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Abstract 
The coupled Gross-Pitaevskii equations are the basic model describing the 
phenomenon of Bose-Einstein condensation. Therefore, the research on the 
coupled Gross-Pitaevskii equations is very important. One of the main tasks 
of studying the coupled Gross-Pitaevskii equations is to obtain the exact solu-
tions. In this paper, the study of the exact solutions of the coupled Gross-Pi-
taevskii equations is mainly based by using the modified polynomial expan-
sion method and the modified traveling wave solution transformation 
method, assisted by computer software. Firstly, the coupled Gross-Pitaevskii 
equations are changed into a nonlinear coupled ordinary differential system 
by a coupled traveling wave solution transformation. Secondly, by using the 
modified polynomial expansion method, we successfully obtain more new ex-
act elliptic function solutions, hyperbolic function solutions, and trigonomet-
ric function solutions for the coupled Gross-Pitaevskii equations. Finally, ac-
cording to the special parameter values, we show the figures for some of the 
exact solutions. 
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1. Introduction 

In recent decades, the coupled nonlinear partial differential equations (CNPDE) 
[1]-[15] have received much more attention in plasma physics [16], nonlinear op-
tics [17]-[19], Bose-Einstein condensation [20]-[22], biophysics [23] [24], finance 
[25] [26], oceanography [27] and other fields. The equations provide mathemati-
cal models for studying complex systems and help us to better understand and 
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control these systems. In addition, by solving the equations, we can better reveal 
the internal laws of many phenomena. Thus, the studying of the exact solutions 
of CNPDE is of great significance both in theory and practice. However, the stud-
ying of the exact solutions of CNPDE is difficult. 

Now, nonlinear evolution equations have been a topic of deep theoretical re-
search, hereby, a massive number of mathematicians, physicists and engineers 
have attempted to invent various approaches by which one can obtain the exact 
solutions of such equations. In the 1880s, after the French mathematician Dar-
boux proposed the Darboux transformation method, many effective and reliable 
methods for nonlinear evolution equations were proposed. For example, the 
Hirota bilinear method [28], the Painlevé expansion method [29] [30], Bäcklund 
transformation [31] [32], the Riccati equation method [33] [34], unification and 
general unity [35], the Exp-function method [36], the homogeneous balance  

method [37], the G
G
′

-polynomial expansion method [38]-[40], the tanh-function  

method [41]-[43], the Jacobian elliptic function expansion method [43]-[45], the 
F-expansion method [46] [47], the auxiliary equation method [48], the first inte-
gration method [49] [50], etc. Due to the complexity and diversity of partial dif-
ferential equations, the research methods for the exact solutions of partial differ-
ential equations are different until now, and the methods used for different equa-
tions are also different. 

In 2010, Deng-Shan Wang et al. proposed a similarity transformation for solv-
ing the coupled Gross-Pitaevskii equations and derived two types of explicit exact 
solutions, where the coupled equations are denoted as [51]  

 

2 2
2 221

11 1 12 2 12

2 2
2 222

21 1 22 2 22

1 ,
2 2

1 .
2 2

i x b b
t x

i x b b
t x

ψ γ ψ ψ ψ

ψ γ ψ ψ ψ

 ∂ ∂
= − + + + ∂ ∂ 
 ∂ ∂

= − + + + ∂ ∂ 

 (1) 

In 2012, Fei Jin-Xi et al. employed the improved homogeneous balance princi-
ple and mapping method to derive the periodic wave solutions and solitary wave 
solutions of the generalized (3 + 1)-dimensional Gross-Pitaevskii equation [52]  

 ( ) ( ) ( )22 21 0,
2ti t g t V t rψ ρ ψ ψ ψ ψ+ ∇ − − =  (2) 

where 2
xx yy zz∇ = ∂ + ∂ + ∂  and 2 2 2 2r x y z= + + . 

In 2017, Tao Xu et al. extended the single-component Gross-Pitaevskii equation 
to a two-component coupled case with damping terms, linear and parabolic den-
sity distributions. The coupled equations are given by  

 
( ) ( )
( ) ( )

2 22 2 2
1 1 1 2 1 1

2 22 2 2
2 2 1 2 2 2

2 0,

2 0,

t xx

t xx

iq q q q q i x x q

iq q q q q i x x q

µ β α β

µ β α β

+ + + + − + =

+ + + + − + =
 (3) 

where they derived the Lax pair for the two-component coupled Gross-Pitaevskii 
equations and obtained multi-nonautonomous solitons, a single breather soliton, 
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and first-order rogue waves using the Darboux transformation [53]. 
In 2019, T. Kanna et al. obtained solutions for the coupled two-component and 

three-component non-autonomous Gross-Pitaevskii systems by introducing ap-
propriate rotation and similarity transformations. The two-component system is 
given by  

 ( ) ( ) ( ) ( )
2 2 2

2
2

1 1,
2 , 0 1,2 ,j j

jl l j j l
l l l j

i x g x V x t j
t x
ψ ψ

γ ψ ψ ψ σψ
= = ≠

∂ ∂
+ + + − = =

∂ ∂ ∑ ∑  (4) 

where ( )xγ , ( )jlg x , and ( ),V x t  are functions characterizing the non-auton-
omous features of the system, and σ  is a coupling constant [54]. 

In 2020, H. Chaachoua Sameut et al. solved two one-dimensional coupled 
Gross-Pitaevskii equations with time-varying harmonic traps and found soliton 
solutions that can be effectively controlled by modulating the frequency of the 
external potential. The equations are given by  

 
( )( )
( )( )

2 2
1 1 11 1 12 2 1

2 2
2 2 21 1 22 2 2

1 , 0,
2
1 , 0,
2

t xx

t xx

i V x t R R

i V x t R R

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

+ + + + =

+ + + + =
 (5) 

where ( ),V x t   represents the time-varying harmonic trap potential, and ijR  
are interaction coefficients [55]. 

In recent years, the properties of Bose-Einstein condensates (BEC) and nonlin-
ear optics under the modulation of scattering length have attracted much atten-
tion. For example, the research of Fischbach resonance is well known and has led 
to the proposal of many new nonlinear phenomena. The Gross-Pitaevskii equa-
tion (GPE) is the basic model describing the phenomenon of BEC. The mathe-
matical theoretical study of GPE is not only helpful to understand and analyze the 
BEC phenomena in physical experiments, but also to predict new BEC phenom-
ena theoretically. This paper studies the following system of the coupled Gross-
Pitaevskii equations (CGPE), without an external potential [56].  

 
( )
( )

2
2 2

2

2
2 2

2

1 0,
2
1 0,
2

u ui u v u
t x
v vi v u v
t x

β γ

δ γ

∂ ∂
+ − + =

∂ ∂
∂ ∂

+ − + =
∂ ∂

 (6) 

where, 1i = − , ,u v  are the function of t  and x . In optics, t  represents the 
propagation time variable, x  represents the propagation space variable, u  and 
v  represent two unrelated beams of light, respectively. However, in order to bet-
ter understand the nature and laws of the phenomena of CGPE (6), it is still nec-
essary to study the exact solutions for the equations. In this paper, we transform 
(6) into a nonlinear coupled ordinary differential system by using coupled travel-
ing wave solution transformation, and then obtain new exact solutions by using 
the F-expansion method. 

The organization of this paper is as follows. Section 1 gives an introduction. 
Section 2 gives a brief description of the algorithm by using the F-expansion 
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method. Section 3 gives the exact solutions of CGPE (6). Section 4 gives some 
numerical results and their figures to illustrate the solutions. Finally, the paper 
ends with a conclusion in Section 5. 

2. Algorithm of the Modified Polynomial Expansion Method 

In this section, we describe the algorithm of polynomial expansion method by 
modified polynomial expansion method for finding the exact solutions of the cou-
pled nonlinear partial differential equations. Suppose that the coupled nonlinear 
partial differential equations, which have independent space variable x  and time 
variable t , are given by  

 
( )
( )

, , , , , , , , , , , , , , , 0,
, , , , , , , , , , , , , , , 0,

x x t t x x t t xx xx xt xt tt

x x t t x x t t xx xx xt xt tt

P u v u v u v u v uv u v uv u v u v u
Q u v u v u v u v uv u v uv u v u v u
 =
 =





 (7) 

where ( ) ( ), , ,u u x t v v x t= =  are unknown functions of the coupled system (7), 
,P Q  are polynomials of ( ) ( ), , ,u x t v x t  and their partial derivatives in which 

the highest order partial derivatives and the nonlinear terms are involved and the 
subscripts stand for the partial derivatives. 

Next, we will discuss the specific steps of the modified polynomial expansion 
method. 

(i) Transforming the coupled nonlinear partial differential system (7) into the 
coupled ordinary differential equations (ODE). Suppose that  

 
( ) ( )
( ) ( )

,
,

u u x ct
v v x ct

φ ξ
ϕ ξ

 = − =
 = − =

 (8) 

where x ctξ = −  and { }( )0c R∈ −  is any real number. Substituting (8) into the 
coupled system (7), we can obtain  

 
( )
( )

, , , , , , , , 0,
, , , , , , , , 0,

P
Q

φ ϕ φ ϕ φ ϕ φ ϕ φ
φ ϕ φ ϕ φ ϕ φ ϕ φ

′ ′ ′′ ′′ ′ ′ ′′′ =
 ′ ′ ′′ ′′ ′ ′ ′′′ =





 (9) 

where the prime is the derivative with respect to ξ . 
(ii) Assume that the expressions of the exact solutions of the system (9) are  

 
( ) ( )( )
( ) ( )( )

0

0

,

,

iM
ii

iN
ii

a F

b F

φ ξ ξ

ϕ ξ ξ

=

=

 =


=

∑
∑

 (10) 

where ( )F ξ  satisfies the auxiliary differential equation  

 2 4
0 2 4 ,F c c F c F′ = + +  (11) 

where ( )F F ξ= , 0 2,c c , and 4c  are real constants related to the elliptic modu-
lus of elliptic Jacobian function ( )F ξ . 

(iii) Confirming the value of M  and N  in (10). To confirm the parameters 
M  and N , we use the balance coefficient method by balancing the highest-order 
derivative term and the highest-degree nonlinear term in the coupled system (9). 

(iv) Substituting the value of ,M N   and the solutions F   of Equation (11) 
into the coupled solutions (9), with the help of the software Maple, we can obtain 
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all the values of ( ), 1, 2, ,ia i M=   and the values ( ), 1, 2, ,ib i N=  , by setting 
the coefficients of all terms with the same power exponent about ( )φ ξ   and 
( )ϕ ξ  in (9) to zeros. 
(v) Substituting the values of ( ), 1, 2, ,ia i M=   and the values  
( ), 1, 2, ,ib i N=   into (8), we get the exact solutions of the coupled system (7). 

3. The Exact Solutions for the Coupled Gross-Pitaevskii  
Equations 

Next, we give the exact solutions for CGPE (6). Firstly, we need to transform 
CGPE (6) into a coupled ordinary differential system. 

Suppose the modified coupled traveling wave transformation is as follows  

 
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 1 1

2 2 2 2

exp exp ,

exp exp ,

u u x ct i n x t i n x t

v v x ct ic n x t i n x t

ω φ ξ ω

ω ϕ ξ ω

 = − − = −


= − − = −
 (12) 

where ( ) ( ) ( ) ( ),u x ct v x ctφ ξ ϕ ξ= − = −  are real-valued functions about  
x ctξ = − , { }( )0c R∈ − , 1 2,n n  are the wave numbers, and 1 2,ω ω  are the fre-

quencies, respectively. 
Substituting the modified coupled traveling wave transformation (12) into 

CGPE (6), we get 1 2n n c= = , for simplicity, letting 1 cω µ=  and 2 cω λ= , then 
CGPE can be changed into the following coupled ordinary differential system,  

 

3 2

3 2

1 0,
2 2
1 0,
2 2

cc

cc

φ µ φ βφ γφϕ

ϕ λ ϕ δϕ γϕφ

  ′′ + − − − =   


  ′′ + − − − =   

 (13) 

where 
2 2

2 2
d d,
d d
φ ϕφ ϕ
ξ ξ

′′ ′′= = , by balancing the order of the highest derivative term 

and the highest order nonlinear term of (13), we obtain that 1, 1M N= = . 
Consequently, we yield the expression of the exact solutions for CGPE (6) as  

 
( ) ( )
( ) ( )

1 2

1 2

,
.

a a F
b b F

φ ξ ξ
ϕ ξ ξ
 = +
 = +

 (14) 

Substituting (14) into (13), combining terms with the same power of ( )F ξ  
and setting the coefficient of the same power of ( )F ξ  is to zero, we yield the 
system of algebraic equations about 1 2 1 2, , ,a a b b  as shown below,  

 

4 4
1 1 2 2

2
4 4 2

2 2

0, ,

, , .
2

c ca b a

c c c cb c c
c

δ γ
βδ γ

β γ λ µ
βδ γ

−
= = = ±

−

− −
= ± = = =

−

 (15) 

Then, substituting the solution (15) about 1 2 1 2, , ,a a b b  and Equation (14) into 
equation system (13), according to the auxiliary Equation (11), we can obtain the 
exact solutions for CGPE (6). 

In order to obtain the solutions for CGPE (6), we need to give the main solu-
tions ( )F ξ  of the auxiliary differential Equation (11) according to the parameters 
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0 2 4, ,c c c  as follows [57] [58]: (Note, ( )( )1,2, ,37iF iξ =   are the solutions for 
Equation (11).) 

Case 1: 

 ( ) ( )2 2
0 2 4 1If 1, 1, , then sn .c c k c k F ξ ξ= = − − = =  (16) 

Thus, the solutions for CGPE (6) admit,  

 
( ) ( )

( ) ( )

2
4 4 2

1 2

2
4 4 2

1 2

, sn exp ,
2

, sn exp ,
2

c c c cu x t x ct ic x t
c

c c c cv x t x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − −   −    


  − − = ± − −   −   

 (17) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 2: 

 ( ) ( )2 2
0 2 4 2If , 1 , 1, then ns .c k c k c F ξ ξ= = − − = =  (18) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )

( ) ( )

2
4 4 2

2 2

2
4 4 2

2 2

, ns exp ,
2

, ns exp ,
2

c c c cu x t x ct ic x t
c

c c c cv x t x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − −   −    


  − − = ± − −   −   

 (19) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 3: 

 ( ) ( )2 2
0 2 4 3If 1, 2 , 1, then dn .c k c k c F ξ ξ= − = − = − =  (20) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )

( ) ( )

2
4 4 2

3 2

2
4 4 2

3 2

, dn exp ,
2

, dn exp ,
2

c c c cu x t x ct ic x t
c

c c c cv x t x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − −   −    


  − − = ± − −   −   

 (21) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 4: 

 ( ) ( )2 2 2
0 2 4 4If 1 , 2 1, , then cn .c k c k c k F ξ ξ= − = − = − =  (22) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )

( ) ( )

2
4 4 2

4 2

2
4 4 2

4 2

, cn exp ,
2

, cn exp ,
2

c c c cu x t x ct ic x t
c

c c c cv x t x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − −   −    


  − − = ± − −   −   

 (23) 
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where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 5: 

 ( ) ( )
2 2 2

0 2 4 5
1If , 1 2 , 1 , then .

cn
c k c k c k F ξ

ξ
= − = − + = − =  (24) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )

( ) ( )

2
4 4 2

5 2

2
4 4 2

5 2

1, exp ,
cn 2

1, exp ,
cn 2

c c c cu x t ic x t
x ct c

c c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± −    −−   


  − − = ± −    −−   

 (25) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 6: 

 ( ) ( )
2 2

0 2 4 6
1If 1, 2 , 1, then .

dn
c c k c k F ξ

ξ
= − = − = − =  (26) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )

( ) ( )

2
4 4 2

6 2

2
4 4 2

6 2

1, exp ,
dn 2

1, exp ,
dn 2

c c c cu x t ic x t
x ct c

c c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± −    −−   


  − − = ± −    −−   

 (27) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 7: 

 ( ) ( )
( )

2 2
0 2 4 7

cn
If 1 , 2 , 1, then .

sn
c k c k c F

ξ
ξ

ξ
= − = − = =  (28) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

7 2

2
4 4 2

7 2

cn
, exp ,

sn 2

cn
, exp ,

sn 2

x ctc c c cu x t ic x t
x ct c

x ctc c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    −−   


 −  − − = ± −    −−   

 (29) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 8: 

 ( ) ( )
( )

2 2
0 2 4 8

sn
If 1, 2 , 1 , then .

cn
c c k c k F

ξ
ξ

ξ
= = − = − =  (30) 

Thus, the solutions for CGPE (6) admit,  
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( ) ( )
( )

( ) ( )
( )

2
4 4 2

8 2

2
4 4 2

8 2

sn
, exp ,

cn 2

sn
, exp ,

cn 2

x ctc c c cu x t ic x t
x ct c

x ctc c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    −−   


 −  − − = ± −    −−   

 (31) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 9: 

 ( ) ( ) ( )
( )

2 2 2
0 2 4 9

sn
If 1, 2 1, 1 , then .

dn
c c k c k k F

ξ
ξ

ξ
= = − = − =  (32) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

9 2

2
4 4 2

9 2

sn
, exp ,

dn 2

sn
, exp ,

dn 2

x ctc c c cu x t ic x t
x ct c

x ctc c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    −−   


 −  − − = ± −    −−   

 (33) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 10: 

 ( ) ( ) ( )
( )

2 2 2
0 2 4 10

dn
If 1 , 2 1, 1, then .

sn
c k k c k c F

ξ
ξ

ξ
= − = − = =  (34) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

10 2

2
4 4 2

10 2

dn
, exp ,

sn 2

dn
, exp ,

sn 2

x ctc c c cu x t ic x t
x ct c

x ctc c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    −−   


 −  − − = ± −    −−   

 (35) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 11: 

 ( ) ( ) ( )
2

0 2 4 11
1 1 2 1If , , , then ns cs .
4 2 4

kc c c F ξ ξ ξ−
= = = = ±  (36) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

11 2

2
4 4 2

11 2

, ns cs exp ,
2

, ns cs exp ,
2

c c c cu x t x ct x ct ic x t
c

c c c cv x t x ct x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − ± − −    −   


  − − = ± − ± − −    −   

 (37) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 12: 

https://doi.org/10.4236/am.2025.164021


C. Xu et al. 
 

 

DOI: 10.4236/am.2025.164021 391 Applied Mathematics 
 

 ( ) ( ) ( )
2 2 2

0 2 4 12
1 1 1If , , , then nc .

4 2 4
k k kc c c F ξ ξ ξ− + −

= = = = ±  (38) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

12 2

2
4 4 2

12 2

, nc sc exp ,
2

, nc sc exp ,
2

c c c cu x t x ct x ct ic x t
c

c c c cv x t x ct x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − ± − −    −   


  − − = ± − ± − −    −   

 (39) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 13: 

 ( ) ( ) ( )
2 2

0 2 4 13
2 1If , , , then ns ds .

4 2 4
k kc c c F ξ ξ ξ−

= = = = +  (40) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

13 2

2
4 4 2

13 2

, ns ds exp ,
2

, ns ds exp ,
2

c c c cu x t x ct x ct ic x t
c

c c c cv x t x ct x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − + − −    −   


  − − = ± − + − −    −   

 (41) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 14: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2

0 2 4

14.1 14.2 2

2If , , ,
4 2 4

dn
then sn cn ;or .

1 sn cn

k k kc c c

F i F
i k

ξ
ξ ξ ξ ξ

ξ ξ

−
= = =

= ± =
− ±

 (42) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

14.1 2

2
4 4 2

14.1 2

, sn cn exp ,
2

, sn cn exp ;
2

c c c cu x t x ct i x ct ic x t
c

c c c cv x t x ct i x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − ± − −    −   


  − − = ± − ± − −    −   

 (43) 

or  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2
4 4 2

14.2 2 2

2
4 4 2

14.2 2 2

dn
, exp ,

21 sn cn

dn
, exp ,

21 sn cn

x ctc c c cu x t ic x t
ci k x ct x ct

x ctc c c cv x t ic x t
ci k x ct x ct

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    − − − ± −   


 −  − − = ± −    − − − ± −   

(44) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 15: 
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 ( ) ( ) ( )
( )

2
0 2 4 15

sn dn
If 1, 2 4 , 1, then .

cn
c c k c F

ξ ξ
ξ

ξ
= = − = =  (45) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2
4 4 2

15 2

2
4 4 2

15 2

sn dn
, exp ,

cn 2

sn dn
, exp ,

cn 2

x ct x ctc c c cu x t ic x t
x ct c

x ct x ctc c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

  − −  − −
= ± −    −−   


 − −  − − = ± −    −−   

 (46) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 16: 

 

( ) ( )

( ) ( ) ( )
( )( ) ( )( )

2 222
1

0 2 42
1

16
1

1 11 6If , , ,
4 2 4

dn cn
then .

1 sn 1 sn

k D kk kc c c
D

F
D k

ξ ξ
ξ

ξ ξ

− −+ +
= = =

=
+ +

 (47) 

Thus, the solutions for CGPE (6) admit,  

( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( )
( )( ) ( )( )

2
4 4 2

16 2
1

2
4 4 2

16 2
1

dn cn
, exp

21 sn 1 sn

dn cn
, exp ,

21 sn 1 sn

x ct x ctc c c cu x t ic x t
cD x ct k x ct

x ct x ctc c c cv x t ic x t
cD x ct k x ct

δ γ
βδ γ

β γ
βδ γ

  − −  − −
= ± −    − + − + −   


 − −  − − = ± −    − + − + −   

(48) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 17: 

 

( ) ( )

( ) ( ) ( )
( )( ) ( )( )

2 222
1

0 2 42
1

17
1

1 11 6If , , ,
4 2 4

dn cn
then .

1 sn 1 sn

k D kk kc c c
D

F
D k

ξ ξ
ξ

ξ ξ

+ ++ −
= = =

=
+ −

 (49) 

Thus, the solutions for CGPE (6) admit,  

( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( )
( )( ) ( )( )

2
4 4 2

17 2
1

2
4 4 2

17 2
1

dn cn
, exp ,

21 sn 1 sn

dn cn
, exp ,

21 sn 1 sn

x ct x ctc c c cu x t ic x t
cD x ct k x ct

x ct x ctc c c cv x t ic x t
cD x ct k x ct

δ γ
βδ γ

β γ
βδ γ

  − −  − −
= ± −    − + − − −   


 − −  − − = ± −    − + − − −   

(50) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, 1, , , Dβ δ γ  
and c  are all real constants. 

Case 18: 

 
( ) ( ) ( )

( )

3 4 2 2
0 2 4

18 2

4If 2 , 6 1, ,

dn cn
then .

1 sn

c k k k c k k c
k

k
F

k
ξ ξ

ξ
ξ

= − + + = − − = −

=
+

 (51) 
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Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2
4 4 2

18 2 2

2
4 4 2

18 2 2

dn cn
, exp ,

21 sn

dn cn
, exp ,

21 sn

k x ct x ctc c c cu x t ic x t
ck x ct

k x ct x ctc c c cv x t ic x t
ck x ct

δ γ
βδ γ

β γ
βδ γ

  − −  − −
= ± −    − + −   


 − −  − − = ± −    − + −   

 (52) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 19: 

 
( ) ( ) ( )

( )

3 4 2 2
0 2 4

19 2

4If 2 , 6 1, ,

dn cn
then .

sn 1

c k k k c k k c
k

k
F

k
ξ ξ

ξ
ξ

= + + = − − − =

=
−

 (53) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2
4 4 2

19 2 2

2
4 4 2

19 2 2

dn cn
, exp ,

2sn 1

dn cn
, exp ,

2sn 1

k x ct x ctc c c cu x t ic x t
ck x ct

k x ct x ctc c c cv x t ic x t
ck x ct

δ γ
βδ γ

β γ
βδ γ

  − −  − −
= ± −    − − −   


 − −  − − = ± −    − − −   

 (54) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 20: 

 
( ) ( ) ( )

( )

2 2
0 1 2 1 4 1

2

20 2
1

If 2 2 , 6 2, 4 ,

sn cn
then ;

dn

c k k c k k c k

k
F

k
ξ ξ

ξ
ξ

= + − = − − =

=
−

 (55) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 2
4 4 2

20 2 2
1

2 2
4 4 2

20 2 2
1

sn cn
, exp ,

2dn

sn cn
, exp ;

2dn

k x ct x ctc c c cu x t ic x t
ck x ct

k x ct x ctc c c cv x t ic x t
ck x ct

δ γ
βδ γ

β γ
βδ γ

  − −  − −
= ± −    − − −   


 − −  − − = ± −    − − −   

 (56) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function,  
2

1 1k k= − , , ,β δ γ  and c  are all real constants. 
Case 21: 

 
( ) ( ) ( )

( )

2 2
0 1 2 1 4 1

2

21 2
1

If 2 2 , 6 2, 4 ,

sn cn
then .

dn

c k k c k k c k

k
F

k
ξ ξ

ξ
ξ

= − − = − − + = −

= −
+

 (57) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 2
4 4 2

21 2 2
1

2 2
4 4 2

21 2 2
1

sn cn
, exp ,

2dn

sn cn
, exp ,

2dn

k x ct x ctc c c cu x t ic x t
ck x ct

k x ct x ctc c c cv x t ic x t
ck x ct

δ γ
βδ γ

β γ
βδ γ

  − −  − −
= ± −    − + −   


 − −  − − = ± − −    − + −   

 (58) 
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where 0 1k< <  denotes the modulus of the Jacobian elliptic function,  
2

1 1k k= − , , ,β δ γ  and c  are all real constants. 
Case 22: 

 
( )

( ) ( )

( )
( )

( ) ( )

2 2 2 22 2
3 2

0 2 42 2 2
3 2

2 2
2 3

2 2 2
2 3

22
2 3

11 1If , , ,
2 44

sn
then .

cn dn

D k D kk kc c c
D k D

D D
D D k

F
D D

ξ
ξ

ξ ξ

− −− +
= = =

−

−
+

−
=

+

 (59) 

Thus, the solutions for CGPE (6) admit,  

( )
( )

( ) ( )

( )
( )

( ) ( )

2 2
2 3

2 2 2 2
2 34 4 2

22 2
2 3

2 2
2 3

2 2 2 2
2 34 4 2

22 2
2 3

sn
, exp ,

cn dn 2

sn
, exp ,

cn dn 2

D D x ct
D D kc c c cu x t ic x t

D x ct D x ct c

D D x ct
D D kc c c cv x t ic x t

D x ct D x ct c

δ γ
βδ γ

β γ
βδ γ

 −
+ −

 −  − − = ± −    − + −−    

 −

+ −  −  − − = ± −    − + −−   

(60) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function,  

2 3, , , ,D Dβ δ γ  and c  are all real constants. 
Case 23: 

 
( )

( )
( )

( ) ( )

2 24 2
3 2

0 2 42 2
3 2

2 2 2 2
2 3 3

2 2
2 3

23
2 3

2If , , ,
2 44

dn
then .

sn cn

D Dk kc c c
D D

D D D k
D D

F
D D

ξ
ξ

ξ ξ

+−
= = =

+

+ −
+

+
=

+

 (61) 

Thus, the solutions for CGPE (6) admit,  

( )
( )

( ) ( )

( )
( )

( ) ( )

2 2 2 2
2 3 3

2 2 2
2 34 4 2

23 2
2 3

2 2 2 2
2 3 3

2 2 2
2 34 4 2

23 2
2 3

dn
, exp ,

sn cn 2

dn
, exp ,

sn cn 2

D D D k x ct
D Dc c c cu x t ic x t

D x ct D x ct c

D D D k x ct
D Dc c c cv x t ic x t

D x ct D x ct c

δ γ
βδ γ

β γ
βδ γ

 + −
+ −

 +  − − = ± −    − + −−    

 + −

+ −  +  − − = ± −    − + −−   

(62) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function,  

2 3, , , ,D Dβ δ γ  and c  are all real constants. 
Cas 24: 

 
( ) ( )

( )( )

2
2 2 2 2 2

0 2 4 2 2 22
2

2

24 2
2

2 1If , 2 2, 2 ,

sn 1
then .

sn 1

k kc c k c D k D D k
D

k
F

D k
ξ

ξ
ξ

− −
= = + = − − −

−
=

+

 (63) 

Thus, the solutions for CGPE (6) admit,  
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( ) ( )
( )( )

( ) ( )
( )( )

2 2
4 4 2

24 2 2
2

2 2
4 4 2

24 2 2
2

sn 1
, exp ,

2sn 1

sn 1
, exp ,

2sn 1

k x ctc c c cu x t ic x t
cD k x ct

k x ctc c c cv x t ic x t
cD k x ct

δ γ
βδ γ

β γ
βδ γ

  − −  − −
= ± −    − − +   


 − −  − − = ± −    − − +   

 (64) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, 2, , , Dβ δ γ  
and c  are all real constants. 

Case 25: 

 
( ) ( )

( )( )

2
2 2 2 2

0 2 4 2 2 22
2

2

25 2
2

2 1If , 2 2, 2 ,

sn 1
then .

sn 1

k kc c k c D k D D k
D

k
F

D k
ξ

ξ
ξ

++ +
= − = = − − −

+
=

−

 (65) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )
( )( )

( ) ( )
( )( )

2 2
4 4 2

25 2 2
2

2 2
4 4 2

25 2 2
2

sn 1
, exp ,

2sn 1

sn 1
, exp ,

2sn 1

k x ctc c c cu x t ic x t
cD k x ct

k x ctc c c cv x t ic x t
cD k x ct

δ γ
βδ γ

β γ
βδ γ

  − +  − −
= ± −    − − −   


 − +  − − = ± −    − − −   

 (66) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, 2, , , Dβ δ γ  
and c  are all real constants. 

Case 26: 

 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

2

0 2 4

26.1

26.2 2

26.3

26.4

26.5 2

1 1 2 1If , , ,
4 2 4

then sn dn ;

dn
;

cn 1

ns cs ;

sn
;

1 cn

cn
or .

1 sn dn

kc c c

F k i

F
k i k

F k

F

F
k

ξ ξ ξ

ξ
ξ

ξ

ξ ξ ξ

ξ
ξ

ξ

ξ
ξ

ξ ξ

−
= = =

= ±

=
± −

= ±

=
±

=
− ±

 (67) 

Thus, the solutions for CGPE (6) admit,  

( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

26.1 2

2
4 4 2

26.1 2

, sn dn exp ,
2

, sn dn exp ;
2

c c c cu x t k x ct i x ct ic x t
c

c c c cv x t k x ct i x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − ± − −    −   


  − − = ± − ± − −    −   

 (68) 

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

26.2 2 2

2
4 4 2

26.2 2 2

dn
, exp ,

2cn 1

dn
, exp ;

2cn 1

x ctc c c cu x t ic x t
ck x ct i k

x ctc c c cv x t ic x t
ck x ct i k

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    − − ± −   


 −  − − = ± −    − − ± −   

 (69) 
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( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

26.3 2

2
4 4 2

26.3 2

, ns cs exp ,
2

, ns cs exp ;
2

c c c cu x t k x ct x ct ic x t
c

c c c cv x t k x ct x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − ± − −    −   


  − − = ± − ± − −    −   

 (70) 

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

26.4 2

2
4 4 2

26.4 2

sn
, exp ,

1 cn 2

sn
, exp ;

1 cn 2

x ctc c c cu x t ic x t
x ct c

x ctc c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    ± −−   


 −  − − = ± −    ± −−   

 (71) 

or  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2
4 4 2

26.5 2 2

2
4 4 2

26.5 2 2

cn
, exp ,

21 sn dn

cn
, exp ,

21 sn dn

x ctc c c cu x t ic x t
ck x ct x ct

x ctc c c cv x t ic x t
ck x ct x ct

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −   − − − ± −    


 −  − − = ± −   − − − ± −   

(72) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 27: 

 ( ) ( )
( )

( ) ( ) ( )

2 2 2

0 2 4

27.1

27.2

1 1 1If , , ,
4 2 4

dn
then ;

1 sn

or sd nd .

k k kc c c

F
k

F k

ξ
ξ

ξ

ξ ξ ξ

− + −
= = =

=
±

= ±

 (73) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

27.1 2

2
4 4 2

27.1 2

dn
, exp ,

1 sn 2

dn
, exp ;

1 sn 2

x ctc c c cu x t ic x t
k x ct c

x ctc c c cv x t ic x t
k x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    ± −−   


 −  − − = ± −    ± −−   

 (74) 

or  

 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

27.2 2

2
4 4 2

27.2 2

, sd nd exp ,
2

, sd nd exp ,
2

c c c cu x t k x ct x ct ic x t
c

c c c cv x t k x ct x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − ± − −    −   


  − − = ± − ± − −    −   

 (75) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 28: 

 
( ) ( )

( ) ( ) ( ) ( )

2 2 2

0 2 4

28.1 28.2

1 1 1If , , ,
4 2 4

cn
then ;or nc sc .

1 sn

k k kc c c

F F
ξ

ξ ξ ξ ξ
ξ

− + −
= = =

= = ±
±

 (76) 
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Thus, the solutions for CGPE (6) admit,  

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

28.1 2

2
4 4 2

28.1 2

cn
, exp ,

1 sn 2

cn
, exp ;

1 sn 2

x ctc c c cu x t ic x t
x ct c

x ctc c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    ± −−   


 −  − − = ± −    ± −−   

 (77) 

or  

 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

28.2 2

2
4 4 2

28.2 2

, nc sc exp ,
2

, nc sc exp ;
2

c c c cu x t x ct x ct ic x t
c

c c c cv x t x ct x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − ± − −    −   


  − − = ± − ± − −    −   

 (78) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 29: 

 
( )

( ) ( ) ( )

22 2

0 2 4

29

1 1 1If , , ,
4 2 4

then cn dn .

k kc c c

F kξ ξ ξ

− +
= − = = −

= ±

 (79) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( ) ( )( )

( ) ( ) ( )( )

2
4 4 2

29 2

2
4 4 2

29 2

, cn dn exp ,
2

, cn dn exp ,
2

c c c cu x t k x ct x ct ic x t
c

c c c cv x t k x ct x ct ic x t
c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − ± − −    −   


  − − = ± − ± − −    −   

 (80) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 30: 

 

( )

( ) ( )
( ) ( )

222

0 2 4

30

11 1If , , ,
4 2 4

sn
then .

dn cn

kkc c c

F
ξ

ξ
ξ ξ

−+
= = =

=
±

 (81) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2
4 4 2

30 2

2
4 4 2

30 2

sn
, exp ,

dn cn 2

sn
, exp ,

dn cn 2

x ctc c c cu x t ic x t
x ct x ct c

x ctc c c cv x t ic x t
x ct x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    − ± −−   


 −  − − = ± −    − ± −−   

 (82) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 31: 
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 ( ) ( )
( )

( ) ( )
( )

2 4

0 2 4

31.1 2

31.2

1 2If , , ,
4 2 4

cn
then ;

1 dn

sn
or .

1 dn

k kc c c

F
k

F

ξ
ξ

ξ

ξ
ξ

ξ

−
= = =

=
− ±

=
±

 (83) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

31.1 2 2

2
4 4 2

31.1 2 2

cn
, exp ,

21 dn

cn
, exp ;

21 dn

x ctc c c cu x t ic x t
ck x ct

x ctc c c cv x t ic x t
ck x ct

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    − − ± −   


 −  − − = ± −    − − ± −   

 (84) 

or  

 

( ) ( )
( )

( ) ( )
( )

2
4 4 2

31.2 2

2
4 4 2

31.2 2

sn
, exp ,

1 dn 2

sn
, exp ,

1 dn 2

x ctc c c cu x t ic x t
x ct c

x ctc c c cv x t ic x t
x ct c

δ γ
βδ γ

β γ
βδ γ

  −  − −
= ± −    ± −−   


 −  − − = ± −    ± −−   

 (85) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 32: 

 
( ) ( )

0 2 4

2
32 2

4

If 0, 0, 0,

then sech .

c c c

cF c
c

ξ ξ

= > <

= −
 (86) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )

( ) ( )

2
4 4 2 2

32 22
4

2
4 4 2 2

32 22
4

, sech exp ,
2

, sech exp ,
2

c c c c cu x t c x ct ic x t
c c

c c c c cv x t c x ct ic x t
c c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − − −   −    


  − − = ± − − −   −   

 (87) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 33: 

 ( ) ( )2
0 2 4 33 2

4

If 0, 0, 0, then csch .cc c c F c
c

ξ ξ= > > =  (88) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )

( ) ( )

2
4 4 2 2

33 22
4

2
4 4 2 2

33 22
4

, csch exp ,
2

, csch exp ,
2

c c c c cu x t c x ct ic x t
c c

c c c c cv x t c x ct ic x t
c c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − −   −    


  − − = ± − −   −   

 (89) 
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where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 34: 

 ( )
2
2 2 2

0 2 4 34
4 4

If , 0, 0, then tanh .
4 2 2
c c cc c c F
c c

ξ ξ
 

= < > = − − 
 

 (90) 

Thus, the solutions for CGPE (6) admit,  

( )

( )

2
4 4 2 2 2

34 2
4

2
4 4 2 2 2

34 2
4

, tanh exp ,
2 2 2

, tanh exp ,
2 2 2

c c c c c cu x t x ct ic x t
c c

c c c c c cv x t x ct ic x t
c c

δ γ
βδ γ

β γ
βδ γ

     − −
= ± − − − −     −      


    − − = ± − − − −     −     

(91) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 35: 

 
( ) ( )

( ) ( )

2
0 2 4 35.1 2

4

2
35.2 2

4

If 0, 0, 0, then sec ;

or csc .

cc c c F c
c

cF c
c

ξ ξ

ξ ξ

= < > = − −

= − −

 (92) 

Thus, the solutions for CGPE (6) admit,  

 

( ) ( )

( ) ( )

2
4 4 2 2

35.1 22
4

2
4 4 2 2

35.1 22
4

, sec exp ,
2

, sec exp ;
2

c c c c cu x t c x ct ic x t
c c

c c c c cv x t c x ct ic x t
c c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − − − −   −    


  − − = ± − − − −   −   

 (93) 

or  

 

( ) ( )

( ) ( )

2
4 4 2 2

35.2 22
4

2
4 4 2 2

35.2 22
4

, csc exp ,
2

, csc exp ,
2

c c c c cu x t c x ct ic x t
c c

c c c c cv x t c x ct ic x t
c c

δ γ
βδ γ

β γ
βδ γ

   − −
= ± − − − −   −    


  − − = ± − − − −   −   

 (94) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 36: 

 ( )
2
2 2 2

0 2 4 36
4 4

If , 0, 0, then tan .
4 2 2
c c cc c c F
c c

ξ ξ
 

= > > =  
 

 (95) 

Thus, the solutions for CGPE (6) admit,  

 

( )

( )

2
4 4 2 2 2

36 2
4

2
4 4 2 2 2

36 2
4

, tan exp ,
2 2 2

, tan exp ,
2 2 2

c c c c c cu x t x ct ic x t
c c

c c c c c cv x t x ct ic x t
c c

δ γ
βδ γ

β γ
βδ γ

     − −
= ± − −     −      


    − − = ± − −     −     

 (96) 
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where 0 1k< <  denotes the modulus of the Jacobian elliptic function, , ,β δ γ  
and c  are all real constants. 

Case 37: 

 ( ) ( )
( )

2
4

0 2 4 37
4

2 2 tanh1If 0, 1, , then .
2 tanh

D
c c c F

D
ξ

ξ
ξ

− −
= = = = ±

−
 (97) 

Thus, the solutions for CGPE (6) admit,  

( )
( )( )

( )( )

( )
( )( )

( )( )

2 2
44 4 2

37 2
4

2 2
44 4 2

37 2
4

2 2 tanh
, exp ,

2tanh

2 2 tanh
, exp .

2tanh

D x ctc c c cu x t ic x t
cD x ct

D x ctc c c cv x t ic x t
cD x ct

δ γ
βδ γ

β γ
βδ γ

 − − −   − − = ± −   − − −   


− − −   − −
= ± −   − − −    

(98) 

where 0 1k< <  denotes the modulus of the Jacobian elliptic function, 4, , , Dβ δ γ  
and c  are all real constants. 
 

 
Figure 1. (a) The figure of the amplitude of the solution 2u  shown in the two-dimensional space. (b) The figure of 
the amplitude of the solution 2u  shown in the three-dimensional space. (c) The real part of the solution 2u  shown 
in the three-dimensional space. (d) The imaginary part of the solution 2u  shown in the three-dimensional space. 
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4. Numerical Simulations Experiments of the Solutions 

In this section, we will investigate some of the exact solutions for CGPE (6) and 
interpret some of the solutions in the perspective of their physical meaning. 

According to (15), we see that the figures of ( ),u x t  and ( ),v x t  have similar 
structures, so we only provide the figures of ( ),u x t . 

Example 1. In this example, for the solution ( )2 ,u x t , that is (19), we assume 
the following parameters  

12, 1, , 2,
2

k cβ δ γ= = = = =  

so the figures of ( )2 ,u x t  for (6) are like to Figure 1.  
Example 2. In this example, for the solution ( )5 ,u x t , that is (25), we assume 

the following parameters  

31, 5, 1, , 2,
2

k cβ δ γ= = = = =  

so the figures of ( )5 ,u x t  for (6) are like to Figure 2.  
 

 
Figure 2. (a) The figure of the amplitude of the solution 5u  shown in the two-dimensional space. 
(b) The figure of the amplitude of the solution 5u  shown in the three-dimensional space. (c) The 
real part of the solution 5u  shown in the three-dimensional space. (d) The imaginary part of the 
solution 5u  shown in the three-dimensional space. 
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Example 3. In this example, for the solution ( )8 ,u x t , that is (31), we assume 
the following parameters  

11, 5, 1, , 2,
2

k cβ δ γ= = = = =  

so the figures of ( )8 ,u x t  for (6) are like to Figure 3.  
 

 
Figure 3. (a) The figure of the amplitude of the solution 8u  shown in the two-dimensional space. (b) The figure of 
the amplitude of the solution 8u  shown in the three-dimensional space. (c) The real part of the solution 8u  shown 
in the three-dimensional space. (d) The imaginary part of the solution 8u  shown in the three-dimensional space. 

 
Example 4. In this example, for the solution ( )11 ,u x t , that is (37), we assume 

the following parameters  

11, 5, 1, , 2,
2

k cβ δ γ= = = = =  

so the figures of ( )11 ,u x t  for (6) are like to Figure 4.  
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Figure 4. (a) The figure of the amplitude of the solution 11u  shown in the two-dimensional space. (b) The figure of 
the amplitude of the solution 11u  shown in the three-dimensional space. (c) The real part of the solution 11u  shown 
in the three-dimensional space. (d) The imaginary part of the solution 11u  shown in the three-dimensional space. 

 
Example 5. In this example, for the solution ( )14.1 ,u x t , that is (43), we assume 

the following parameters  

11, 5, 1, , 3,
2

k cβ δ γ= = = = =  

so the figures of ( )14.1 ,u x t  for (6) are like to Figure 5.  
Example 6. In this example, for the solution ( )17 ,u x t , that is (50), we assume 

the following parameters  

1
1 11, 5, 1, , , 2
2 2

k c Dβ δ γ= = = = = =  

so the figures of ( )17 ,u x t  for (6) are like to Figure 6.  
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Figure 5. (a) The figure of the amplitude of the solution 14.1u  shown in the two-dimensional space. 
(b) The figure of the amplitude of the solution 14.1u  shown in the three-dimensional space. (c) The 
real part of the solution 14.1u  shown in the three-dimensional space. (d) The imaginary part of the 
solution 14.1u  shown in the three-dimensional space. 
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Figure 6. (a) The figure of the amplitude of the solution 17u  shown in the two-dimensional space. 
(b) The figure of the amplitude of the solution 17u  shown in the three-dimensional space. (c) The 
real part of the solution 17u  shown in the three-dimensional space. (d) The imaginary part of the 
solution 17u  shown in the three-dimensional space. 

 

 
Figure 7. (a) The figure of the amplitude of the solution 19u  shown in the two-dimensional space. 
(b) The figure of the amplitude of the solution 19u  shown in the three-dimensional space. (c) The 
real part of the solution 19u  shown in the three-dimensional space. (d) The imaginary part of the 
solution 19u  shown in the three-dimensional space. 
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Example 7. In this example, for the solution ( )19 ,u x t , that is (54), we assume 
the following parameters  

12, 3, , 2,
2

k cβ δ γ= = = = =  

so the figures of ( )19 ,u x t  for (6) are like to Figure 7.  
Example 8. In this example, for the solution ( )21 ,u x t , that is (58), we assume 

the following parameters  

32, 3, , 2,
2

k cβ δ γ= = = = =  

so the figures of ( )21 ,u x t  for (6) are like to Figure 8.  
 

 
Figure 8. (a) The figure of the amplitude of the solution 21u  shown in the two-dimensional space. (b) The 
figure of the amplitude of the solution 21u  shown in the three-dimensional space. (c) The real part of the 
solution 21u  shown in the three-dimensional space. (d) The imaginary part of the solution 21u  shown in 
the three-dimensional space. 

 
Example 9. In this example, for the solution ( )24 ,u x t , that is (64), we assume 
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the following parameters  

2
15, 1, 2, 3, , 2,
2

D k cβ δ γ= = = = = =  

so the figures of ( )24 ,u x t  for (6) are like to Figure 9.  
 

 
Figure 9. (a) The figure of the amplitude of the solution 24u  shown in the two-dimensional space. (b) The figure 
of the amplitude of the solution 24u  shown in the three-dimensional space. (c) The real part of the solution 24u  
shown in the three-dimensional space. (d) The imaginary part of the solution 24u  shown in the three-dimen-
sional space. 

 
Example 10. In this example, for the solution ( )26.5 ,u x t , that is (72), we as-

sume the following parameters  

15, 2, 1, , 2,
2

K cβ δ γ= = = = =  

so the figures of ( )26.5 ,u x t  for (6) are like to Figure 10.  
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Figure 10. (a) The figure of the amplitude of the solution 26.5u  shown in the two-dimensional space. (b) The 
figure of the amplitude of the solution 26.5u  shown in the three-dimensional space. (c) The real part of the 
solution 26.5u  shown in the three-dimensional space. (d) The imaginary part of the solution 26.5u  shown in 
the three-dimensional space. 

 
Example 11. In this example, for the solution ( )28.2 ,u x t , that is (78), we as-

sume the following parameters  

21, 9, 1, , 3,
2

K cβ δ γ= = = = =  

so the figures of ( )28.2 ,u x t  for (6) are like to Figure 11.  
Example 12. In this example, for the solution ( )30 ,u x t , that is (82), we assume 

the following parameters  

1 11, 6, 2, , ,
2 2

k cβ δ γ= = = = =  

so the figures of ( )30 ,u x t  for (6) are like to Figure 12.  

https://doi.org/10.4236/am.2025.164021


C. Xu et al. 
 

 

DOI: 10.4236/am.2025.164021 409 Applied Mathematics 
 

 
Figure 11. (a) The figure of the amplitude of the solution 28.2u  shown in the two-dimensional space. 
(b) The figure of the amplitude of the solution 28.2u  shown in the three-dimensional space. (c) The 
real part of the solution 28.2u  shown in the three-dimensional space. (d) The imaginary part of the 
solution 28.2u  shown in the three-dimensional space. 
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Figure 12. (a) The figure of the amplitude of the solution 30u  shown in the two-dimensional space. 
(b) The figure of the amplitude of the solution 30u  shown in the three-dimensional space. (c) The 
real part of the solution 30u  shown in the three-dimensional space. (d) The imaginary part of the 
solution 30u  shown in the three-dimensional space. 

 

 
Figure 13. (a) The figure of the amplitude of the solution 32u  shown in the two-dimensional space. 
(b) The figure of the amplitude of the solution 32u  shown in the three-dimensional space. (c) The 
real part of the solution 32u  shown in the three-dimensional space. (d) The imaginary part of the 
solution 32u  shown in the three-dimensional space. 
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Example 13. In this example, for the solution ( )32 ,u x t , that is (87), we assume 
the following parameters  

2 45, 1, 2, 1, 1, 2,c c cβ δ γ= = = = = − =  

so the figures of ( )32 ,u x t  for (6) are like to Figure 13.  
Example 14. In this example, for the solution ( )34 ,u x t , that is (91), we assume 

the following parameters  

2 43, 2, 1, 3, 2, 2,c c cβ δ γ= = = = − = =  

so the figures of ( )34 ,u x t  for (6) are like to Figure 14.  
 

 
Figure 14. (a) The figure of the amplitude of the solution 34u  shown in the two-dimensional space. (b) The 
figure of the amplitude of the solution 34u  shown in the three-dimensional space. (c) The real part of the 
solution 34u  shown in the three-dimensional space. (d) The imaginary part of the solution 34u  shown in 
the three-dimensional space. 

 
Example 15. In this example, for the solution ( )36 ,u x t , that is (96), we assume 

the following parameters  
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2 43, 2, 1, 3, 2, 2,c c cβ δ γ= = = = = =  

so the figures of ( )36 ,u x t  for (6) are like to Figure 15.  
 

 
Figure 15. (a) The figure of the amplitude of the solution 36u  shown in the two-dimensional space. (b)The 
figure of the amplitude of the solution 36u  shown in the three-dimensional space. (c) The real part of the 
solution 36u  shown in the three-dimensional space. (d) The imaginary part of the solution 36u  shown in 
the three-dimensional space. 

 
Example 16. In this example, for the solution ( )37 ,u x t , that is (98), we assume 

the following parameters  

42, 3, 1, 2, 2,c Dβ δ γ= = = = =  

so the figures of ( )37 ,u x t  for (6) are like to Figure 16.  
The CGPE without an external potential mainly describes the dynamic behavior 

of multiple interacting boson systems, and the dynamics of the system are deter-
mined entirely by the interactions between the particles. Naturally, by prescribing 
different β , δ  and γ , one can obtain different 2a , and 2b . Correspondingly, 
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more novel dynamic behaviors of derived exact solutions will be revealed. 
 

 
Figure 16. (a) The figure of the amplitude of the solution 37u  shown in the two-dimensional space. (b) The 
figure of the amplitude of the solution 37u  shown in the three-dimensional space. (c) The real part of the 
solution 37u  shown in the three-dimensional space. (d) The imaginary part of the solution 37u  shown in 
the three-dimensional space. 

 
Remark: It does not seem mathematically tractable to determine the figures of 

the other types solutions for CGPE (6), however, there is only tedious algebraic 
calculation process, thus, we omit the examples and the figures about them. 

5. Conclusions 

In this work, we study the exact solutions for CGPE (6) with no external potential. 
Here, the traveling wave solution transformation and modified polynomial 
method are used to deduce the exact solutions for CGPE. Through the solutions 
of the auxiliary equation, the exact solutions for CGPE are obtained, and abundant 
solutions with different physical structures are derived, all of which include one 
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or more cn,sn,dn,sech, tanh,sec , etc. functions. It includes complex elliptic func-
tion solutions, hyperbolic function solutions, and trigonometric function solu-
tions. These solutions can be used to reveal how the interactions between boson 
components affect the system and how the system evolves under different condi-
tions. And numerical simulation experiments show the dynamic properties of the 
exact solutions under certain conditions. 

We, here, proposed the efficient modified polynomial expansion method by the 
auxiliary differential Equation (11) and the modified traveling wave solution 
transformation, by which we obtain more new exact solutions for CGPE (6). On 
comparing with the polynomial expansion method and the traveling wave solu-
tion transformation in handling a huge number of nonlinear dispersive and dissi-
pative equations, the proposed scheme is more effective, powerful and reliable to 
be used in identical nonlinear dispersive models. Moreover, the modified polyno-
mial expansion method and the modified traveling wave solution transformation 
can be used to solve any coupled high-order complex partial differential equations. 
Using this modified method, we get a set of nonlinear algebraic equations that can 
be solved by the Maple software. Also, the Maple software was applied over for 
both the graphical impersonation and the emulation. Finally, we can say that the 
method is a very strong scheme to find more new exact solutions for CGPE. 

When exploring the exact solutions of the CGPE, although many studies have 
employed traditional methods such as the Hirota bilinear method and Darboux 
transformation to obtain specific types of solutions, these studies are often con-
fined to a limited number of solution forms, such as soliton and breather solutions. 
In contrast, this study introduces an improved polynomial expansion method and 
an improved traveling wave solution transformation method. These methods not 
only significantly enrich the solution set of the CGPE but also achieve remarkable 
breakthroughs in the novelty of the solutions. Specifically, this study successfully 
obtains a variety of different types of exact solutions, the number of which far 
exceeds the results of previous studies. These solutions include traditional elliptic 
function solutions, hyperbolic function solutions, and trigonometric function so-
lutions. The discovery of these novel solutions not only demonstrates the vastness 
of the solution space of the CGPE but also provides additional perspectives for 
understanding the physical phenomena described by the equation. Moreover, nu-
merical simulations reveal that these solutions have unique physical structures, 
such as specific periodicities. The discovery of these novel solutions not only deep-
ens our understanding of the physical properties of the CGPE but also provides 
new theoretical support for experimental research and applications in related 
fields. These achievements not only highlight the complexity and diversity of the 
solution space of the CGPEs but also offer new directions and ideas for future 
research. 

In addition, CGPE plays an important role in applied mathematics, applied 
physics, quantum physics, engineering, Bose-Einstein condensation, nonlinear 
optics, biophysics, finance, and oceanography. However, we only use the modified 

https://doi.org/10.4236/am.2025.164021


C. Xu et al. 
 

 

DOI: 10.4236/am.2025.164021 415 Applied Mathematics 
 

polynomial expansion method, the coupled modified traveling wave solution 
transformation, and the auxiliary differential equation obtaining more new exact 
solutions in this paper, and according to some special parameter values, we give 
the figures of some solutions. In future research, we will use other methods to 
study the structure and properties of solutions for CGPE, and the application of 
the solutions in practice. 
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