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Abstract 
This paper theoretically investigates network sparsity and its impact. We focus 
on a specific topology of the network, i.e., the network with core-periphery 
structures, which is a widely studied financial network structure. It is crucial 
to understand how changes in sparsity influence network impact. For exam-
ple, reducing the sparsity of a banking network can offer significant ad-
vantages. Upgrading strategically a local bank branch to a regional headquar-
ters improves the connectedness among regional branches. Similarly, reduc-
ing the overall sparsity of a banking network by strategically merging two fi-
nancial networks into one can create substantial potential impacts on banking 
operations. We derive closed-form solutions that quantify links between spar-
sity and its impact on financial networks with complete core-periphery struc-
tures. We prove that reducing sparsity increases impacts on networks with 
complete core-periphery components through two sparsity reduction strate-
gies. We further validate other impact measures through simulations. 
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1. Introduction 

A reduction of network sparsity, or in other words, an increase in the intercon-
nectedness of financial institutions, underscores the critical role of financial net-
work architecture in the financial market integration. For example, reducing the 
sparsity of a banking network can offer significant advantages. Upgrading a local 
bank branch to a regional headquarters improves the connectedness among re-
gional branches. Similarly, reducing the overall sparsity of a banking network 
by strategically merging two financial networks into one can create substantial 
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potential impacts on banking operations. These financial strategies highlight the 
importance of examining changes in interconnectedness and their broader im-
pacts. Yet, the change in financial network sparsity and its impact remains not 
well-understood, presenting a significant gap in current research. To our best 
knowledge, this study is among the first to explore theoretically the impact of fi-
nancial network with complete core-periphery structures. 

Pioneering studies have examined the financial contagion and risk transmission 
through a given financial network structure (Allen and Gale [1], Acemoglu, Oz-
daglar, and Tahbaz-Salehi [2], Glasserman and Young [3]). Our paper fills in the 
gap by investigating how the change in network sparsity influences the relation-
ship between an explanatory variable for one agent and the dependent variable of 
all other agents in financial networks with core-periphery structures. 

We derive closed-form solutions that quantify links between sparsity and its 
impact on financial networks with complete core-periphery components. Simula-
tion results are also provided to validate our analytical solutions. Jie and Ma [4] 
further extend our analysis to investigate financial networks with the incomplete 
and random core-periphery structures. 

Core-periphery networks, which consist of a fully connected core and a sparse 
periphery, have been widely recognized in the financial sector (Di Maggio, Ker-
mani, and Song [5], Li and Schu ̈rhoff [6]). We focus on two strategies to reduce 
network sparsity whilst maintaining the core-periphery topology unchanged: 1) 
increasing the number of core agents, and 2) merging core-periphery compo-
nents. The first strategy is to promote periphery agents to core agents who will 
connect with each other and also connect to the remaining periphery agents. For 
example, JPMorgan upgraded its periphery branch in Washington D.C. in 2022 
to a core branch as a regional headquarter, which strengthened its connections to 
the remaining periphery branches of the banking network of Washington D.C. 
and the Greater Washington region. 

The second sparsity reduction strategy is to merge two or more components 
into a big component whilst the core-periphery topology structure remains un-
changed. This can be achieved by adding links between core and periphery agents 
across components. Finance examples include bank mergers and acquisitions that 
combine two financial sub-networks into one (see, e.g., Levine, Lin, and Wang [7]). 
We prove that sparsity reduction by both strategies will increase the network im-
pact. In real world applications, these two sparsity reduction strategies may be com-
bined in various ways to achieve sparsity reduction and greater network impact. 

The remainder of the paper is organized as follows. Section 2 introduces basic def-
initions and model setup. Section 3 and Section 4 examine respectively two alterna-
tive sparse reduction strategies for financial networks with complete core-periphery 
components. Finally, Section 5 concludes. Proofs are provided in the Appendix. 

2. Definition and Model Setup 

Based on Jackson [8], the definition of a network is given as follows: 
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Definition 1 (Network) A network ( , W) consists of a set of agents  
{ }1,2, , N=   and an N × N network adjacency matrix W, where its each ele-

ment ijw  represents the relation between agent i and j. 
In this paper, we focus on unweighted, symmetric networks where 1ij jiw w= =  

if a link exists between i and j, and 0ij jiw w= =  otherwise. This means the net-
work adjacency matrix W is a symmetric matrix with binary elements. Its diagonal 
entries are set to be zeros, following conventional definitions (LeSage and Pace 
[9]). 

Following Diestel [10] (see p. 164), we define network sparsity as the edge den-
sity of the network matrix W. 

Definition 2 (Network Sparsity) Given the initial structure of W, network 
sparsity is defined as the proportion of zero entries in W, excluding the diagonal 
elements. In other words, sparsity refers to the degree of looseness in the connec-
tions within a network. It serves as an inverse measure of network interconnect-
edness. 

According to this definition, an increase in links among agents reduces the 
number of zeros in W, thereby decreasing network sparsity. Fixing the initial 
structure of W is essential because networks with the same sparsity level (i.e., the 
same percentage of zeros in non-diagonal elements) may exhibit different network 
impacts if their initial structures differ. Therefore, we need to fix the initial structure 
of W and the network topology to examine the impact of network sparsity. 

In this paper, we focus on the network topology of sparse networks with core-
periphery components, a widely studied financial network structure. Empirical 
research has demonstrated that financial networks often exhibit a core-periphery 
structure (e.g., Bech and Atalay [11], Di Maggio, Kermani, and Song [5], Holli-
field, Neklyudov, and Spatt [12], Li and Schürhoff [6], Craig and Ma [13]). We 
follow Elliott, Golub, and Jackson [14] and Craig and Ma [13] to define the core-
periphery structure. 

Definition 3 (Core-periphery Component) A component ( c , Wc) of size p 
has a core-periphery structure if it has a set of core agents c⊂   with size s 
and a set of periphery agents \c=    of size p − s. The corresponding p × p 
adjacency matrix Wc can be arranged to the following structure: 

 c

CC CP
W

CP PP
   

= =   ′ ′  

R
R

01
0

  (1) 

The block CC defines the interconnected relationship among core agents, 
where CC = 10 with dimension of s × s consists of all ones except that the diagonal 
terms are zeros. The block PP is a zero matrix (PP = 0) with dimension of (p − s) 
× (p − s), indicating sparsity (no interaction) among periphery agents. The block 
CP = R with size s × (p − s), and the transposed block CP' = R' due to the symmetry 
of W. R is both row-regular and column-regular. R is row-regular implies that 
each row has at least one element equal 1, indicating that each core agent is con-
nected to at least one periphery agent. Whilst R is also column-regular means that 
each column is covered by at least one element equal to 1, indicating that each 
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periphery agent is connected to at least one core agent. 
In other words, a core-periphery component consists of two tiers: a fully con-

nected core, where all core agents are directly linked, and a sparse periphery, 
where periphery agents are not directly connected to each other. Additionally, 
each core agent is linked to at least one periphery agent, and vice versa. 

A complete core-periphery component is defined as CP = R = 1, i.e., all entries 
are ones. In other words, every core agent in a complete core-periphery compo-
nent is connected to all periphery agents. The complete core-periphery topology 
structure has been widely studied in the existing finance literature and has a rich 
family of varieties. Based on the ranking of sparsity, we have the star component 
as the highest sparsity and the complete component as the lowest sparsity. The 
star component represents the highest sparsity case of a core-periphery structure, 
where the block CC = 10 = (0) is a 1 × 1 matrix with a zero entry. This implies that 
there is only one core agent connected to multiple periphery agents, while the pe-
riphery agents have no direct links among themselves. The star networks are 
widely studied structure in network analysis. For example, Cerdeiro, Dziubinski 
and Goyal [15] examine the investment strategy in the cybersecurity network with 
a star component. 

The complete component, on the other hand, represents the lowest sparsity case 
of a core-periphery structure, where the block PP = 0 = (0) is a 1 × 1 matrix with 
a zero entry. In this structure, there is only one periphery agent, with all other 
agents serving as core agents. Complete components are commonly studied struc-
ture in financial network analysis (e.g., see Acemoglu, Ozdaglar, and Tahbaz-
Salehi [2]). 

For the general complete core-periphery components with moderate sparsity, 
i.e., the number of core agents [ ]2, 2s p∈ − , where p is the number of total agents 
of the component, they have been applied to investigate the interbank market net-
work recently (in ’t Veld and van Lelyveld [16], in ’t Veld, van der Leij, and 
Hommes [17]). In this paper, we expand our analysis to cover the whole family of 
the complete core-periphery component, including both the star component and 
the complete component as the two extreme cases. 

Jie and Ma [4] further examined the incomplete core-periphery component, 
which exists when at least one zero appears in the CP block. This implies that not 
all core agents are connected to all periphery agents in an incomplete core-periph-
ery component. In this paper, we focus on the financial networks with complete 
core-periphery components. 

To set the stage for our theoretical analysis, we consider a network W consisting 
of B homogeneous independent core-periphery components iW  of size p. Thus, 
the total number of agents in the network is N=Bp. Then the adjacency matrix W 
takes a block-diagonal form: 

 
1 0

0 B N N

W
W

W
×

 
 =  
 
 



  



 with 1 2 .BW W W= = =   (2) 
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The size of matrix W is N × N and the size of component matrix iW  is p × p. 
After defining the core-periphery network structure, we introduce the concept 

of network impacts. Following Bramoullé, Djebbari, and Fortin [18], our financial 
network analytical model is inspired by spatial econometrics literature. We define 
our financial network model, or, the spatial autoregressive (SAR) model, as fol-
lows: 

 y Wy Xρ β ε= + +   (3) 

where y and X are the dependent and the set of explanatory variables respectively, 
W is a network adjacency matrix, ρ and β are parameters, and ε is the error term. 

It is conventional to assume that 
min max

1 1,ρ
ω ω
 

∈ 
 

, where minω  and maxω  

denote the smallest and largest eigenvalues of W, respectively, in the literature. 
This assumption ensures that both the estimation of SAR network model is con-
sistent and the matrix I Wρ−  is nonsingular (LeSage and Pace [9], p. 47). 

Based on the above SAR network model, we have 

 ( ) ( ) ( )1y I W X S Xρ β ε β ε−= − + = +   (4) 

where ( )def 1S I Wρ −= − . 
In a linear regression model, parameter kβ  represent the partial derivatives of 

the dependent variable y with respect to the explanatory variable kx . In the SAR 
network model, the impact of kx  on the dependent variable y varies across ob-
servations of all agents. To summarize these varying effects, LeSage and Pace [9] 
defined three measures, including average direct impact, average indirect impact, 
and average total impact, to quantify network impacts. 

Definition 4 (Network Impacts) 
For any explanatory variable kx X⊂ , define: 

 1 1

1 1Average Direct Impact i
ii ki i

ik

N Ny
s

N x N
β

= =

 ∂  = =   ∂   
∑ ∑   (5) 

 
1 1

1 1Average Indirect Impact i
ij ki j i i j i

j

N N

k

y
s

N x N
β

= ≠ = ≠

 ∂  = =    ∂   
∑ ∑ ∑ ∑   (6) 

 
1 1

Average Total Impact Average Direct Impact Average Indirect Impact
1 N N

ij ki j s
N

β
= =

= +

 =  
 

∑ ∑
  (7) 

These network impact measures have been widely applied in financial network 
research. For example, Grieser, Hadlock, LeSage, and Zekhnini [19] applied these 
measures to examine causal peer effects in capital structure decisions using a peer-
network. The economic mechanism underlying the relationship between sparsity 
and network impact may be illustrated through an example of investment hubs 
provided by vom Lehn and Winberry [20]. By analyzing disaggregated asset-level 
data that detail purchases of 33 types of capital assets across various sectors, they 
constructed a 37-sector investment network for the U.S. each year. Their findings 
reveal that the investment network is highly sparse, dominated by just four key 
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investment hubs: construction, machinery manufacturing, automobile manufac-
turing, and professional/technical services. Together, these hubs account for 
nearly 70% of total investment. Consequently, the production and employment in 
these sectors are significantly more sensitive to business cycle shocks compared to 
others. 

Without loss of generality, we normalize the parameter 1kβ =  in our subse-
quent analyses to focus primarily on the financial network impacts. 

3. Sparsity Reduction by Increasing the Number of Core 
Agents 

One strategy to reduce network sparsity while keeping both the component size p 
and the number of components B fixed is to increase the number of core agents 
by promoting some of the periphery agents to core agents in each component. 

For example, Figure 1(a) provides a network view of the process of increasing 
the number of core agents, transforming a star component with just one core 
agent (s = 1) eventually into a complete component with five core agents (s = 5),  

 

 
Figure 1. Sparsity reduction by increasing the number of core agents within complete core-periphery components. (a) Net-
work view of sparsity reduction; (b) Changes in the adjacency matrix of a component. 
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whilst always keeping the size of each component p = 6 to be constant. As each 
periphery agent is turned into a core agent, new links are formed between the 
newly designated core and the remaining periphery agents, thereby reducing the 
network sparsity. When s = 5, the component reaches its complete form with the 
lowest sparsity. This demonstrates that increasing the number of core agents in 
each component directly reduces network sparsity. 

Figure 1(b) shows an example of the changes of the adjacency matrix iW  dur-
ing the transformation of the component iW  from s = 1 to s = 3. The decrease in 
the number of zero entries in iW  confirms the reduction in sparsity. In general, 
for any given size p of a complete core-periphery component and the number of 
components B in a sparse network with size of N = Bp, we have its network spar-
sity as follows: 

 
( ) ( ) ( )

( )
( )

( )

21 1 2 2 1
Sparsity 1

1 1
N N s s s p s B p s s

N N p N
− − − + −  − − = = −

− −
 (8) 

From this formula, it shows that sparsity decreases as the number of core agents 

s  increases, since its derivative is 
( )

Sparsity 2 2 1 0
1

s p
s p N

∂ − +
= <

∂ −
. Therefore, the 

number of core agents s  can serve as an indirect measure of network sparsity. 
The next two propositions provide the theoretical findings of the reduction of 
sparsity and its network impact. Their proofs can be found in Appendix A.2. 

Proposition 1. Let W  be a block-diagonal matrix consisting of complete 
core-periphery components. Denote iW  as the submatrix representing each in-
dividual complete core-periphery component, which is given by: 

 
( )

( ) ( ) ( )

s s s p s
i

p s s p s p s

× × −

− × − × −

 
 =


′ 


W
01 1

1 0
  (9) 

If ( )def 1S I Wρ −= − , then S  is also a block-diagonal matrix with submatrix 

iS  of the following form: 

 ( )

( ) ( ) ( )

s s s p s
i

p s s p s p s p p

A B

B D
× × −

− × − × − ×

 
 =
 
 ′

S  (10) 

where 

 
s ss s s sA a c
×× ×= +I 01  

 ( ) ( )s p s s p sB e× − × −= 1  

 ( ) ( ) ( ) ( ) ( ) ( )p s p sp s p s p s p sD b d
− × −− × − − × −= +I 01  

I  is an identity matrix and 01  consists of all ones except that the diagonal 
terms are zeros. 

Detailed formulae of a  to e  can found in the Appendix. 
Based on Proposition 1, we can calculate network impacts following definition 

4 in Section 2 and prove the following proposition in the Appendix A.2. 
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Proposition 2. Given the size p  of complete core-periphery components, if 
the number of its core agents s  increases that leads to a decrease in network 
sparsity, then the average direct, indirect, and total impacts of the network all in-
crease. 

We also run two sets of simulations to verify the signs of these network impacts. 
In the first set of simulations, we use the analytical solutions of average direct, 
indirect and total impacts from Proposition 2 derived in Appendix A.2 to compute 
their derivatives with respect to the number of core agents s, which is an inverse 
measure of network sparsity. Our simulation results are provided in Panel A, B, 
and C of Table 1. We find all the derivatives are positive, which aligns with our 
findings. As the number of core agents s increases that leads to a reduction of  

 
Table 1. Simulation results of adding core agents in the sparse network with complete core-
periphery components. Panel A to Panel C report simulation results of the derivatives of 
network impact with respect to s  (the number of core agents), where s  is an inverse 
measure of the network sparsity. The component size p  is assigned to 10, 50, 100, 500, 
10,000, 50,000, 100,000 and 200,000 sample sizes. The number of cores in each component 
s  is chosen as quintiles of ( )0, p , i.e., 5p , 2 5p , 3 5p , 4 5p , and 1p − . ρ  is 

the median of 10,
200000 1

 
 − 

, i.e., 1 1
200000 1 2

ρ = ×
−

. This will make ρ  within the 

consistent and nonsingular range. Note that our network matrix W  is an unnormalized 
N N×  matrix, hence the ρ  is unnormalized and is relatively small. If we normalize W , 

say, by dividing all its elements by 1N − , then the normalized ˆ 1
2

ρ =  (see Corollary 1 in 

Appendix A.1). In Panel A, all numbers are multiplied by 1012. In Panel B and Panel C, all 
numbers are multiplied by 106. Panel D reports the simulation results of relationship be-
tween sparsity and network impacts, where 200000N = , 1000p =  and 200B =  
are fixed, and ρ  is the same as in Panel A to Panel C. The formula for sparsity is 

( )
( )

22 1
1

1
p s s
p N
− −

−
−

. 

Panel A. Derivatives of direct impact with respect to s (the number of core agents). 

s [ ]5p  [ ]2 5p  [ ]3 5p  [ ]4 5p  1p −  

p      

10 9.3752 6.8753 4.3752 1.8751 0.6251 

50 9.8758 7.3762 4.8761 2.3757 0.1251 

100 9.9391 7.4398 4.9398 2.439 0.0625 

500 9.9951 7.4988 4.9988 2.495 0.0125 

1000 10.009 7.5163 5.0163 2.5088 0.0063 

5000 10.075 7.6126 5.1128 2.5749 0.0013 

10,000 10.152 7.7298 5.2306 2.654 0.0007 

50,000 10.831 8.7732 6.2991 3.3824 0.0002 

100,000 11.852 10.43 8.0775 4.6426 0.0001 

200,000 14.711 15.805 14.661 9.8214 0.0002 
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Panel B. Derivatives of indirect impact with respect to s (the number of core agents). 

s [ ]5p  [ ]2 5p  [ ]3 5p  [ ]4 5p  1p −  

p      

10 3.7501 2.7501 1.7501 0.7500 0.2500 

50 3.9504 2.9504 1.9503 0.9502 0.0500 

100 3.9758 2.9758 1.9757 0.9754 0.0250 

500 3.999 2.9991 1.9985 0.9971 0.0050 

1000 4.0055 3.0058 2.0045 1.0018 0.0025 

5000 4.0399 3.0413 2.0351 1.0211 0.0005 

10,000 4.0813 3.0845 2.0721 1.0438 0.0003 

50,000 4.4408 3.4761 2.4154 1.2569 0.0001 

100,000 4.9796 4.1176 3.0119 1.6423 0.0000 

200,000 6.4900 6.3002 5.3711 3.3482 0.0001 

Panel C. Derivatives of total impact with respect to s (the number of core agents). 

s [ ]5p  [ ]2 5p  [ ]3 5p  [ ]4 5p  1p −  

p      

10 3.7501 2.7501 1.7501 0.7500 0.2500 

50 3.9504 2.9504 1.9503 0.9502 0.0500 

100 3.9758 2.9758 1.9757 0.9754 0.0250 

500 3.999 2.9991 1.9985 0.9971 0.0050 

1000 4.0055 3.0058 2.0045 1.0018 0.0025 

5000 4.0399 3.0413 2.0351 1.0211 0.0005 

10,000 4.0813 3.0845 2.0721 1.0438 0.0003 

50,000 4.4408 3.4761 2.4154 1.2569 0.0001 

100,000 4.9796 4.1176 3.0119 1.6423 0.0000 

200,000 6.4900 6.3002 5.3711 3.3482 0.0001 

Panel D. Relationship between sparsity and network impacts. 

s Sparsity 
Direct  
impact 

Indirect  
impact 

Total impact 

1 0.999990010 1.000000000 0.000005001 1.000005001 

100 0.999050495 1.000000001 0.000475432 1.000475433 

200 0.998200991 1.000000002 0.000900951 1.000900954 

300 0.997451487 1.000000003 0.001276522 1.001276525 

400 0.996801984 1.000000004 0.001602105 1.001602109 

500 0.996252481 1.000000005 0.001877663 1.001877667 

600 0.995802979 1.000000005 0.002103158 1.002103163 
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Continued 

700 0.995453477 1.000000006 0.002278553 1.002278559 

800 0.995203976 1.000000006 0.002403810 1.002403816 

900 0.995054475 1.000000006 0.002478891 1.002478898 

1000 0.995004975 1.000000006 0.002503759 1.002503766 

 
sparsity, all measures of network impact are increased. 

In the second set of simulations, we calculate the sparsity and network impacts 
and present the results in Panel D of Table 1 and Figure 2, which illustrates the 
negative relationship between sparsity and network impacts. The results from 
both sets of simulations further support Proposition 2. We notice that in our sim-
ulations, sparsity reduction is relatively small and most of the total impacts are 
from the direct impacts in Panel D of Table 1 and Figure 2. This is because our 
simulated networks are designed to exhibit very high sparsity, thereby the indirect 
network impacts are relatively weak. However, we find that the magnitudes of the 
derivatives of indirect impacts dominate that of total impacts: the derivatives of 
total impacts in Panel C are almost identical to that of indirect impacts in Panel B 
of Table 1. It implies that the network indirect impacts are more sensitive to the 
sparsity reduction than the direct impacts. Taking together, it illustrates that it is 
important to investigate both direct and indirect impacts to understand the total 
network impacts. 

4. Sparsity Reduction by Merging Components 

As an alternative strategy to reduce network sparsity while preserving the network 
topology, we merge complete core-periphery components. 

We first discuss a sparse network composed of B  independent complete com-
ponents, which is a special case of complete core-periphery component with the 
number of core agents 1s p= − , where p  is the size of the complete compo-
nent. The merging process is illustrated in Figure 3. Initially, the network consists 
of B  complete components, each of size 3p =  with 2s =  core agents. From 
(a) to (b), every two complete components merge into a larger complete compo-
nent with 5s =  core agents, reducing the network’s sparsity. As a result, the 
number of components B  is halved, while the component size p  doubles. 
Given that the size of the network is N Bp= , the network matrix W  is: 

 
1 0

0 B N N

W
W

W
×

 
 =  
 
 



  



 and ( ) ( ) ( )

( )

1 1 1 1

1
1 11 1

p p p

B
p

W W − × − − ×

×× −

 
 = = =
 ′ 



01 1

1 0
  (11) 

The overall sparsity of the network W  is given by: 

 ( ) ( )
( )

1 1 1Sparsity 1
1 1

N N p p B p
N N N
− − − −

= = −
− −

  (12) 

From this equation, we observe that sparsity is a decreasing function of the  
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Figure 2. Sparsity and its impact on networks with complete core-periphery components. 
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component size p , as Sparsity 1 0
1p N

∂
= − <

∂ −
. This confirms that increasing the 

component size p  reduces the overall sparsity of the network. The network 
sparsity is reduced by merging two or more small components into larger homo-
geneous components. 

Next, we examine the merging process for general types of complete core-pe-
riphery components where the number of core agents 1s p< − , as illustrated in 
Figure 4. Initially, the network consists of B  complete core-periphery compo-
nents, each with size 3 and only one core agent ( 1s = ) in (a). During the transi-
tion from (a) to (b), every two complete core-periphery components are merged 
into a larger complete core-periphery component, increasing the number of core 
agents to 2s = . 

The number of components B  is again reduced by half, while the component 
size p  doubles. New links are introduced between core and periphery agents 
within the new components, thereby reducing network sparsity. 

 

 
Figure 3. Network view of sparsity reduction by merging complete components. 

 

 
Figure 4. Sparsity reduction by merging complete core-periphery components. 
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Suppose the initial adjacency matrix has 0s  core agents per component and a 

component size of 0p , therefore 0

0

1
p
s

λ = >  is fixed. After merging small com-

ponents into a single larger component, the number of core agents in each com-
ponent becomes 0s sµ= , and the component size increases to 0p pµ= . This 

implies: 0

0

p
p s s

s
λ= = . In this circumstance, p  has a linear relationship with 

s . In general, the network sparsity becomes 

 
( ) ( ) ( )

( )
( )

( )
1 1 2 2 1 1

Sparsity 1
1 1

N N s s s s s B s
N N N

λ λ
λ

− − − + −  − − = = −
− −

  (13) 

We can derive 
( )

Sparsity 2 1 0
1s N

λ
λ

∂ −
= − <

∂ −
, as 1λ > . This confirms that  

sparsity is a decreasing function of the number of core agents s. Therefore, the num-
ber of core agents (s) in each component may serve as an inverse measure of net-
work sparsity. The proof of the following Proposition 3 is given in Appendix A.3. 

Proposition 3. W  is a block-diagonal matrix composed of complete core-pe-
riphery components. Each submatrix iW  represents a complete core-periphery 
component with the following form: 

 
( )

( ) ( ) ( )

s s s p s
i

p s s p s p s

× × −

− × − × −

 
 =


′ 


W
01 1

1 0
  (14) 

(i) (Complete Component) If W  is a block-diagonal matrix with complete 

components ( )1s p= −  and ( )def 1S I Wρ −= − , then S  is also a block-diagonal 
matrix with submatrix iS  of the following form: 

 ( ) ( ) ( )

( )

1 1 1 1

1 11 1
p p

p p p
i kk p p kj

p p p

A B
s s

C D ×

− × − − ×

×
×× − ×

 
 = = +
 
 

S I 01  (15) 

where 

 ( ) ( )( )2 1 1 1kks p pρ ρ ρ ρ ρ= − − + − −   , and 

 ( )( )1 1kjs pρ ρ ρ ρ= − + − −   . 

(ii) (General Complete Core-periphery Component) If W  is a block-diag-
onal matrix with general complete core-periphery components ( )1s p< −  and 

( )def 1S I Wρ −= − , then S  is also a block-diagonal matrix with submatrix iS  of 
the following form: 

 ( )

( ) ( ) ( )

s s s p s
i

p s s p s p s p p

A B

B D
× × −

− × − × − ×

 
 =
 
 ′

S  (16) 

where 

 s ss s s sA a c
×× ×= +I 01

 

 ( ) ( )s p s s p sB e× − × −= 1
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 ( ) ( ) ( ) ( ) ( ) ( )p s p sp s p s p s p sD b d
− × −− × − − × −= +I 01

 
I  is an identity matrix and 01  consists of all ones except that the diagonal 

terms are zeros. 
Detailed formulae of a  to e  can be found in the Appendix. 
From Proposition 3, we can calculate network impacts based on definition 4 in 

Section 2. We can prove the following proposition in the Appendix A.3. 
Proposition 4. Given the network size N, if a merger of complete core-periph-

ery components that leads to a reduction of network sparsity, then the average 
direct, indirect, and total impacts of the network all increase. 

We also run simulations to verify the signs of all the network impacts in Table 2 
and Table 3. They confirm that the merger of complete core-periphery components  

 
Table 2. Simulation results of merging complete components ( 1s p= − ). Panel A to Panel 
C report simulation results of derivatives of network impact with respect to s  (the num-
ber of core agents), where s  is an inverse measure of the network sparsity. The compo-
nent sample size p  is assigned to 10, 50,100, 500, 10,000, 50,000, 100,000, and 200,000, 
respectively. The number of core agents is 1s p= − . ρ  is chosen as three quartiles of 

10,
200000 1

 
 − 

, i.e., 
1 1

200000 1 4
×

−
, 

1 1
200000 1 2

×
−

, and 
1 3

200000 1 4
×

−
. This 

will make ρ  within the consistent and nonsingular range. Note that our network matrix 
W  is an unnormalized N N×  matrix, hence the ρ  is unnormalized and is relatively 
small. If we normalize W , say, by dividing all its elements by 1N − , then the normalized 

1 1 3,
4

ˆ ,
2 4

ρ = , respectively (see Corollary 1 in Appendix A.1). In Panel A, all numbers are 

multiplied by 1012. In Panel B and Panel C, all numbers are multiplied by 106. Panel D 
reports simulation results of relationship between sparsity and network impacts, where 

200000N =  is fixed, ρ  is the median of 
10,

1N
 
 − 

, i.e., 
1 1

200000 1 2
ρ = ×

−
. The 

formula for sparsity is ( ) ( )1 1 1p N− − − . 

Panel A. Derivatives of direct impact with respect to s (the number of core agents) (N = 
200,000). 

ρ  ( )1 4 1N −  ( )1 2 1N −  ( )3 4 1N −  

p    

10 1.5625 6.2503 14.0640 

50 1.5627 6.2516 14.0680 

100 1.5629 6.2531 14.0730 

500 1.5645 6.2657 14.1150 

1000 1.5664 6.2814 14.1690 

5000 1.5822 6.4092 14.6050 

10,000 1.6023 6.5746 15.1800 

50,000 1.7778 8.1633 21.3020 

100,000 2.0408 11.1110 36.0000 

200,000 2.7778 25.0000 225.0000 
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Panel B. Derivatives of indirect impact with respect to s (the number of core agents) (N = 
200,000). 

ρ  ( )1 4 1N −  ( )1 2 1N −  ( )3 4 1N −  

p    

10 1.2500 2.5001 3.7503 

50 1.2502 2.5006 3.7514 

100 1.2503 2.5012 3.7528 

500 1.2516 2.5063 3.7641 

1000 1.2531 2.5125 3.7783 

5000 1.2658 2.5637 3.8947 

10,000 1.2818 2.6298 4.0479 

50,000 1.4222 3.2653 5.6804 

100,000 1.6327 4.4444 9.6000 

200,000 2.2222 10.0000 60.0000 

Panel C. Derivatives of total impact with respect to s (the number of core agents)  
(N = 200,000). 

ρ  ( )1 4 1N −  ( )1 2 1N −  ( )3 4 1N −  

p    

10 1.2500 2.5001 3.7503 

50 1.2502 2.5006 3.7514 

100 1.2503 2.5013 3.7528 

500 1.2516 2.5063 3.7641 

1000 1.2531 2.5125 3.7783 

5000 1.2658 2.5637 3.8947 

10,000 1.2818 2.6298 4.0479 

50,000 1.4222 3.2653 5.6805 

100,000 1.6327 4.4445 9.6000 

200,000 2.2222 10.0000 60.0000 

Panel D. Relationship between sparsity and network impacts. 

p B Sparsity 
Direct 
impact 

Indirect 
impact 

Total 
impact 

10 20,000 0.999955000 1.000000000 0.000022501 1.000022501 

50 4,000 0.999754999 1.000000000 0.000122515 1.000122516 

100 2,000 0.999504998 1.000000001 0.000247562 1.000247563 

500 400 0.997504988 1.000000003 0.001249061 1.001249064 
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Continued 

1000 200 0.995004975 1.000000006 0.002503759 1.002503766 

5000 40 0.975004875 1.000000032 0.012655697 1.012655728 

10,000 20 0.950004750 1.000000064 0.025638463 1.025638527 

50,000 4 0.750003750 1.000000357 0.142854337 1.142854694 

100,000 2 0.500002500 1.000000833 0.333330278 1.333331111 

200,000 1 0.000000000 1.000002500 0.999997500 2.000000000 

 
Table 3. Simulation results of merging general complete core-periphery components 
( 1s p< − ). Panel A to Panel C report simulation results of derivatives of network impact 
with respect to s  (the number of core agents), where s  is an inverse measure of the 
network sparsity. The component sample size p  is assigned to 10, 50,100, 500, 10,000, 
50,000. 100,000, and 200,000, respectively. 2λ =  is fixed, i.e., two components are 

merged, and 2s p= . ρ  is chosen as three quartiles of 
10,

200000 1
 
 − 

, i.e.,

1 1
200000 1 4

×
−

, 
1 1

200000 1 2
×

−
, and 

1 3
200000 1 4

×
−

. This will make ρ  within the 

consistent and nonsingular range. Note that our network matrix W  is an unnormalized 
N N×  matrix, hence the ρ  is unnormalized and is relatively small. If we normalize 

W , say, by dividing all its elements by 1N − , then the normalized 
1 1 3,
4

ˆ ,
2 4

ρ = , respec-

tively (see Corollary 1 in Appendix A.1). In Panel A, all numbers are multiplied by 10^12. 
In Panel B and Panel C, all numbers are multiplied by 10^6. Panel D reports simulation 
results of relationship between sparsity and network impacts, where 200000N =  is 

fixed, ρ  is the median of 
10,

1N
 
 − 

, i.e., 
1 1

200000 1 2
ρ = ×

−
. The formula for spar-

sity is 
( )

( )
2 1 1

1
1
s

N
λ
λ
− −

−
−

. 

Panel A. Derivatives of direct impact with respect to s (the number of core agents)  
( 200000N pB= = ). 

p B s 
ρ  

( )1 4 1N −  ( )1 2 1N −  ( )3 4 1N −  

10 20,000 5 1.4063 5.6252 12.6570 

50 4,000 25 1.5314 6.1262 13.7852 

100 2,000 50 1.5472 6.1899 13.9298 

500 400 250 1.5609 6.2492 14.0740 

1000 200 500 1.5639 6.2673 14.1278 

5000 40 2500 1.5769 6.3674 14.4627 

10,000 20 5000 1.5920 6.4898 14.8830 

50,000 4 25,000 1.7188 7.5899 18.9354 

100,000 2 50,000 1.8975 9.3801 26.7407 

200,000 1 100,000 2.3451 15.5992 72.4054 
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Panel B. Derivatives of indirect impact with respect to s  (the number of core agents) 
( 200000N pB= = ). 

p B s 
ρ  

( )1 4 1N −  ( )1 2 1N −  ( )3 4 1N −  

10 20,000 5 1.1250 2.2501 3.3752 

50 4000 25 1.2251 2.4504 3.6759 

100 2000 50 1.2377 2.4758 3.7142 

500 400 250 1.2485 2.4989 3.7513 

1000 200 500 1.2507 2.5053 3.7639 

5000 40 2500 1.2596 2.5392 3.8391 

10,000 20 5000 1.2697 2.5803 3.9336 

50,000 4 25,000 1.3555 2.9579 4.8740 

100,000 2 50,000 1.4790 3.5967 6.7877 

200,000 1 100,000 1.7983 5.9504 18.9803 

Panel C. Derivatives of total impact with respect to s (the number of core agents)  
( 200000N pB= = ). 

p B s 
ρ  

( )1 4 1N −  ( )1 2 1N −  ( )3 4 1N −  

10 20,000 5 1.1250 2.2501 3.3752 

50 4000 25 1.2251 2.4504 3.6759 

100 2000 50 1.2377 2.4758 3.7142 

500 400 250 1.2485 2.4989 3.7513 

1000 200 500 1.2507 2.5053 3.7639 

5000 40 2500 1.2596 2.5392 3.8391 

10,000 20 5000 1.2697 2.5803 3.9336 

50,000 4 25,000 1.3555 2.9579 4.8740 

100,000 2 50,000 1.4790 3.5967 6.7877 

200,000 1 100,000 1.7983 5.9504 18.9803 

Panel D. Relationship between sparsity and network impacts. 

p B s Sparsity Direct impact 
Indirect 
impact 

Total impact 

10 20,000 5 0.999965000 1.000000000 0.000017500 1.000017500 

50 4000 25 0.999814999 1.000000000 0.000092510 1.000092510 

100 2000 50 0.999627498 1.000000000 0.000186289 1.000186289 

500 400 250 0.998127491 1.000000002 0.000937227 1.000937229 
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Continued 

1000 200 500 0.996252481 1.000000005 0.001877663 1.001877667 

5000 40 2500 0.981252406 1.000000024 0.009472385 1.009472409 

10,000 20 5000 0.962502313 1.000000048 0.019147335 1.019147383 

50,000 4 25,000 0.812501563 1.000000256 0.104601218 1.104601475 

100,000 2 50,000 0.625000625 1.000000568 0.236362414 1.236362982 

200,000 1 100,000 0.249998750 1.000001477 0.636363399 1.636364876 

 
reduces network sparsity, increases all network impacts. Based on both Panel D 
of Table 2 and Table 3, Figure 5 and Figure 6 further depict the negative rela-
tionship between sparsity and network impacts, which supports the results of 
Proposition 4. Similar to the findings in the previous section, we observe that 
whilst the derivatives of indirect impacts significantly contribute to that of the 
total impact (see Panel B and C in Table 2 and Table 3 respectively), indirect 
impacts themselves are considerably weaker in their overall contributions to the 
level of total impacts (see Panel D in Table 2 and Table 3 respectively). This high-
lights the importance of analyzing both direct and indirect impacts to gain a com-
prehensive understanding of the total network impacts. 

5. Conclusions 

Complete core-periphery components are a commonly investigated structure in 
the study of financial networks. Their prominence stems from their ability to ef-
fectively represent the hierarchical and interconnected nature of many real-world 
financial systems. Researchers often analyze these structures to better understand 
systemic risks, network resilience, and the distribution of influence across agents 
in financial networks (e.g., see Acemoglu, Ozdaglar, and Tahbaz-Salehi [2]). 

This paper explores the theoretical relationship between sparsity and its im-
pacts on financial networks with a core-periphery structure. It focuses on net-
works with complete core-periphery components, investigating two strategies to 
reduce network sparsity: increasing the number of core agents within the compo-
nents and merging multiple components into larger structures. Within this ana-
lytical framework, this study derives closed-form solutions to quantify the rela-
tionship between sparsity and its influence on financial networks. Supported by 
numerical simulations, the findings reveal that as sparsity decreases, the network’s 
impacts intensify. 

Our research focuses on a static linear network model based on the spatial 
autoregressive framework. However, this approach has its limitations. For exam-
ple, it may fail to capture the dynamic, nonlinear, and heterogeneous effects 
present in real-world networks. A promising direction for future research is to 
extend our study by incorporating a fully dynamic nonlinear general equilibrium 
model. This model would integrate heterogeneous sectors within a financial net-
work, similar to the framework proposed by vom Lehn and Winberry [20]. Such  
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Figure 5. Sparsity and its impact on networks with complete components. 
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Figure 6. Sparsity and its impact on networks with general complete core-periphery 
components. 
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an extension would enable us to analyze the impacts of the complex, dynamic 
evolution of connections in real financial networks. 

Another limitation of our current research is the assumption of network stabil-
ity. Namely, the matrix I Wρ−  in Equation (3) remains nonsingular, even the 
network sparsity of W changes. Whether changes in network sparsity might affect 
its stability remains an open question, warranting further investigation in future 
studies. 
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Appendix 
A1. Proof for Section 2 

Corollary 1. 10,
1N

 
 − 

 is the range of consistency and nonsingular condition 

for ρ , regardless of variations in the size of the core-periphery component or 
changes in the number of core agents, where N  is the total number of agents in 
network W . 

Proof: 
From Corollary 6.1.5 in Horn and Johnson [21], all the eigenvalues iω  should 

less than the minimum of maximum of row sums and the maximum of column 
sums in W , i.e. 

 { }1 1min max ,max , 1,2, ,i ij ijj i
N

i j

N w w i Nω
= =

≤ =∑ ∑    (1’) 

As W  only has entries 0 or 1, thus the maximum eigenvalue of W  is no 

greater than 1N − . Thus 
min

1 1,
1Nω

 
 − 

 could be the range of consistency and 

nonsingular condition for ρ , regardless of variations in the size of the core-pe-
riphery component or changes in number of core agents. 

From Section 1.2 in Horn and Johnson [21], the trace of W  is equal to the 
sum of the eigenvalues of W , i.e. 

 ( ) 1 1 0N N
ii ii itr W w ω

= =
= = =∑ ∑   (2’) 

From (2’), if the maximum eigenvalue of W  is larger than 0, the minimum 
eigenvalue of W  would be less than 0. 

From Theorem 1.12 in Magnus and Neudecker [22], there exists an orthogonal 
N N×  matrix T  and a diagonal matrix Λ  whose diagonal elements are ei-
genvalues of W , we have 

 ΛT WT′ =   (3’) 

From ΛT WT′ = , we have ( ) 1 1ΛW T T− −= ′ . If all the eigenvalues of W  are 
zeros, then W  must be zero matrix. Thus at least one eigenvalue would not be 
0. Hence, we exclude the case that all the eigenvalues are zeros if W  is not a zero 
matrix. Therefore, the lower bound of ρ  is negative and the upper bond of ρ  
is positive. 

Since we only consider 0ρ > , thus we assume 10,
1N

ρ  ∈ − 
 in all our anal-

yses. Note that since our adjacency matrix W  is a unnormalized N N×  matrix, 
hence the ρ  is unnormalized and is relatively small. If we normalize W , say, 

by dividing all its elements by 1N − , then the normalized ( )10, 0,1
1

ˆ N
N

ρ − ∈ = − 
. 

This result applies to our simulations conducted in Table 1 to Table 3. 
QED 
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A2. Proofs for Section 3 

Proof for Proposition 1: 

 

0 1 1 1 1 1
1 0 1 1 1 1

1 1 0 1 1 1
1 1 1 0 0 0

1 1 1 0 0 0
1 1 1 0 0 0

i

p p

CC CP
W

PC PP

×

 
 
 
 
 

    = = =         
 
 
  
 

′
R

R

 

 

       

 

 

       

 

 

01
0

   (4’) 

The adjacency matrix iW  of each core-periphery component i  is as follows: 
In this case, CC = 01  is a s s×  matrix with all ones except the diagonal 

terms. PP  is a ( ) ( )p s p s− × −  zero matrix. CP  is a ( )s p s× −  matrix 
with all ones. PC  is the transpose matrix of CP . Thus we have 

 

1
1

1
1 0 0
0 1 0

0 0 1

i

p p

ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ
ρ

ρ ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ×

− − − − − 
 − − − − − 
 
 
− − − − − − −  − = =    ′− − − −  
− − − 
 
  − − − 

I R
I W

R I

 

 

     

 

 

 

     

 

01
 (5’) 

 ( )
1

def 1
i i

A B
B D

ρ ρ
ρ

ρ

−
− − −   

= − = =   ′ ′−   

I R
S I W

R I
01

   (6’) 

where 

 

( ) 12
s ss s s s

a c c
c a c

A a c

c c a

ρ ρ
×

−

× ×

 
 
 ′= − − = = +
 
 
 

I RR I





  



0 01 1

 

 ( )( )
2 2 2 2 2

2 2 2

1 2
1 1

s p s ps sa
s ps s

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

+ − + − − +
=

+ + − − +
 

 

( )
( )( )2 2 2

1
1 1

p s
c

s ps s
ρ ρ ρ

ρ ρ ρ ρ ρ

+ −
=

+ + − − +
 

 

( ) ( ) ( )

( )

11 12
s p s

s p s

e e e
e e e

B I

e e e
e

ρ ρ ρ ρ
−− −

× −

× −

 
 
  ′= − − − =   
 
 

=

I R I R R





  



0 01 1

1
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2 2 21

e
s ps s

ρ
ρ ρ ρ ρ

=
+ − − +  

 

( ) ( ) ( )

( ) ( ) ( ) ( )

112

p s p s

p s p s

p s p s

b d d
d b d

D I

d d b
b d

ρ ρ

− × −

−−
− × −

− × −

 
 
  = − − =   
 


′


= +

I R R

I





  



0

0

1

1
 

 

2 2 2 2

2 2 2

1
1

s s ps sb
s ps s

ρ ρ ρ ρ ρ
ρ ρ ρ ρ

+ − + − +
=

+ − − +  

 

2

2 2 21
sd

s ps s
ρ

ρ ρ ρ ρ
=

+ − − +  
I is an identity matrix. 

QED 
Proof for Proposition 2 
Proof: 
First, we show that parameters a to e in the component submatrix iS  increases 

as the network sparsity decreases when [ ]1, 1s p∈ − . As 10,
1N

ρ  ∈ − 
, we have 

each element of iS  is non-negative due to the following formula: 

 ( )def 1
0

k k
i i ikS I W Wρ ρ− ∞

=
= − = ∑  (7’) 

As a result, all parameters a to e are non-negative too. 

 ( )
( )

3

22 2 21

f sa c
s s s p s s

ρ

ρ ρ ρ ρ

∂ ∂
= =

∂ ∂ + − − +
 (8') 

where 

 ( ) ( ) ( )22 21 2 2 2 2 1f s p p s p s s p s p sρ ρ ρ ρ= − + + − − + = − + − −  

 ( )2 1 0p sρ> − + > , since 1s p< −  and ( )2 2p s− > . 

Therefore, 0a c
s s
∂ ∂

= >
∂ ∂

. 

We also have: 

 ( )
( )

2

22 2 21

g sb d
s s s p s s

ρ

ρ ρ ρ ρ

∂ ∂
= =

∂ ∂ + − − +
 (9') 

where 

 ( ) ( )22 2 21 1 1g s s pρ ρ ρ ρ= + − > + − −  

As 1
1N

ρ <
−

, we have 1 Nρ ρ+ > . We also have 1
1p

ρ <
−

 as p N≤ . 

Hence 
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 ( ) ( ) ( ) ( ) ( )2 22 21 1 1 1 1 1 0g s p N p p pρ ρ ρ ρ ρ ρ= + − − > − − > − − − >    

Thus 0b d
s s
∂ ∂

= >
∂ ∂

. 

We have 

 ( )
( )

2

22 2 21

h se
s s p s s

ρ

ρ ρ ρ ρ

∂
=

∂ + − − +
 (10') 

where 

 ( ) ( )1 2 1 2 1 1 2h s p s p p pρ ρ ρ ρ ρ ρ= + − > + − − = + − . 

As 1
1p

ρ <
−

, we have 1 pρ ρ− > − . 

Thus ( ) 0h s ρ> >  and 0e
s
∂

>
∂

. 

Therefore, if p  is fixed and 10,
1N

ρ  ∈ − 
, then an increase in s  will lead 

to a decrease in the network sparsity and an increase in all parameters a to e. 
Second, we derive the formulae of network impacts with normalized 1kβ =  

according to definition 4 in Section 2 and take their derivative with respect to s . 

 
( ) ( )

( )( )
( ) ( )
( )( )

2 2 2 2 2

2 2 2

2 3 2 3 3 3

2 2 2

Averge Direct Impact

2 1 1

1 1

1 2

1 1

p p ps p s p p p s

p s ps s

p p s p s s

p s ps s

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ ρ

− − + − + − + + −
=

+ − − + + −

− + − +
+

+ − − + + −

 (11') 

We take the derivative of average direct impact with respect to s : 

 
( )

( )( )
1

22 2 2

Average Direct Impact

1 1

s
s p s p s s

γ

ρ ρ ρ ρ ρ

∂
=

∂ + − − + + −
 (12') 

where 

 
( ) ( ) ( )

( ) ( )

2 3 2
1

4 2 2 3 5 2 2 3 4

1 2 2 1 3 4 2 2

2 2 2 2 2

s p s p s ps s

p s ps s ps s p s ps s

γ ρ ρ

ρ ρ

= − − + + − + − +
+ − + − + + − + − + 

 

Let ( )2 1z p s= − − , then we have ( )1,2 1 1z N∈ − −   . 

Substitute p  by 1
2

zs +
+  in ( )1 sγ , we have: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ){ }

22 2 2 3 2
1

22 3 2 2 2 2

1 4 2 6 4 2 2 4 4 1
4

1 4 1 4 4 2 6 2 2 4
4

s z z zs z zs zs s z

z s z zs zs z z zs

γ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

 = + + + + + + − − + 

   = − + + − + + + + +  

 

For the first bracket, we have ( )0 1 1Nρ< < − , and hence 10
s

ρ< < , there-

fore: 
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( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

2 2 23 24 1 4 1 4 2 1

4 2 1 since 1 due to 1

 4 1 0 as 1 0

z s z z z p s p s

p s p s p s s p

p s p s

ρ ρ ρ

ρ ρ ρ ρ ρ

 − + ≥ − + = − − − − 
≥ − − − − − < ≤ < < +  
= − − > − − ≥  

 (13’) 

For the second bracket inside ( )1 sγ  above, we have 

 ( )2 24 4 4 1 0zs zs zs sρ ρ ρ ρ− = − > , as 10
s

ρ< <    (14’) 

Thus we have ( )1 0sγ >  and Average Direct Impact 0
s

∂
>

∂
. 

Next, we have the average indirect impact with normalized 1kβ = : 

 ( )
( )( )

2 2 2 2 2 2 2 2

2 2 2

Average Indirect Impact

1 2 2

1 1

s p s p ps p p s ps s

p s ps s

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

− + − + − − + + − +
= −

+ − − + + −

 (15') 

We take the derivative of average indirect impact with respect to s : 

 
( )

( )( )
2

22 2 2

Average Indirect Impact

1 1

s
s p s p s s

γ

ρ ρ ρ ρ ρ

∂
=

∂ + − − + + −
 (16') 

where 

 

( ) ( )( ) ( ) ( )( )
( )

( )( )
( )

22
2

3 2 2

4 2 2

5 2 2 3 4

1 2 1 2

2 2 6 4

2 4 2 1

2

s p s p s p s

p p s ps s

p p s ps s p s

p s ps s

γ ρ ρ

ρ

ρ

ρ

= − + − + − + − + −

+ − + + − +

+ − + + − + + −

+ − +

 

Let ( )2 1z p s= − −  again, then we have ( )1,2 1 1z N∈ − −   . 

Substitute p  by 1
2

zs +
+  in ( )2 sγ , we have: 

 
( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
2

3 2 2 4 2 2 2 2

1 11 6 2 2
4 4

1 11 4 4z 2z
4 4

s z zs z z z z

z zs s s s z s

γ ρ ρ ρ

ρ ρ

= − + + + + +

+ − + − + + + +
 

For the first parenthesis: 

 ( ) ( )2 21 1 0z zs z s zρ ρ ρ− = − > − >  as 10
s

ρ< <  (17’) 

For the fourth parenthesis related to 31
4
ρ , we have: 

 ( )2 2 21 4 4 4 1 1 0z zs zs zs s z− + − + = − + − > ,    (18’) 

since ( )1,2 1 1z N∈ − −    and [ ]1, 1s p∈ − . 

 Thus, we have ( )2 0sγ >  and Average Indirect Impact 0
s

∂
>

∂
.  (19’) 

Finally, we have the average total impact with normalized 1kβ = : 
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( ) ( )( )

( )( )

2

22

1 1 2 2Average Total Impact

1

p s p s

s p s s p s

ρ ρ ρ

ρ ρ ρ

+ − + − + −∂
=

∂ + − + − +
 (20') 

Since ( ) ( ) ( )2 21 2 2 2 1p s p s p s p sρ ρ− + − + − = − + − − , we know that  

( )2 1 1p s− − >  if [ ]1, 1s p∈ − . Thus we have Average Total Impact 0
s

∂
>

∂
. 

QED 

A3. Proofs for Section 4 

Proof for Proposition 3: 
(i) (Complete Component) If W  is a block-diagonal matrix with complete 

components ( )1s p= − , the adjacency matrix iW  of a complete component i  
is as follows: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1 1

1 11 1

s s s p s p p p
i

p s s p s p s p p p

CC CP
PC PP

× × − − × − − ×

×− × − × − × − ×

   
   = =
   
   

   
= =   ′ 
   

W

R
R

0 0

0

1 1 1 1

1 0 1 0

1
0

   (21’) 

In this case, CC = 01  is a ( ) ( )1 1p p− × −  matrix with all ones except the di-

agonal terms. PP  is a 1 1×  zero matrix. CP  is a ( )1 1p − ×  matrix with all 
ones. PC  is the transpose matrix of CP . 

Thus, we have 

 

( ) ( ) ( )

( )

1 1 1 1

1 11 1

1
1

1
1

1

1

p p

i

p p

p

p

I

ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ
ρ

ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ

ρ
− × −

×

− ×

×× −

− − − − − 
 − − − − − 
 
 
− − − − − − =  − − − − −
 
− − − − − 
 
  − − − − − 

− − 
 =
 − 

I W

I

 

 

     

 

 

 

     

 

01 1

1

  (22’) 

Since ( )def 1ρ −= −S I W , then S  is also a block-diagonal matrix with subma-
trix for each component iS  with the form as follows: 

 ( )def 1

p p

kk kj kj

kj kk kj
i i i kk p p kj

kj kj kk

s s s
s s s

s s

s s s

ρ
×

−
×

 
 
 = − = = + 
  
 

S I W I





 
 



01  (23’) 

where 
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( )( )

2 1
1 1kk

ps
p

ρ ρ
ρ ρ ρ

− −
=

+ − −
 and 

( )( )1 1kj jks s
p
ρ

ρ ρ ρ
= = −

+ − −
.   (24’) 

It is straightforward to prove that ( )i iS Iρ− =I W  and ( )S W Iρ− =I . 
QED 

(ii) (General Complete Core-Periphery Component) Similarly, if W  is a 
block-diagonal matrix with general complete core-periphery components 
( )1s p< − , suppose before merging, the number of cores in a component is 0s  
and the size of a component is 0p . Then after merging, the number of cores in 
each component is 0s sµ= , where µ  the number of small components merged 
into a bigger component with the size of 0p pµ= . That is, 0

0

p
p s s

s
λ= =  where 

0

0

1
p
s

λ = >  is fixed. Thus, iW  has a form of 

 
( )

( ) ( ) ( )

s s s p s
i

p s s p s p s

W × × −

− × − × −

 
 =
 
 

01 1

1 0
 (25’) 

Since ( )def 1
i iρ −= −S I W , then S  is also a block-diagonal matrix with subma-

trix of iS with the form as follows: 

 

( ) ( )

( )

( )

( ) ( ) ( )

1
def 1 s s s p s

i i
p s s

s s s p s

p s s p s p s p p

A B

C D

ρ ρ
ρ

ρ
×

−
× −−

− ×

× × −

− × − × − ×

− − 
 = − =
 − 
 
 =
 

′

 

I
S I W

I
01 1

1
   (26’) 

where 

 

( ) ( ) ( ) 12
1 1 s ss sp p

a c c
c a c

A a c

c c a

ρ ρ
×

−

×− × −

 
 
 ′= − − = = +
 
 
 

I RR E





  



0 01 1

 

 

( ) ( )
( )( )

2 2 2

2 2 2 2

1 2 1 1
1 1

s s s
a

s s s
ρ ρ λ ρ λ ρ

ρ ρ ρ λ ρ ρ

+ − + − − −
=

+ + − − +
 

 

( )
( )( )2 2 2 2

1
1 1

s s
c

s s s
ρ λ ρ ρ

ρ ρ ρ λ ρ ρ

+ −
=

+ + − − +
 

 

( ) ( )
11 12

e e e
e e e

B

e e e

ρ ρ ρ ρ
−− −

 
 
  ′= − − − =   
 
 

I R I R I R





  



0 01 1

 

 
2 2 2 21

e
s s s

ρ
ρ ρ λ ρ ρ

=
+ − − +  

 

( ) 12

e e e
e e e

C B

e e e

ρ ρ ρ
−

 
 
 ′ ′= − − = =
 
 


′



R I RR





  



01
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( )
112

b d d
d b d

D

d d b

ρ ρ
−−

 
 
  = − − =   
 
 

′I R I R





  



01

 

 

2 2 2 2 2

2 2 2 2

1
1

s s s sb
s s s

ρ ρ ρ λ ρ ρ
ρ ρ λ ρ ρ

+ − + − +
=

+ − − +  

 

2

2 2 2 21
sd

s s s
ρ

ρ ρ λ ρ ρ
=

+ − − +  

QED 
Proof for Proposition 4: 
(i) (Complete Component) First, we prove that for the network with complete 

components ( )1s p= − , the diagonal/nondiagonal element of iS  increases as 
the network sparsity decreases when the size of component p  increases. 

For the network with complete components ( )1s p= − , recall  

( )( )
2 1

1 1kk
ps

p
ρ ρ
ρ ρ ρ

− −
=

+ − −
. We take the first derivative of kks  with respect to  p

to obtain: 

( )( ) ( )( )
( ) ( ) ( )( )

2

2 2 2

1 1 2 1 1

1 1 1 1
kk p ps
p p p

ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ

+ − − − − − +∂
= =

∂ + − − + − −
(27’) 

Thus if 10,
1N

ρ  ∈ − 
, the diagonal element of iS  increases as the network 

sparsity decreases due to the increase of the size of each component p . 

Recall 
( )( )1 1kj jks s

p
ρ

ρ ρ ρ
= = −

+ − −
. We take the first derivative of kjs  

with respect to p  to obtain: 

 
( ) ( )( )

2

2 2 0
1 1 1 1

kj jks s
p p p p

ρ ρ ρ
ρ ρ ρ ρ ρ ρ

∂ ∂  
= = = > ∂ ∂ + − − + − − 

 (28') 

Thus if 10,
1N

ρ  ∈ − 
, then the non-diagonal element of iS  increases as the 

network sparsity decreases due to the increase of the size of each component p . 

For the network with complete components ( )1s p= − , the average direct im-
pact with normalized 1kβ =  becomes 

 1Average Direct Impact kk kkBps s
N

 = = 
 

   (29’) 

From equation (27’), kks  increases as p  enlarges if 10,
1N

ρ  ∈ − 
. Thus we 

conclude that average direct impact increases as the network sparsity decreases 
due to the increase of the size of each component p . 

We have the average indirect impact with normalized 1kβ =  as follows: 
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( ) ( ) ( )
( ) ( )( )

11Average Indirect Impact 1 1
1 1 1kj kj

p
Bp p s p s

N p
ρ

ρ ρ
−

= − = − =
+ − −

(30’) 

Thus the derivative of average indirect impact with respect to p  is 

 
( )( )2

Average Indirect Impact 0
1 1p p

ρ
ρ ρ ρ

∂
= >

∂ + − −
 (31’) 

We conclude that average indirect impact increases as the network sparsity de-

creases due to the increase of the size of each component p  if 10,
1N

ρ  ∈ − 
. 

Finally, we have the average total impact with normalized 1kβ = : 

 ( ) 1Average Total Impact 1
1kk kjs p s

pρ ρ
= + − =

− −
 (32’) 

Thus the derivative of the average total impact with respect to p  is 

 
( )2

Average Total Impact 0
1p p

ρ
ρ ρ

∂
= >

∂ − −
 (33’) 

We conclude that average total impact increases as the network sparsity de-

creases due to the increase of the size of each component p  if 10,
1N

ρ  ∈ − 
. 

QED 
(ii) (General Complete Core-Periphery Component) Similarly, for the net-

work with general complete core-periphery components ( )1s p< − , we first 
show that the parameters a to e of the component submatrix iS  increase as the 
network sparsity decreases when [ )1, 1s p∈ − . 

 As 10,
1N

ρ  ∈ − 
, ( )def 1

0
k k

i i ikS I W Wρ ρ− ∞

=
= − = ∑    (34’) 

Thus each element of iS  is non-negative. As 1λ > , we have: 

 

( )
( )( )

( ) ( ) ( )

( )( )

2 2 2 2 2 2 2 2

22 2 2 2

22 2 2

22 2 2 2

2 2 2

1 1

1 2 1 1
0

1 1

s s s s sa c
s s s s s

s s

s s s

ρ λ ρ λρ ρ λρ ρ λρ λ ρ

ρ ρ ρ ρ λρ

ρ λ λ ρ ρ λ ρ λ

ρ ρ ρ ρ λρ

− + − + + − +∂ ∂
= =

∂ ∂ + − − + − +

 + − + − + − = >
+ − − + − +

 (35’) 

 
( )

( )

2 2 2

22 2 2 2

1 1
0

1

sb d
s s s s s

ρ ρ λ ρ

ρ ρ ρ λρ

 + + −∂ ∂  = = >
∂ ∂ − − + − +

 (36’) 

 
( )

( )

2

22 2 2 2

1 2 1
0

1

se
s s s s

ρ ρ λ

ρ ρ ρ λρ

+ − ∂  = >
∂ − − + − +

 (37’) 

Therefore, if N  is fixed and 10,
1N

ρ  ∈ − 
, then parameters a to e increase 

as the network sparsity decreases when [ )1, 1s p∈ − . 
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We then compute the formulae of the network impacts with normalized 
1kβ =  and derive their derivatives respect to s . 

( )( )
2 2 2 2 3 3 2 2 2 2 2 3 2 3 2 2 3 2

2 2 2 2

Average Direct Impact

2 2
1 1

s s s s s s s s s s
s s s

λ λρ ρ λρ λρ ρ λρ ρ λρ λρ λ ρ ρ λρ λ ρ
λ ρ ρ ρ λ ρ ρ

− − + − + + − + − − + + − +
=

+ − − + + −
 (38’) 

We take the derivative of average direct impact with respect to s : 

( ) ( )( ) ( )( ) ( )( )
( )( )

2 22 3 2 2 2

22 2 2 2

Average Direct Impact

2 1 3 1 2 1 1 1 2 1

1 1

0

s

s s s

s s s

ρ λ ρ λ λ ρ λ ρ λ λ

λ ρ ρ ρ ρ λρ

∂
∂

 − + − + − + − + − + −  =
+ − − + − +

>

 

(39’) 

since 1λ > . Thus Average Direct Impact 0
s

∂
>

∂
. 

Next, we have the average indirect impact with normalized 1kβ = : 

( )
( )( )
2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

Average Indirect Impact

1 2 2

1 1

s s s s s s s s s

s s s

ρ λ ρ λρ λρ λ ρ ρ λρ λ ρ

λ ρ ρ ρ λ ρ ρ

− − + + − − + + − +
= −

+ − − + + −

 (40’) 

We take the derivative of average indirect impact with respect to s : 

 
( )

( )( )22 2 2 2

Average Indirect Impact

1 1

s
s s s s

ξ

λ ρ ρ ρ ρ λρ

∂
=

∂ + − − + − +
 (41’) 

where 

 

( ) ( ) ( )

( ) ( )

( ) ( )( ) ( )

2

2 23 2

2 2 24 2 5 2

2 1 2 2 2 1

1 4 1 1

1 2 1 1 1

s s

s s

s s s

ξ λ ρ ρ λ λ λ

ρ λ λ λ

ρ λ λ λ ρ λ

= − + + + −  
 + − + − + − 
   + − + − − − + − −    

 

Let 1 0w λ= − >  and replace λ  by 1w+  in ( )sξ  to obtain: 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

5 2 2 2 2

3 2 2 2 4 2 2 2

2 2 2 3 2 3 4

3 2 2 4 2 2 2 4 5 2 2

1 2 2 2 2

4 2

1 2 2 2 4 2

2

s w s w w sw sw

w sw s w sw s w w

w sw sw sw w w w

s w s w sw s w

ξ ρ ρ ρ

ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

= + − + + +

+ − + + + − −

= + + + + + − −

+ − + −

 (42’) 

The first three terms of ( )sξ  are all positive. For the third parenthesis, we 
have: 

 ( )2 3 4 2 22 2 0w w w wρ ρ ρ ρ ρ ρ− − = − − >  as 0 1ρ< <  and 20 1ρ< <  (43’) 

For the fourth parenthesis, we have: 

 ( )3 2 2 4 2 2 3 2 2 1s w s w s wρ ρ ρ ρ− = −  as 0 1ρ< <    (44’) 
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For the last parenthesis, we have: 

 ( )2 4 5 2 2 2 42 2 0sw s w sw sρ ρ ρ ρ− = − >   (45') 

as 10
s

ρ< <  due to 10
1N

ρ< <
−

. 

 Thus we have ( ) 0sξ >  and Average Indirect Impact 0
s

∂
>

∂
.  (46’) 

Finally, we have the average total impact with normalized 1kβ = : 

 
( )2 2 2 2

Average Total Impact
1

s s
s s s

λ ρ λρ ρ λρ
λ ρ ρ λ ρ ρ

− + − +
= −

− − + + −
 (47’) 

We take the derivative of average total impact with respect to s : 

 
( )( )

( )
( ) ( ) ( )

( )

22 2 2 2

22 2 2 2

Average Total Impact

1 1 2 2 2

1

1 1 2 1 2 1 1
 0

1

s
s s s s

s s s

s s

s s s

ρ ρ λρ λ ρ λρ ρ λρ

λ ρ ρ λ ρ ρ

ρ λ ρ λ ρ λ λ ρ

λ ρ ρ λ ρ ρ

∂
∂

− + − + − + − +
=

− − + + −

+ − − + − + −      = >
− − + + −

 (48’) 

as 1λ > . Thus Average Total Impact 0
s

∂
>

∂
. 

QED 
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