

1 1 2 2 3 3 4 4 5 5
1 1 2 2 1 2 3 1 2 4 1 2 5 1 2; ; ; ;r x x r x x r x x r x x r x x= − = − = − = − = −        (20) 

( ) ( )1 2 1 2Sx x x R xΓ ≥ Γ ≡                       (21) 

Parameters 1 2,i ia a  were obtained after evolutionary search the choice func-
tion for array 1 of experimental data and for array 2 of experimental data. The 
results of evolutionary search the choice function is presented in Tables 10-12. 

 
Table 10. Parameters of the fuzzy choice function for the minimum power heater. 

 i 1ia  2ia  

1 2,i ia a  1 −0.3071252 0.8014811 

1 2,i ia a  2 0.1532593 −0.3323147 

1 2,i ia a  3 0.4978446 −0.6202395 

1 2,i ia a  4 −0.4215357 −0.01208718 

1 2,i ia a  5 0.003904735 0.3095479 

 
Table 11. Parameters of the fuzzy choice function for the average power heater. 

 i 1ia  2ia  

1 2,i ia a  1 −0.3627225 0.2329837 

1 2,i ia a  2 −0.05706916 −0.3366217 

1 2,i ia a  3 0.3229559 −0.273395 

1 2,i ia a  4 −0.1807748 −0.1512893 

1 2,i ia a  5 −0.0007113587 −0.8040671 

 
Table 12. Parameters of the fuzzy choice function for the maximum power heater. 

 i 1ia  2ia  

1 2,i ia a  1 −0.4144383 0.1412199 

1 2,i ia a  2 −0.1136156 −0.1227887 

1 2,i ia a  3 0.2455468 −0.07456189 

1 2,i ia a  4 −0.07079072 −0.08849594 

1 2,i ia a   5 0.06467061 −0.443341 
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The choice function in the form (19)-(21) with specific values of parameters 

1 2,i ia a , 1, ,5i =   was used to solve the problem of generalized mathematical 
programming: to find maximum of choice function  

( )max xΓ  with restrictions: 1 2 30.08 0.7;0.01 0.1;0.001 0.8≤ Π ≤ ≤ Π ≤ ≤ Π ≤ . 

The results of determining the maxima of the selection functions for the three 
heater powers are shown below (Table 13). 

 
Table 13. Values of parameters 1 2,i ia a , 1, ,5i =   as the result of solving mathematical 
programming problem. 

 
Dimensionless 
complex 1Π  

Dimensionless 
complex 2Π  

Dimensionless 
complex 3Π  

minimum power heaters 0.4420147 0.03648748 0.02673138 

average power heaters 0.4619097 0.04038155 0.02226561 

maximum power heaters 0.5120847 0.04504298 0.01542043 

 
For gas emission concentrations there are experimental dependencies [6] in the 

form (22): 
For CO: 

( ) ( )( ) ( )( )2 532
4 1 1 1 2 4 3 2П 1 П 1 П П П П

b bbb b= ⋅ − − ⋅ ⋅ +          (22) 

where: b1 = 0.0256, b2 = 5.945, b3 = 63.4, b4 =1.95, b5 = 0.48. 
For NOx: 

( ) ( ) ( ) 53 4
5 1 2 1 2 3П П П П аа аа а= + ⋅ ⋅ ⋅                 (23) 

where: а1 = 1.096; а2 = 31.33; а3 = 3.2155; а4 = −01776; а5 = 0.7470. 
Using dimensionless dependencies for harmful gases, the corresponding con-

centrations of harmful gases at different tube heater powers can be calculated in 
the form of a Table 14. 

 
Table 14. Concentrations of gas emissions at optimum operation modes of heaters.  

minimum power heaters 
5 kW 9 kWW< <  

average power heaters 
9 kW 18 kWW≤ <  

maximum power heaters 
18 kW 55 kWW≤ <  

Optimum concentrations CO 

0.00307COα =  0.003001COα =  0.002205COα =  

20.3 mg/m3 20.04 mg/m3 17.18 mg/m3 

Optimum concentrations NOX 

1.579
XNOα =  1.5809

XNOα =  1.604
XNOα =  

242.1 mg/m3 242.15 mg/m3 243.9 mg/m3 
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As it can be seen from the table of gas emission concentrations, at operation of 
heaters on all three modes of operation at selection of modes from the table of the 
most preferable modes the conditions for gas emissions are provided in the form 
of 

3130 mg mCOα ≤  and 3250 mg m
XNOα ≤              (24) 

Such conditions correspond, in particular, to the current Ukrainian requirements 
for natural gas combustion. Therefore, providing such conditions for combustion 
of wood pellets in tubular gas heaters should be considered quite acceptable. 

5. Discussion and Conclusions 

Three power modes of wood pellet fired tubular gas heaters (minimum power, 
medium power and maximum power) were determined based on the results of the 
experiments. The experiments showed that significant gas emission values were 
observed in each of the modes and it was not possible to minimise CO and NOx 
emissions simultaneously. The challenge was to find compromise solutions for all 
modes of heater operation that would provide the most preferred favourable gas 
emission values. Using fuzzy expert judgements of heater performance, the exper-
imental modes were compared with each other in the form of a matching matrix. 
Using evolutionary search, fuzzy choice functions were obtained for the three modes 
of heater operation. For each fuzzy choice function, maxima were found on the 
entire set of possible parameters, not only on the set of experiments. The obtained 
dimensionless criteria at the points of maxima give the most favourable values for 
decision making in all three modes. At the same time, as shown by the final anal-
ysis, these modes ensure the operation of tubular gas heaters on pellets at quite 
acceptable gas emissions. The obtained results can be used to construct a three-
stage control of the heater operation mode. To use the fuzzy selection procedure, 
which takes into account various aspects of the decisions to be made, it is advisable 
to construct several fuzzy selection functions and then solve a multi-criteria opti-
misation problem. For its formulation it is also convenient to use binary choice 
relations. 

The use of matrices for pairwise comparisons of objects is a rather cumbersome 
procedure, and it should be further improved.  

Indeed, the results presented in this article primarily pertain to the specific tubе 
heater under investigation, as they are based on concrete experimental data. As a sci-
entific contribution, the article proposes a decision-making methodology grounded 
in experimental results, which are interpreted through fuzzy modeling. The meth-
odology involves constructing a choice function and employing expert assess-
ments to establish preferences under multi-criteria conditions. The maxima of the 
choice function are then identified to support final decision-making. For other 
types of tube heaters, this methodology can certainly be applied, provided that all 
necessary research procedures are followed, to determine their own recommended 
control parameters. 
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The reliability of the obtained results is ensured as follows. All experimental 
data are divided into two sequences (sets): a training set and a validation set. 
The choice functions and their maxima are determined exclusively based on in-
formation from the training set, while the validation set is used to assess the reli-
ability of the findings. 

The application of evolutionary search methods for decision-making is based 
on our prior theoretical and experimental results, where the convergence of the 
developed evolutionary algorithms to the optimal solution, in terms of the binary 
preference relation, has been proven with probability one. 
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