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Abstract 
Graph burning is a model for describing the spread of influence in social net-
works and the burning number is a parameter used to describe the speed of 
information spread. In 2016, Bonato proposed a graph burning conjecture: For 
any connected graph G  with order n , the burning number ( )b G n ≤   . 

In this paper, we confirm the burning conjecture for octopus graph and bicy-
clic graph. 
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1. Introduction 

Graph burning is a model that describes the spread of social contagion on social 
networks such as Facebook or Twitter. We use Bondy and Murty [1] for the no-
tation and terminology, burning process is defined as follows. Given a finite and 
simple graph G , vertices may be either burned or unburned throughout the pro-
cess. Initially, at time 0t = , all vertices are unburned. At each time 1t ≥ , one 
new unburned vertex is chosen to burn, if such a vertex is available, we call such 
a chosen vertex a fire source. If a vertex is burned, then it remains in that state 
until the end of the process. Once a vertex is burned at time t , at time 1t +  each 
of its unburned neighbors becomes burned. The process ends when all vertices of 
G  are burned. 

Note that the burning process on G  may be highly dependent on the choice 
of fire sources, the strategic choice of sources is critical when minimizing the 
length of the process. In [2], Bonato introduced the burning number of graph G , 
denoted by ( )b G , is the minimum steps to burn graph G . The fire sources 

1, , kx x  that are chosen over time on graph G  are referred to as a burning se-

How to cite this paper: Zhu, Q.Y. and Li, 
Y.K. (2025) Note on the Burning Conjecture 
for Some Graphs. Open Journal of Applied 
Sciences, 15, 1157-1167. 
https://doi.org/10.4236/ojapps.2025.155080 
 
Received: April 11, 2025 
Accepted: May 6, 2025 
Published: May 9, 2025 
 
Copyright © 2025 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2025.155080
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2025.155080
http://creativecommons.org/licenses/by/4.0/


Q. Y. Zhu, Y. K. Li 
 

 

DOI: 10.4236/ojapps.2025.155080 1158 Open Journal of Applied Sciences 
 

quence ( )1, , kx x  of G  and call the shortest burning sequence optimal. 
Clearly, optimal burning sequences have length ( )b G . 

In 2016, Bonato et al proposed the burning conjecture:  
Conjecture 1.1 [3]. For a connected graph G  of order n , ( )b G n ≤   .  
Later, the conjecture been comfirm for some graph classes, such as spiders [4], 

path forests [5], caterpillars [6] [7], theta graph [8], fence graph [9], generalized 
Petersen graph [10], the Cartesian product of paths [11], Q  graph [12], binary 
tree [13] and trees without degree-2 vertices [14]. 

Motivated by these, we put forward on the paths and circles. We first denote 
octopus graph G  which obtained from comet graph ,2il

C  for 1 i m≤ ≤  by 
identifing the tail of ,2il

C  at 0v , clearly, ( )0d v m= . All degree-3 vertices but 

0v  denoted by iu , we call ,2il
C  an arm of Octopus and il  is the length of arm 

,2il
C  (see Figure 1). Here the comet ,r sC  is a graph which obtained by the end 
of path rP  with the center of star graph 1,sK . 

 

 
Figure 1. Octopus graph G.  

 
Another class of graph named t  tail bicyclic graph. If 1t = , call single tail 

bicyclic graph which obtained by joining the center vertex of the bicyclic graphs 
with one vertex of the path 

1 1aP +  denoted by ( )0 1 2 1, ,v g g aG . If 2t = , call double tail 
bicyclic graph which obtained by joining the center vertex of the bicyclic graph 
with a vertex of path 

1 1aP +  and path 
2 1aP +  denoted by ( )0 1 2 1 2, , ,v g g a aG  (see Figure 

2). They all only have a vertex 0v  with ( )0 2d v > , without loss of generality, we 
suppose 1 2g g≥ . 

 

 
Figure 2. t  tail bicyclic graph ( )0 1 2 1, ,v g g aG  and ( )0 1 2 1 2, , ,v g g a aG  ( 1,2t = ).  
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In this paper, we first confirm the burning conjecture for these 3 kind of graphs, 
next we discuss the burning number of single tail bicyclic graph ( )0 1 2 1, ,v g g aG  and 
double tail bicyclic graph ( )0 1 2 1 2, , ,v g g a aG . 

2. Primarilies 

Lemma 2.1 [2] If ( )1 2, , , kx x x  is a sequence of nodes in a graph G  such 
that [ ] [ ] [ ] [ ] ( )1 1 2 2 1 1 0k k k kN x N x N x N x V G− − −∪ ∪ ∪ ∪ = , then ( )b G k≤ .  

Lemma 2.2 [3] For a path nP  or a cycle nC  on n  nodes, we have  
( ) ( )n nb P b C n = ≤   .  
Lemma 2.3 [3] For a graph G , ( ) ( ){ }min : is a spanning tree ofb G b T T G= .  
Lemma 2.4 [3] For any graph G  with radius r  and diameter d , we have 

that ( ) ( )
1
21 1d b G r + ≤ ≤ +  

.  

Lemma 2.5 [4] The burning number of a spider graph G of order n satisfies 
( )b G n ≤   .  
Lemma 2.6 [4] If G  is a path-forest of order n  with 1t ≥  components, 

then ( )
2
nb G t ≤ +  

.  

Lemma 2.7 [5] Let 
1 2a aG P P= ∪  with 1 2 1a a≥ ≥  and ( ) ( ){ }2 2,2J t t= −  

for integer 2t ≥ . Then  

( )
( ) ( )1 2 1 2

1 2

1, If , ;

, Otherwise.

a a a a J t
b G

a a

 
 


 + + ∈


=

 




+

 

Lemma 2.8 [5] Let 
1 2 3a a aG P P P= ∪ ∪  with 1 2 3 1a a a≥ ≥ ≥ . Then  

( )
( ) 1 2 3 4 5

1 2 3 1 2 3

1 2 3

1, If , , ;

, Otherwise.

a a a a a a J J J J J
b G

a a a

 + + + ∈ ∪ ∪ ∪ ∪ = 
 + + 

 

Let iJ  for 1 5i≤ ≤  satisfy the following conditions.  

( ){ }1 2,2 ,D =  

( ){ }2 3,2 ,D =  

( ) ( ) ( ) ( ){ }3 1,1 , 3,3 , 4,2 , 5,5 ,D =  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }4 2,1 , 4,1 , 4,3 , 4,4 , 6,1 , 6,4 , 6,5 , 6,6 , 7,7 , 8,4 , 8,6 , 10,4 ,D =  

( ){ ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )}

5 11,10,4 , 13,11,1 , 11,11,3 , 22,13,1 , 19,13,4 , 17,13,6 , 15,13,8 ,

13,13,10 , 17,15,4 , 15,15,6 , 30,15,4 , 28,15,6 , 26,15,8 , 19,15,15 ,

28,17,4 , 26,17,6 , 17,17,15 , 26,19,4 , 43,17,4 , 41,17,6 , 30,17,17 ,

41,19,4 , 30,30,4 , 58,19,4 ,

D =

 

( ) ( ){ }1 2
1 2 3 2 3 1 1 2 3, , : , , 3 for integert ,J a a a a a D a a a t= ∈ + + = −  

( ) ( ){ }2 2
1 2 3 2 3 1 2 1 2 3, , : , , 2 for integert ,J a a a a a D D a a a t= ∈ ∪ + + = −  
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( ) ( )
3

3 2
1 2 3 2 3 1 2 3

1
, , : , , 1 for integert ,i

i
J a a a a a D a a a t

=

 
= ∈ + + = − 
 



 

( ) ( )
4

4 2
1 2 3 3 2 3 1 2 3

1
, , : 2 or , , for integert ,i

i
J a a a a a a D a a a t

=

 
= = ∈ + + = 
 



 

{ }5
5 11,11,2 .J D= ∪  

3. Main Results 

In this section, we first confirm the burning conjecture for octopus graph G , 
single tail bicyclic graph ( )0 1 2 1, ,v g g aG  and double tail bicyclic graph ( )0 1 2 1 2, , ,v g g a aG . 

Theorem 3.1 Let G  be a octopus graph with order n . Then ( )b G n ≤    
Proof. Let G  be a octopus graph with order n . Without loss of generality, 

suppose 2n q p= +  for 1 2 1p q≤ ≤ + . The neighbors of 0v  are 1 2, , , iv v v  
respectively and the length of longest arm is l . If 2q = , it’s clearly that 
( )b G n ≤   . Consider 3q ≥ , next we distinguish 3 cases to complete the proof. 
Case 1 If l q≤ . 
It’s clearly that radius of G  is r q≤ , by lemma 2.4, we have ( )b G n ≤   . 
Case 2 If 1 2 1q l q+ ≤ ≤ − . 
Consider the structure of the arm, we will discuss two cases. 
Subcase 2.1 The arms of G  have the same structure. 
If each arm has the same length, then G  has q  arms of length 1q + . First 

we set the 1x  on 1v , then [ ]
1,2 1l qC N x⊆ . We denoted the part of [ ]1\ qG N x  

is 1 2 1qR R R R −= ∪ ∪ ∪ , clearly, the height of ( )1 1iR i q≤ ≤ −  is 2 and each 

iR  contains iu . Now suppose ( )2 3, , , qx x x  is a burning sequence of R  and 
let 1i ix u+ =  for 1 1i q≤ ≤ − , then we have  
( ) [ ] [ ] [ ]1 1 2 2 3 1q q q qV G N x N x N x N x− −  ⊆ ∪ ∪ ∪ ∪   . By lemma 2.1, we have 
( ) 1b G n q ≤ = +  . 
Subcase 2.2 The arms of G  doesn’t have the same structure. 
It’s clearly that G  doesn’t have q  arms of length 1q + . We set 1x  on 0v , 

if il q≤ , then [ ],2 1il qC N x⊆ . We denoted the part of [ ]1\ qG N x  is  
( )1 2 1iR R R i∪ ∪ ∪ ≥ . Since the arm of octopus G  has length at most 2 1q − , 

then each iR  has length and order at most 2q −  and q  respectively. Next we 
discuss the burning number of G  by the number of i  compontent. 

When 1
2

qi +
≤ . We remove a pendant vertex to another pendant vertex such that 

iR  become a path iP , ( )1 2 1iP P P P i= ∪ ∪ ∪ ≥ , it’s clearly that ( ) ( )b R b P≤ . 

Next we denoted kw  is ssthe center of kP , for each 1,2, ,k i=  , we can by 

neighborhood [ ]q k kN w−  cover the kP . since ( ) 12 1 2 1
2

qq k q+
− + ≥ ⋅ + = , thus  

( ) ( )b R b P q≤ ≤ . By lemma 2.1, we have ( ) 1b G n q ≤ = +  . 

When 2
2

qi +
= , q  is even. For each 1,2, , 1k i= − , every kR  can be cov-

ered by [ ]q k kN w− . For iR , it has the lenght at most 2q − , if iR  only have 2 
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isolated vertex, we set iw  at iu , otherwise iw  is the center of iR ,  

( ) 22 2 2
2

qq i q q+ − = − = − 
 

, thus [ ]i q i iR N w−⊆ . By lemma 2.1, we have 

( ) 1b G n q ≤ = +  . 

When 
4

2
qi + ≥   

. Since 1l q≥ +  and G  doesn’t have q  arms of length  

1q + , then there must exist an arm ,2il
C  with the length il q≤ . { },2 0il

C v−  
contain at least 3 vertices, then [ ]1qN x  contains at least 4iq +  vertices, thus 

( )1 3 2 3R n iq q q i≤ − − − ≤ + − − . If 1i q= + , then 3 1R q i q≤ − ≤ = + , the 
number of vertices is smaller than the number of branches, a contradiction. If 
i q= , then ( )2 3 3R q i q q≤ − ≥ = ≥ , a satisfaction. 

So we only consider 
4

2
q i q+  ≤ ≤  

, removing a pendant vertex to another pen-

dant vertex doesn’t change the number of vertices of R , thus ( ) ( )V R V P= . By  

( ) ( )b R b P≤  and lemma 2.6, we have  

( ) ( ) ( ) ( )2 3
2 2

V R q q i
b R b P i i

i i
+ − −   

≤ ≤ + ≤ +   
   

 

Let ( ) ( )2 3
2

q q i
f i i

i
+ − − 

= + 
 

, because of the properties of the function, the 

maximum is attained at the q  or 
4

2
q + 
  

. 

Suppose i q= , we have  

( ) ( ) ( )2 3 2 3
2 2 2

V R q q i qb R i i q q
i i q

+ − −     −
≤ + = + = + ≤     

    
 

Suppose 
4

2
qi + =   

, we have  

( ) ( ) ( )2 3
2 2

42 3
2 4
4 22

2

V R q q i
b R i i

i i

qq q
q

q

+ − −   
≤ + = +   
   
  +  + − −    +    = +  +    
    

 

when q  is even, then 
4 4

2 2
q q+ +  =  

, we have  

( )

42 3
2 4 2 3 4
4 2 2 4 22

2

qq q
q q q qb R

q q

  +  + − −     + + +    ≤ + = − +  +  +     
    

, since  

( )2 3 1,2
4

q
q
+

∈
+

, then 2 3 2
2 4 2
q q q

q
 +

− = − + 
, thus we have  
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( ) 42
2 2
q qb R q+

≤ − + = . 

When q  is odd, then 
4 4

2 2
q q+ +  =  

, we have  

( )

42 3
2 4 31
4 2 2 22

2

qq q
q q qb R

q

  +  + − −    + +      ≤ + = − +   +      
    

, since  

11 1
2 2
q q − − = −  

, thus we have ( ) 1 31
2 2

q qb R q− +
≤ − + = . 

We know [ ]1qG N x R= ∪ , suppose ( )1 2, , , qz z z  is a burning sequence of 
R . Next let 1 0x v=  and 1i ix z+ =  for 1 i q≤ ≤ , it is clear that  
( ) [ ] [ ] [ ]1 1 2 2 3 0 1q q q qV G N x N x N x N x− − + ⊆ ∪ ∪ ∪ ∪   , by lemma 2.1 we have 
( ) 1b G q≤ + . 
Case 3 If 2l q≥ . 
When 2l q≥ , we proceed with contradiction, assume cG  is the minimal 

counterexample of octopus graph with order n . This means  

( ) ( ) 1c cb G b G q > = +  
. Suppose the length of longest arm ,2il

C  of cG  is  

l , we have 1 ,2il
w C∈  such that ( )0 1,d v w l= . Since 2l q≥ , we have 0 ,2il

w C∈  
satisfied ( )0 1, 1d w w q= − . We set 1x  at 0w , Clearly, [ ]0qN w  can burn 2 1q +  
vertices, We denoted [ ]1 0\ qG G N w=  where 0 1v G∈ , then  

[ ] ( )2 2
1 0\ 2 1 2 1qG G N w q q q q= ≤ + + − + ≤ . Consider cG  is a counterexample 

of octopus with minimal number of vertices, we have ( )1 1b G G q ≤ ≤  , then 

( )1 2, , , qz z z  is a burning sequence of 1G . Next let 1 0x w= , 1i ix z+ =  for 
1 i q≤ ≤ , it is clear that ( ) [ ] [ ] [ ]1 1 2 2 3 0 1

c
q q q qV G N x N x N x N x− − + ⊆ ∪ ∪ ∪ ∪   . 

By lemma 2.1 we have ( ) 1cb G q≤ + . This contradicts to the fact ( ) 1cb G q> + . 
Thus, we have ( )b G n ≤   .                                        □ 

Theorem 3.2 If ( )0 1 2 1, ,v g g aG G=  is a single tail bicyclic graph with order n , then 

( )21 3
4 2

n b G n
 

 + − ≤ ≤   
 

.  

Proof. We take a edge ie  from 
igC  (i = 1, 2), then we can derive  

( ) ( )0 1 2 1 0 1 2 1

2

, , , ,
1

iv g g a v g g a
i

G G e
=

′ = −∑  is a spider graph. By lemma 2.3 and lemma 2.5, we  

have ( ) ( )( )0 1 2 1 0 1 2 1, , , ,( v g g a v g g ab G b G n ′≤ ≤   . 
Next, we prove the lower bound, suppose ( )b G k=  and ( )1 2, , , kx x x  is an 

optimal burning sequence of G , we set 1x  on 0v  to contains more vertices, 
then, [ ] ( )1 1 5 1 1kN x k− ≤ − + , combine with the fact that [ ] ( )2 1k i iN x k i− ≤ − +  
for 2 i k≤ ≤ , we get  

[ ] ( )( ) ( )( ) ( )( )

( ) ( )

1 1
2

2

2 1 5 1 1 2 2 1 1

5 4 2 3 1

3 3.

k

k
i

N x k i k k

k k

k k

−
=

+ − + ≤ − + + − + + +

= − + − + +

= + −

∑ 
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by 2 3 3k k n+ − ≥ , we have 21 3
4 2

k n
 

≥ + − 
 

.                         □ 

Theorem 3.3 If ( )0 1 2 1 2, , ,v g g a aG G=  is a double tail bicyclic graph with order n , 
then ( )8 2n b G n   + − ≤ ≤    .  

Proof. We take a edge ie  from 
igC ( 1,2i = ), then we can derive  

( ) ( )0 1 2 1 2 0 1 2 1 2

2

, , , , , ,
1

iv g g a a v g g a a
i

G G e
=

′ = −∑  is a spider graph. by lemma 2.3 and lemma 2.5, 

we have ( )( ) ( )( )0 1 2 1 2 0 1 2 1 2, , , , , ,v g g a a v g g a ab G b G n ′≤ ≤   . 

Next, we prove the lower bound, suppose ( )b G k=  and ( )1 2, , , kx x x  is an 
optimal burning sequence of G . We set 1x  on 0v  to contains more vertices, 
then, [ ] ( )1 1 6 1 1kN x k− ≤ − + , combine with the fact that [ ] ( )2 1k i iN x k i− ≤ − +  
for 2 i k≤ ≤ , we have  

[ ] ( )( ) ( )( ) ( )( )

( ) ( )

1 1
2

2

2 1 6 1 1 2 2 1 1

6 5 2 3 1

4 4.

k

k
i

N x k i k k

k k

k k

−
=

+ − + ≤ − + + − + + +

= − + − + +

= + −

∑ 

  

by 2 4 4k k n+ − ≥ , we have 8 2k n ≥ + −  .                          □ 
We following discuss the burning number of ( )0 1 2 1, ,v g g aG  and ( )0 1 2 1 2, , ,v g g a aG . 
Consider ( )0 1 2 1, ,v g g aG G= , by Theorem 3.2, we have 
Corollary 3.4 If ( )0 1 2 1, ,v g g aG G=  is a single tail bicyclic graph with order 

2q p+  for 1 2 1p q≤ ≤ + , then ( )1 1q b G q− ≤ ≤ + .  
Next we discuss the graph ( )0 1 2 1, ,v g g aG  with burning number 1q + . 
Theorem 3.5 Let ( )0 1 2 1, ,v g g aG G=  be a single tail bicyclic graph with order 

2q p+ . If 3 2 2 1q p q− ≤ ≤ + , then ( ) 1b G q= +  
Proof. As we know from the previous, if ( )b G q= , then it can contains at most 

2 3 2q q+ −  vertices of G . Since 3 2 2 1q p q− ≤ ≤ + , then we have ( ) 1b G q≥ + , 
combine with corollary 3.4, we have ( ) 1b G q= + .                       □ 

Theorem 3.6 Let ( )0 1 2 1, ,v g g aG G=  be a single tail bicyclic graph with order 
2q p+  for 1 2 1p q≤ ≤ + . If 2

1g q≥  or 2
1a q≥ , then ( ) 1b G q= + .  

Proof. We discuss two cases to complete the proof. 
Case 1 If 2

1g q≥ . 
In this case, let 

1 1gH C += , 2 1H q≥ + , by lemma 2.2, then ( ) 1b H q≥ + . If 

2
g q  ≤  

 and 1a q≤ , then ( ) ( ) 1b G b H q= ≥ + . If 
2
g q  ≥  

 or 1a q≥ , then  

( ) ( ) 1b G b H q≥ ≥ + . Thus we have ( ) 1b G q≥ + , combine with corollary 3.4, we 
have ( ) 1b G q= + . 

Case 2 If 2
1a q≥ . 

In this case, let 
1 1aH P += , 

1

2
1 1aP q+ ≥ + , by lemma 2.2, ( ) 1b H q≥ + . H  is a 

subgraph of G , when 1

2
g q  ≤  

, we have ( ) ( ) 1b G b H q= ≥ + , when 1

2
g q  >  

, 

we have ( ) ( ) 1b G b H q> ≥ + . Thus we have ( ) 1b G q≥ + , combine with corol-
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lary 3.4, we have ( ) 1b G q= + .                                       □ 

Theorem 3.7 Let ( )0 1 2 1, ,v g g aG G=  be a single tail bicyclic graph with order 

2q p+  for 1 2 1p q≤ ≤ + . If 21
12

g a q  + ≥  
 or 21 2

2 2
g g q   + ≥      

, then  

( ) 1b G q= + .                                                     □ 
Proof. According to the definition of diameter,  

( ) 1 1 2
1max ,

2 2 2
g g gd G a      = + +            

, it’s clearly that ( ) 2d G q≥ , by lemma 2.4, 

we have ( ) ( ) 21 1 1b G d G q q  ≥ + ≥ + = +    
, combine with corollary 3.4, we 

have ( ) 1b G q= + .  

Theorem 3.8 Let ( )0 1 2 1, ,v g g aG G=  be a single tail bicyclic graph with order 
2q p+  for 1 2 1p q≤ ≤ + . If 2

12 2 1q g q− ≤ ≤ + , 2
22 2 1q g q− ≤ ≤ + ,  

2
11 1q a q− ≤ ≤ +  

1) If { }1 2 1min , , 0g g a′ ′ ′ ≠ , { } 1 2 3 4 5
1 2 1, ,g g a J J J J J′ ′ ′ ∈ ∪ ∪ ∪ ∪ , then  

( ) 1b G q= + . 
2) If { }1 2 1min , , 0g g a′ ′ ′ = , { } ( )1 2 1, ,g g a J t′ ′ ′ ∈ , then ( ) 1b G q= + . 

where ( ) ( ) ( )1 1 2 2 1 12 2 , 2 2 , 2 2g g q g g q a a q′ ′ ′= − − = − − = − − .  
Proof. 1) If { }1 2 1min , , 0g g a′ ′ ′ ≠ , suppose ( )1 2, , , qx x x  is an optimal burning 

sequence of G , we set 1x  at 0v , then [ ]1 1 5 4qN x q− = − ,  
[ ]

1 2 11 1q g g aH G N x P P P′ ′ ′−= − = ∪ ∪ . Since { } 1 2 3 4 5
1 2 1, ,g g a J J J J J′ ′ ′ ∈ ∪ ∪ ∪ ∪  , 

by lemma 2.8, we have  
( ) ( ) ( )2

1 2 1 1 5 4 1 1 1b H g g a n q q q   ′ ′ ′= + + ≤ − − + ≤ − + ≤     
+  , then  

( ) 1b G q= + , a contradiction, thus we have ( ) 1b G q≥ + , combine with corollary 
3.4, we have ( ) 1b G q= + . 

2) If { }1 2 1min , , 0g g a′ ′ ′ = , suppose ( )1 2, , , qx x x  is an optimal burning se-
quence of G , we set 1x  at 0v , then [ ]1 1 5 4qN x q− = − ,  

[ ]
1 2 11 1q g g aH G N x P P P′ ′ ′−= − = ∪ ∪ . Since { } ( )1 2 1, ,g g a J t′ ′ ′ ∈ , by lemma 2.7, we  

have ( ) ( ) ( )25 4 1 1 1b H n q q q  ≤ − − + ≤ − + ≤    
, then ( ) 1b G q= + , a con-

tradiction, thus we have ( ) 1b G q≥ + . combine with corollary 3.4, we have 

( ) 1b G q= + .                                                     □ 

Consider ( )0 1 2 1 2, , ,v g g a aG G= , by Theorem 3.3, we have  
Corollary 3.9 If ( )0 1 2 1 2, , ,v g g a aG G=  is a double tail bicyclic graph with order 

2q p+  for 1 2 1p q≤ ≤ + , then ( )1 1q b G q− ≤ ≤ + .  
Lemma 3.10 If G is disconnected with connected components 1 2, , , iG G G , 

each iG  contains no isolated vertices, then  
( ) ( ) ( ) ( )1 2 1ib G b G b G b G i≤ + + + − + .  
Proof. For each ( )1jG j i≤ ≤ , we suppose ( ) ( )

( )
( )( )1 2, , ,

j

j j j
j b G

X x x x=   is an op-
timal burning sequence, Clearly G  also has a burning sequence. We claim 

( )
( )
( ) ( )

( )
( ) ( )

( )
( )

( )
( )( )1 2

1 1 2 2
1 1 11 1 1, , , , , , , , , ,

i i

i i i
b G b G b G b GX x x x x x x x− − −=      is a burning sequence 

of G . 
For each { }1,2, , 1j i∈ − , we burn ( )

( ){ }\
j

j
b G

X x  in order. Before we burn 
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( )
1

ix , 1iC −  need at most 2 rounds to burn complete. Since iG  contains no iso-
lated vertices, then ( ) 2ib G ≥ . Therefore, when iG  is burned, 1iG −  has enough 
time to burn completely, thus all the jG  can be burned completely. since X  is 
a valid burning sequence of G , thus we have  
( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )1 1 21 1 1i i ib G X b G b G b G b G b G b G i≤ = − + + − + = + + + − +  .  

□ 
Next we discuss ( )0 1 2 1 2, , ,v g g a aG  with burning number 1q + . 
Theorem 3.11 Let ( )0 1 2 1 2, , ,v g g a aG G=  be a double tail bicyclic graph with order 

2q p+  for 1 2 1p q≤ ≤ + . If 2, 5q p= = , then ( ) 1b G q= + .  
Proof. If 2q = , then ] [5,9 , 1,5n p ∈ ∈  . If ( )b G q= , it can contain at most 

2 4 4q q+ −  vertices. When 4 3p q≥ − , then 5p = , thus ( ) 1b G q≥ + . Com-
bine with corollary 3.9, we have ( ) 1b G q= + .                           □ 

Theorem 3.12 Let ( )0 1 2 1 2, , ,v g g a aG G=  be a double tail bicyclic graph with order 
2q p+  for 1 2 1p q≤ ≤ + . If 2

1g q≥  or 2
1 2a a q+ ≥ , then ( ) 1b G q= + .  

Proof. We discuss two cases to complete the proof. 
Case 1 If 2

1g q≥ . 
In this case, let 

1 1gH C += , 2 1H q≥ + , by lemma 2.2, then ( ) 1b H q≥ + . Be-

cause of the symmetry of the circle, we set 1x  at 0v . If 2
1 2max , ,

2
g a a q  ≤ 

 
, then 

( ) ( ) 1b G b H q= ≥ + , if 2
1 2max , ,

2
g a a q  > 

 
, then ( ) ( ) 1b G b H q> ≥ + . Thus 

we can derive ( ) 1b G q≥ + , combine with corollary 3.9, we have ( ) 1b G q= +  

Case 2 If 2
1 2a a q+ ≥ . 

In this case, let 
1 2 1a aH P + += , 

1 2

2
1 1a aP q+ + ≥ + , by lemma 2.2, ( ) 1b H q≥ + . 

H  is a subgraph of G , similar to case 1, we have ( ) ( ) 1b G b H q≥ ≥ + , combine 
with corollary 3.9, we have ( ) 1b G q= + .                               □ 

Theorem 3.13 Let ( )0 1 2 1 2, , ,v g g a aG G=  be a double tail bicyclic graph with order 

2q p+  for 1 2 1p q≤ ≤ + . If 2

2
i

i
g a q 

  
+ ≥  or 21 2

2 2
g g q   

      
+ ≥ , then  

( ) 1b G q= + .  
Proof. According to the definition of diameter,  

( ) 1 2max ,
2 2 2

i
i

g g gd G a     
       

 
= +


+








, it’s clearly that ( ) 2 1d G q≥ + , by lemma 

2.4, we have ( ) ( ) 21 1 1b G d G q q  ≥ + ≥ + = +    
, combine with corollary 3.9, 

we have ( ) 1b G q= + .                                              □ 

Theorem 3.14 Let ( )0 1 2 1 2, , ,v g g a aG G=  be a double tail bicyclic graph with order 
2q p+  for 1 2 1p q≤ ≤ + . If 2

12 2 1q g q− ≤ ≤ + , 2
22 2 1q g q− ≤ ≤ + ,  

2
11 1q a q− ≤ ≤ + , 2

21 1q a q− ≤ ≤ +  
1) If { }1 2 1 2min , , , 0g g a a′ ′ ′ ′ ≠ , 1 1g ′ ≠  , 2 1g ′ ≠  , 1 1a ′ ≠  , 2 1a ′ ≠  , 

1 2 1 2 3g g a a q       ′ ′ ′ ′+ + + ≤ +        , then ( ) 1b G q= + . 
2) If { }1 2 1 2min , , , 0g g a a′ ′ ′ ′ = , { } 1 2 3 4 5

1 2 1 2, , ,g g a a J J J J J′ ′ ′ ′ ∈ ∪ ∪ ∪ ∪  or  
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{ } ( )1 2 1 2, , ,g g a a J t′ ′ ′ ′ ∈ , then ( ) 1b G q= + . 
where ( ) ( ) ( ) ( )1 1 2 2 1 1 2 22 2 , 2 2 , 2 2 , 2 2g g q g g q a a q a a q′ ′ ′ ′= − − = − − = − − = − −  

Proof. 1) If { }1 2 1 2min , , , 0g g a a′ ′ ′ ′ ≠ , suppose ( )1 2, , , qx x x  is an optimal burn-
ing sequence of G , we set 1x  at ov , then [ ]1 1 6 5qN x q− = − ,  

[ ]
1 2 1 21 1q g g a aH G N x P P P P′ ′ ′ ′−= − = ∪ ∪ ∪ , Since 1 1g ′ ≠  , 2 1g ′ ≠  ,  

1 1a ′ ≠  , 2 1a ′ ≠  , 1 2 1 2 3g g a a q       ′ ′ ′ ′+ + + ≤ +        , by lemma 3.10, 
we have ( ) 1 2 1 2 4 1b H g g a a q       ′ ′ ′ ′≤ + + + − + ≤        , then ( ) 1b G q= + , 
a contradiction, thus we have ( ) 1b G q≥ + . combine with corollary 3.9, we have 
( ) 1b G q= + . 
2) If { }1 2 1 2min , , , 0g g a a′ ′ ′ ′ = , suppose ( )1 2, , , qx x x  is an optimal burning se-

quence of G , we set 1x  at ov , then [ ]1 1 6 5qN x q− = − , [ ]1 1qH G N x−= −  
When { } 1 2 3 4 5

1 2 1 2, , ,g g a a J J J J J′ ′ ′ ′ ∈ ∪ ∪ ∪ ∪ , by lemma 2.8, then  

( ) ( ) ( )26 5 1 2 2 1b H n q q q  ≤ − − + ≤ − + + ≤    
, then ( ) 1b G q= + , a contra-

diction, thus we have ( ) 1b G q≥ + . combine with corollary 3.9, we have 

( ) 1b G q= + . 

When { } ( )1 2 1 2, , ,g g a a J t′ ′ ′ ′ ∈ , by lemma 2.7, we have  

( ) ( ) ( )26 5 1 2 2 1b H n q q q  = − − + ≤ − + + ≤    
, then ( ) 1b G q= + , a contra-

diction, thus we have ( ) 1b G q≥ + . combine with corollary 3.9, we have 

( ) 1b G q= + .                                                     □ 

4. Conclusion 

In this paper, we put forward on the unions of paths and circlies and confirm the 
burning conjecture for octopus graphs and t  tail bicyclic graph ( 1,2t = ), we 
also discuss the single tail bicyclic graph and double tail bicyclic graph with the 
burning number 1q + . The burning conjecture has been a topic of concern which 
be useful for information dissemination. Our study is meaningful and next we 
focus on the burning number for these graph. Besides we will extend graph burn-
ing to hypergraph and achieve more results. 
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