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Abstract 
We solve numerically an eigenvalue elliptic partial differential equation (PDE) 
ranging from two to six dimensions using the generalized multiquadric 
(GMQ) radial basis functions (RBFs). Two discretization methods are em-
ployed. The first method is similar to the classic mesh-based discretization 
method requiring n centers per dimension or a total nd points. The second 
method is based upon n randomly generated points in dℜ  requiring far 
fewer data centers than the classic mesh method. Instead of having a crisp 
boundary, we form a  “fuzzy” boundary. Using the analytic or numerical in-
verse interior and boundary operators, we find the local and global minima 
and maxima to cull discretization points. We also find that the GMQ-RBF 
“flatness” can be controlled by increasing the GMQ exponential, β. We per-
form a search to find the smallest root mean squared error (RMSE) by varying 
the exponent, the maximum, the minimum range of the GMQ shape parame-
ter, and boundary influence, with the exponential having the most influence. 
Because the GMQ-RBFs are essentially nonlinear, it follows that the starting 
point of the simple search influences the end result. The optimal algorithm for 
high dimensional PDEs is still the subject of much research and may wait for 
the common place availability of massively parallel quantum computers for 
even higher dimensional PDEs and integral equations (IEs). 
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1. Introduction 

e more familiar practical applications of integral and partial differential equa-
tions occur in two- or three-dimensional context; however, higher dimensional 
equations may occur in financial, quantum molecular and nuclear applications, 
nuclear fusion, genetics, etc. Since analytical solutions do not exist or are so over-
whelmingly complex, numerical solutions are required. 

e standard approach of discretization of the in-dimensional hyperspace soon 
leads to the dilemma of the “curse of dimensionality”, see [1]. For example, in a 3D 
problem, a discretization of 10 points per dimension requires 103 data centers 
whereas a problem in 10D with 10 points per dimension requires 1010 data center 
variables, and the correspond coefficient matrix will have 1020 elements.  

A variety of algorithms have attempted to address the “curse of dimensionality”. 
Among these are: operator splitting [2], Monte Carlo methods [3], and Quasi 
Monte Carlo methods [4], Domain Decomposition, see [5] [6] and Adaptive 
Sparse Grids see [7]. Papers [2] to [6] use the neural network (NN) procedure to 
execute a large number of simulations to train the NN to obtain optimal results. 

Domain decomposition is most useful for elliptic PDEs; the solution is split into 
many approximately equally sized smaller problems on separate subdomains using 
pseudo boundary conditions. Using overlapping or non-overlapping conditions, 
the solutions are iterated until the error drops below the acceptance threshold. e 
variable transformation process can be as simple as a “rotation of a linear combi-
nation of independent variables to achieve a simpler system”; an example would 
be the combination of the mass, total energy, and principal momentum PDEs to 
produce the characteristic variables. Neural networks, see [8] [9], have been used 
to find approximate dimension reduction to problem of a large number of dimen-
sions. The purpose of dimensionality reduction aims to provide better under-
standing of the data for both you and your model, since without dimensional re-
duction, many problems would be impossible to simulate. 

In [10], the authors develop a new method of scaling up physics-informed neu-
ral networks (PINNs) to solve arbitrary high-dimensional PDEs; the Stochastic 
Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces 
corresponding to different dimensions. Dimensionality reduction can be achieved 
by computing the eigenvectors of the covariance matrix of the independent coor-
dinates. Operator splitting can have an effect if and only if processes are sufficiently 
separable or weakly coupled, see [11]. 

In this paper, we will examine the traditional numerical approach of discretizing 
the domain, Ω, consisting of d-dimensions. If ethe ζth dimension of each is dis-
cretized with kmζ  points, then the total number of discretization points N is: 

 D
kN mζ

ζ= Π    (1) 

Assume ( )U x  is a function of point, d∈ℜx . Also, assume that ( )U x  can 
be expanded in terms of N basis functions such that  

 ( ) ( )1j
N

j jU xφ α
=

= ∑x   (2) 
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where jφ  is a basis function d∈ℜx  and jα  is the that is found by solving the 
interpolation problem: 

 αΦ = U .  (3) 

where ( )iU x  is an N × 1 column vector of the dependent variable at N locations, 
and Φ is an N × N matrix of the form:  

 
1,1 1, 1 1

,1 ,

N

N N N N N

U

U

φ φ α

φ φ α

     
    
    

     

=

  





 



 ,   (4) 

where ,i jφ  represents the ith basis function evaluated at the point, jx . 
Consider the general integral or partial differential equation of the form:  

  ( ) ( ), ,U t f t=x x  over Ω\∂Ω with di scretization points,   (5) 

 ( ) ( ), ,U t g t=x x  on ∂Ω, with nb boundary discretization points,   (6) 

e subscripts i and b refer to the interior and boundary domains, respectively.  
We use the generalized multiquadric (GMQ) radial basis function: 

 ( ) 2 21 ij jx r c
β

φ = +      (7) 

where  

 ( )22
ij i jr y= −x   (8) 

where 2
ijr  is the squared Euclidean distance or an appropriate geodesic, and 2

jc  
is the dilutional shape parameter, and β  is non-integer exponent, and 1 2β ≥ − . 

Assume the inverse operators, 1−  and 1− , exist. Then, the solution, ( ),U x t , 
over the entire domain, Ω, is: 

 ( ) ( ) ( ), , ,I BU x t U x t U x t= + .  (9) 

If Dirichlet boundary conditions are enforced, then   on the boundary is the 
identity operator. en we can locate the maxima, minima and inflection points 
on the boundary and discretize these locations. If the discretized points are stored 
as a matrix of nB rows and nd columns, then we may search the matrix for the local 
and global maxima and minima. Similarly, over the interior, we can locate the 
maxima, minima, and inflection points to discretize these locations. In addition, 
if the local interpolation is a low order polynomial, some points may be culled 
from the discretization set, similar to the sparse grid method for either meshed or 
randomly ordered discretization. 

e test problem studied in this paper is the eigenvalue problem over a hyper-
cube of 2 to 6 dimensions. 

 ( ) ( ) ( )2 2U x U xζ ζ λΣ ∂ =  over Ω\∂Ω,   (10)  

 ( ) ( ), cos i iU x t x= Σ  on ∂Ω.   (11)  

We shall obtain the solutions by traditional uniform meshing and the proposed 
method of finding the maxima, minima, and saddle points and discretized these 
regions with randomly generated d-dimensional points.  
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A d-dimensional point is represented by 

  ( )1 2, , , dx x x=x  ,   (12) 

where the superscript denotes the dimensionality of the point, and the subscript 
denotes the index of the point location. We shall assume that the computational 
domain is a dimensional hyper-cube and whose boundary surfaces are (d-1)-di-
mensional hypercubes. Each hyper-cube has 2d vertex points, 3d lines, and 2d sur-
faces.  

For simplicity, assume the hyper-cube is discretized by m points along each 
dimension. Then a uniformly distributed set of m points per dimension will have 
N points, where 

 dN m= .   (13)  

The problem to be solved numerically is a d-dimensional Poisson eigenvalue 
problem of the form: 

 ( ) ( )2 2U Uλ∇ = −x x  over Ω\∂Ω,   (14) 

 ( ) ( )1cos dU x x= + +x   on ∂Ω.   (15) 

The exact solution is: 

 ( ) ( )1cosexact dU x x= + +x  ,   (16) 

where 2 dλ− = − . 
The forcing function for the interior problem, Ω\∂Ω, is simply ∇2 whose inverse 

is d dx x′∫ ∫ . Given that  

 ( ) ( )1cos df x x= + +x  ,  (17)  

  then ( ) ( )1cos dF x d x x− ∗ + + .   (18)  

Each side of the d-dimensional hypercube ranges from −π/2 to π/2. Since the 
random number d-dimensional generator will yield numbers from −π/2 to 1, each 
coordinate must be linearly scaled to the interval [−π/2, π/2]. In addition, from 
Equations (17) and (18), the two to six dimensional summations range from [−π/2, 
π/2] to [−6π/2, 6π/2], respectively. Rather sparse sampling between the extrema is 
needed, thereby allowing for the culling of superfluous data centers. Because of the 
random nature of the process, we will not predict the size of the set of equations. 

We can determine the local and global maxima and minima by examining F(x), 
the analytically or numerically integrated forcing function. For discretization 
points away from the extrema, we can delete those points between extrema if the 
variations are small in magnitude. 

The analytic or numerical integration of the forcing function over both the in-
terior and boundary and domain will yield information about the locations of the 
global and local extrema. Having found the extrema locations, those points asso-
ciated with smooth variations can be deleted, thus reducing the condition number 
and execution time. However, the deletion of points is only convenient for ran-
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domly generated points.  
Two discretization schemes will be used to solve numerically the Poisson eigen 

value problem: 
1) e classic mesh-based discretization scheme, and 
2) e randomly generated discretization scheme with data center culling. 

2. Classic Mesh Discretization Results 

The classical discretization method is to the familiar classic finite difference, ele-
ments or volumes methods. for 5 and 6 dimensional hypercubes the memory ca-
pacity of most available computers in the set of tables below, we present the results 
of a search for the lowest RMSE. Note that the generalized MQ RBF, see [11] [12]. 
is per se nonlinear, and nonlinear problems, can have multiple solutions depend-
ing upon the starting set of parameters. 

In this set of calculations, the boundary surfaces are each populated my m ran-
domly distributed points, and the interior domain is populated by randomly dis-
tributed points. 

The computer used for the calculations is the following: CPU: AMD EPYC 
7V13 64-core, 2.45GHz/3.7GHz, RAM: 256GB, GPU: 4 x RTX 4090. 

We initialize the optimization search for all considered dimensions by starting 
with the 2D search first and setting the GMQ exponent, β = 0.5, the minimal value 
of the shape parameter, cmin =1.0, the maximum value of the shape parameter, cmax 
=1.0, and the multiplier of the boundary forcing functions, s =1.0k. The optimal 
value for the 2D results were the initial values for the 3D results, and so on until 
the 5D results were the initial values for the 6D optimization. 

These parameters are optimized by performing a simple by performing a simple 
search on the variations of the parameters that yield the smallest root mean 
squared errors (RMSE). Rather than using an optimization -based library routine, 
we used three “do” loops per search parameter. We allowed a parameter to in-
crease by 1.03, stay unchanged, and decrease 1/1.03, each time calculating the 
RMSE, while saving the optimized set of parameters. The entire search was per-
formed in an overall search 100 times. This approach was performed for each di-
mension.  

Based upon the results of papers [12] [13], we allowed the GMQ exponential, β, 
to become quite large allowing the GMQ basis function to become very flat near 
the data center, yj, and rise very rapidly near the evaluation center, xi. In addition, 
the pre-wavelet dilation parameters, 2

maxc  and 2
minc  also are used to control the 

flatness of the GMQ basis function near xi and yj. The parameter, sk, is used to 
increase the boundary shape parameter. The distributed GMQ shape parameter is 
assumed to have an exponentially varying distribution of the shape parameters, 
form, see [14]. In addition. Buhmann, see [15], showed C∞ are pre-wavelets having 
problem dependent length scales. We use a simple form of the shape parameter 
distribution given by: 

 ( ) ( )( )2
m

2
in exp 1 1jc c j Nψ= − −   (19) 
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where  

 ( )2 2
max minlog c cψ =    (20) 

To obtain the highest performance of the GMQ, it will be necessary to use ar-
bitrary precision arithmetic to avoid ill-condoning or loss of numerical precision. 
Since computer chip manufacturers realize scientific computing is only a 
miniscule portion of the market, a software alternative is required, and the best 
available is ADVANPIX, see [16]. 

The tables one to five present the results of our searches of the mesh-based dis-
cretization. Note, for the five and six dimensional cases, our super computer 
memory restrictions prevented. Further mesh refinement. The procedure used in 
found in reference [17] (Tables 1-5). 

 
Table 1. Two dimensional results. 

EMSE Digits β sk 2
maxc  2

minc  md 

0.2884 200 28.794 1.093 3.91 1.176e−2 3 

0.3438 200 26.664 0.988 2.782 9.552e−3 4 

 
Table 2. Three dimensional results. 

RMSE Digits β sk 2
maxc  2

minc  md 

7.5577e−5 220 45.224 1.41 2.472 8.4972e−3 3 

2.460e−3 220 46.35 1.495 2.010 6.9092−3 4 

0.481465 220 43.427 1.304 6.365 −7.115e−3 8 

 
Table 3. Four dimensional results. 

RMSE Digits β sk 2
maxc  2

minc  md 

0.465 200 35.12 1.75 1.3541 3,46e−2 4 

0.767 200 25.736 1.21 2.284 4.72e−3 5 

 
Table 4. Five dimensional results. 

RMSE Digits β sk 2
maxc  2

minc  md 

0102989 220 37.6868 1.540 1.8384 0.006708 3 

0.01076 220 30.6318 1.018 2.54616 8.071e−3 4 

0.481465 220 28.471 0.8041 6.3656 7.1154e−3 8 

 
Table 5. Six dimensional results. 

RMSE digits β sk 2
maxc  2

minc  md 

3.604e−5 400 41.343 1.495 2.136 6.908e−3 3 

2.127e−5 500 49.837 1.898 2.010 9.219e−3 4 

 
Because of the exponential growth of data centers in 4, 5, and 6 dimensions, our 
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“super computers” and the need for increasingly more precision, we are not able 
to extend the size of available data centers. For this reason, we chose to explore 
randomly generated scattered data centers. 

3. Randomly Generated Points in d-Dimensions 

In the following tables, we abandoned the mesh-based method that has been used 
historically in favor of a hybrid point enveloping and random d-dimensional 
“fuzzy” data scheme. There are 2d points enveloping the d-dimensional hypercube; 
the number of such enveloping points is quite small compared to the number of 
randomly generated points.  

With the mesh-based hypercube, the boundary us very crisp and is only one 
point in thickness. With the randomly generated d-dimensional points, the 
boundary is “fuzzy” in nature and has an arbitrary thickness that is “user-defined”. 
So, for the distance, δ, from the surfaces generated by these points to the interior 
of randomly generated d-dimensional points will be considered the “fuzzy” 
boundary, ∂Ω containing a total of nb points. The region contained within the 
“fuzzy” boundary is the interior, Ω\∂Ω containing ni points, such that N = nb + 
ni.  

The points d∈ℜx  is checked to determine whether it belongs in a bin near 
an extremum or a zero. Approximately 15% of those points outside of the desig-
nated bins are deleted thereby reducing the total number of points and beneficially 
the condition number. Because random numbers of points were used, no nice 
patterns were discernible (Table 6). 

 
Table 6. Summary of the randomly generated and culled points RMSE using parameters 
from the mesh-based results. 

RMSE Dim Pts β sk 2
minc  2

maxc  

0.2477 2 91 21.41 16.96 3.960 3.9632 

7.96e−3 3 183 37.686 1.018 7.33e−3 1.8947 

3.95e−3 4 534 30.64 1.018 4.87e03 2.546 

1.48e−3 5 389 29.57 1.016 7,83e−3 2.273 

8.97e−4 6 574 21.54 1.003 3.826e−2 1.739 

4. Conclusion 

Although we constructed a simple d-dimensional set of eigenvalue Poisson partial 
differential equations to solve, some interesting conclusions were uncovered: 1) 
Arbitrary precision arithmetic is very necessary because the use of large MQ ex-
ponents, β, and the range of variable shape parameters, may produce very ill-con-
ditioned equation systems. 2) Meshed based methods have an exponential growth, 
nd, where n is the number of points per dimension and d is the number of dimen-
sions, whereas the scattered data approach requires n locations and only n2 matrix 
elements reducing the strain on computer memory requirements as the dimen-
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sionality grows. 3) The information gained from the inverse of the interior sub-
domain and boundary subdomain problems may help in populating regions near 
the extrema and zeros and avoid over-populating noncritical regions. 4) Variable 
MQ shape parameters were first implemented in [18] [19] based upon the obser-
vation these parameters were dependent upon the curvature of the solution. Re-
cently in [20], a formal mathematical study showed this observation was true and 
formulated the shape parameter distribution on more theoretical foundation. 5) 
Neural network methods combined with the proposed algorithm presented here 
would be very useful in finding numerical solutions to a broader class of important 
elliptic, parabolic, hyperbolic partial differential equations as well as integral equa-
tions. 6) It was our intent not to present a rigorous analysis of the roles of the MQ 
exponent, shape parameter characteristic “knobs” and boundary shape parameter 
multipliers in reducing the errors between the known analytic and numerical so-
lutions, but rather the randomly generated data centers in d-dimensions and in-
creasing the population of points near the extrema and zeros of the known inte-
grated forcing functions over the entire domain. This work is intended to interest 
more research to maximize the potential of this presented approach. 
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