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Abstract 
In this paper, we consider chessboard graphs in higher dimensions and the 
number of edges of their corresponding graphs. First, we solve for the number 
of edges for some of the chessboard graphs of 3 dimensions. Then, we obtain 
results for the number of edges for higher dimensional chessboard graphs with 
all dimensions sizes being the same. For the higher dimensional queen’s graph, 
a double series solution for the number of edges was found - given both the 
dimension size and the number of dimensions. This solution didn’t reduce 
readily to a closed form solution. For the higher dimensional bishop’s graph, a 
series solution was found that involves the generalized Harmonic number. This 
solution series also didn’t readily reduce to a closed form solution. Results for 
the number of edges for two types of higher dimensional knights’ graphs were 
also found. Finally, a series solution for the number of edges for the higher di-
mensional king’s graph was found as well. To reduce this series solution to a 
closed form solution, the Wolfram Alpha series calculator was utilized. 
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1. Introduction 

There are many worthwhile questions that arise from considering chessboard 
graphs. Indeed, hundreds of papers have been written on the subject. This paper 
serves as a quick introduction to chessboard graphs in higher dimensions. As 
such, we will introduce chessboard movements in dimensions higher than 2. Since 
there can often be more than one way of extending a piece’s movement from 2-D 
into higher dimensions, we will mention only some of the possible extensions that 
the author has found in literature. 
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A very basic question regarding any graph is to ask for its number of edges. This 
question will serve as an introduction to chessboard graphs in higher dimensions. 
Note that there are many other questions that could be asked about chessboard 
graphs in higher dimensions. We will begin by looking at several papers that con-
sider chessboard graphs in higher dimensions, as found in [1]-[3]. For two good 
surveys on other types of questions that might be fruitful, see [4] [5]. For questions 
on the general terminology used in this paper, see [6]. 

To construct a chessboard graph, we consider the movement of a particular 
piece on the standard 2-D board. The squares on the board are represented by 
vertices. Two vertices are said to be adjacent if and only if their corresponding 
squares are one movement of the given piece away from one another. We then say 
that two adjacent vertices have an edge between them. Note that each edge has 
two possible corresponding moves related to it. Thus, in non-specialist language, 
in this paper we’re finding the number of possible movements a particular piece 
can take on a given type of board and dividing this result by 2. This computes the 
number of edges for a given graph. We then say the degree of a vertex is the num-
ber of movements its corresponding square has away from that square. This is also 
the number of adjacent edges to the vertex. 

The graphs we will consider in this paper for the lower dimension sizes are the 
3-D rectangular bishop’s graph (denoted by Bm,n,r), the 3-D queen’s graph (de-
noted by Qm,n,r), the 3-D king’s graph (denoted by Km,n,r), the type one 3-D 
knight’s graph (denoted by Nn,m,r;1), and finally, the type two 3-D knight’s graph 
(denoted by Nn,m,r;2). Note that for these graphs m is the size of our first dimension, 
n is taken to be the size of our second dimension, and r is the size of our third 
dimension. We denote the number of edges for these graphs by |E(Qm,n,r)|, 
|E(Km,n,r)|, |E(Nn,m,r;1)|, and |E(Nn,m,r;2)|, respectively. All these values are found in 
this paper. 

We will now begin to generalize these movements to higher dimensions. It is 
helpful to think of vertices as having coordinates for this endeavor. For the 2-
dimensional rectangular boards, we have the coordinates (x, y) to denote a given 
vertex, with 1 ≤ x ≤ m, 1 ≤ y ≤ n, and x, y, m, and n all taken to be natural numbers. 
For the 3-D boards, we have the coordinates (x, y, z) to denote a given vertex, 
where 1 ≤ x ≤ m, 1 ≤ y ≤ n, and 1 ≤ z ≤ r (with all variables taken to be natural 
numbers). Note that, by symmetry, all graphs that have the same set of dimension 
sizes, regardless of what specific dimensions they’re the size of, are isomorphic. In 
other words, the corresponding graphs are structurally the same. We can then 
assume in these given proofs, without loss of generality, that our first variable has 
the lowest dimension size, that the second variable has a dimension size that is at 
least the dimension size of the first variable, but no greater than the third variable, 
and not consider the other graphs where such an ordering for the dimensions sizes 
doesn’t occur. This is because of the isomorphic nature of the graphs. Simply put, 
we can swap dimensions sizes any way we please and still have the same number 
of edges for the graph. 
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For a refresher, recall that the queen can move any number of squares either 
horizontally, vertically, or along a diagonal. It is then natural to consider the 
queen’s movements in higher dimensions to change any number of its coordinates 
by a constant absolute value. After all, a queen in 2-D changes either one of its 
square’s coordinates, or both of its square’s coordinates, by a constant absolute 
value that is allowable by dimension size. This is also the same movement for the 
d-dimensional queen as found in [3]. Note that for this queen’s movement, there 
will always be 3d−1 directions for a queen to move when it is centrally located. 
This is because each coordinate can either increase or decrease by a constant 
amount (or stay the same) in a movement - but not all coordinates can stay the 
same in a movement. In this paper, we consider the queen’s graph in higher di-
mensions with all dimension sizes being of size n. We denote this graph by Qn;d 
and denote the number of edges for this graph as |E(Qn;d)|. In Theorem 18, we 
find a series solution for the number of edges in this graph. It should be noted that 
according to the Wolfram Alpha Series Calculator found, this series solution 
doesn’t readily reduce to a closed form solution. 

A king can move up to one square away horizontally, vertically, or along a di-
agonal on a standard board. In higher dimensions, a king can move up to one 
space away in any direction allowable by dimension size. Thus, a king can change 
any number of its square’s coordinates either by subtracting or adding 1 to any 
number of coordinate values. In a similar fashion to the queen’s movement, a king 
can move in exactly 3d−1 directions when the king is centrally located. In this pa-
per, we consider the king’s graph in higher dimensions with the dimension sizes 
all taken to be of size n. We denote this graph by Kn;d and the number of edges for 
this graph by |E(Kn;d)|. The result for the number of edges in the 2-D king’s graph 
is found. In Theorem 19, we have a result on the number of edges for Kn;d in the 
cases for which d > 2. This result is obtained from finding a series solution and 
then using the Wolfram Alpha Series Calculator found in [7] to reduce the series 
solution to a closed form solution. 

In 2 dimensions rooks can move any number of squares horizontally or verti-
cally. A rook’s movement in two dimensions changes any one of its vertices’ two 
coordinates by any amount allowable by dimension size. We generalize this to 
higher dimensions by defining a rook’s move as changing exactly one of the coor-
dinates by any amount allowable by dimension size. Although we don’t derive 
results for the higher dimensional rook’s graph above dimension size 3 (they’re 
trivial –as the rook’s graph is a regular graph), we do mention its movement in 3-
D for the proof of Theorem 17. 

A bishop can move any number of squares diagonally in 2 dimensions. By these 
rules, a bishop’s movement in two dimensions changes both of its square’s coor-
dinates by a constant absolute value that is allowable by dimension size. It is then 
natural to define a bishop’s movements in higher dimensions as changing all its 
square’s coordinates by a constant absolute value that is allowable by dimension 
size. We denote the d-dimensional bishop’s graph by Bn,d and the number of edges 
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for this graph by |E(Bn;d)|. In Theorem 20, we have a result for the number of 
given edges on Bn;d. 

Finally, we come to the knight. The number of edges for the square, 2-D board 
is given in [5], and is 4(n − 1)(n − 2). A knight in 2-D changes both of its coordi-
nates – one by an absolute value of one unit and the other by an absolute value of 
two units. Again, these movements are restricted by dimension size. One natural 
way to extend the knight’s movement to higher dimensions would then be to 
change exactly one coordinate by an absolute value of 1, a second, different coor-
dinate by an absolute value of 2, a third, different coordinate by an absolute value 
of 3, etc., until we change all d coordinates in such a fashion. Extending the 
knight’s move in higher dimensions in such a way we call a type 1 knight’s move-
ment. Our results for the knights’ graphs of higher dimensions greater than 3 are 
all when the dimension sizes are of size n. We denote the type 1 knight’s graph 
of d dimensions by Nn;d,1 and denote the number of edges for this graph by 
|E(Nn;d,1)|. In Theorem 21, we have a result for the number of edges on this graph. 

The problem with a type 1 knight’s movement is that when the dimension size 
is either 0 (mod 4) or 3 (mod 4), the knight is restricted to squares of only one 
parity –either odd or even. Considering this, another type of movement for a 
knight in higher dimensions is given that solves this problem. For the type 2 knight’s 
movement one of the square’s coordinates is changed by an absolute value of 1, a 
second, different coordinate by an absolute value of 2, a third, different coordinate 
by an absolute value of 4, etc., up to a change of an absolute value of 2d-1 in the last 
coordinate - where d is the number of dimensions. We denote this graph in higher 
dimensions as Nn;d,2 and the number of edges for this graph as |E(Nn;d,2)|. In Theo-
rem 22, we arrive at a result for the number of edges for this graph. 

For both types of knights’ graphs, we use some new terminology that needs to 
be introduced. We refer to a movement type with having exactly d coordinate 
values, with a ± symbol in front of each of the coordinate values. Each of the in-
dividual coordinate’s value changes by the absolute value change indicated. For 
example, the 4-D type 1 knight’s graph has the (±1, ±3, ±4, ±2) type indicating a 
set of movements that change the first coordinate by an absolute value of 1, the 
second coordinate by the absolute value of 3, the third coordinate by an absolute 
value of 4, and the fourth coordinate changing by an absolute value of 2. For this 
type of movement, there are exactly 16 classes of movements. Each movement 
class has the direction (positive or negative) specified. The reason we denote types 
is that due to symmetry, when we keep the dimension size the same for all our 
dimensions, all classes of movements under a given type have the same number 
of total corresponding movements (or edges) for the graph. We will see this new 
terminology in the proofs of Theorem 4 through Theorem 15. 

2. Results 
2.1. Three-Dimensional Results 

Theorem 1 For m n r≤ ≤ ,  
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( )
( )( )2

, ,

1 2 2 6 2 2

3m n r

m m m mn mr m nr n r
E B

− − − + + − −
= . 

Proof: For this proof we will be finding the sum of the degrees of all vertices of 
Bm,n,r and then divide by 2 to convert to the number of edges in the graph. 

To begin to do this, we will first note that by symmetry the sum of the move-
ments (among all vertices) in any one direction equals to the sum of the move-
ments (among all vertices) in any other direction. For example, the direction 
where the x-coordinate and y-coordinate both increase and the z-coordinate de-
creases – denoted here by (+, +, −) - and the direction (+, −, −) have the same sum 
of movements. This is because if we consider the vertex (x, y, z) and the direction 
(+, +, −), then the number of edges in this direction for the vertex with associated 
coordinates (x, y, z) is the same as the number of edges in the direction (+, −, −) 
of the vertex (x, n + 1 − y, z) by symmetry. In a similar fashion, we find that the 
sum of the movements in any one direction equals to the sum of the movements 
in any of the 7 other directions. 

We will begin by counting the sum of the degrees of the vertices by considering 
the direction (+, +, +), without loss of generality, and multiplying this result by 8. 
Note that there are (m − (m − 1))(n − (m − 1))(r − (m − 1)) − (m − m)(n − m)(r 
− m) vertices that have exactly m − 1 other squares along the direction (+, +, +). 
This is because we must have x = 1, y ≤ n − m + 1, and z ≤ r – m + 1 to have exactly 
m − 1 other squares along the direction (+, +, +). In a similar fashion, there are 
(m-(m − 2))(n − (m − 2))(r − (m − 2)) − (m − (m − 1))(n − (m − 1))(r − (m − 1)) 
squares with exactly m − 2 other squares along the direction (+, +, +). Continuing 
this pattern, we find that there are exactly (m − j)(n − j)(r − j) − (m − j − 1)(n − j 
− 1)(r − j − 1) squares with exactly j adjacent squares along the (+, +, +) direction. 
Summing these all up and multiplying by 8 for the number of directions gives us 
the expression ( )( )( ) ( )( )( )( )1

18 1 1 1j m
j j m j n j r j m j n j r j= −

=
− − − − − − − − − −∑  

for the total number of moves. This equals the following sum:  

( )( )( )1
18 j m

j m j n j r j= −

=
− − −∑ . Multiplying through the three terms, then break-

ing the terms up by degrees of j, and finally using the rules for summation of cu-
bes, squares, first degree variables, and constants (then dividing by 2) gives us 

( ) ( ) ( ) ( ) ( )( ) ( )221 1 2 1 1
4 1

2 6 4
m m m m m m m

nrm m nr nm rm n r m
 − − − −
 − − + + + + + −
 
 

.  

Factoring out common terms, distributing the 4, and combining like terms yields 
the proof. □ 

Theorem 2. For 4 r≤ , ( ) ( )2,3, ;1 4 3rE N r= − . 

Proof: First, begin by noting there are exactly 8 different movement classes pos-
sible for this board. These are associated with the movement type (±1, ±2, ±3). All 
8 of these movement classes have the same number of possible moves associated 
with them due to symmetry. Thus, we will consider the movement class (1, 2, 3), 
without loss of generality, and multiply the result by 8 for the total number of 
possible moves, then divide by 2 to convert from total possible moves to edges (or, 
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multiply the result by 4). 
Note that first to be able to have movement class (1, 2, 3) as a possible class of 

move for a square, a square must have coordinates of x = 1 and y = 1 since the 
maximum value for x is 2 and the maximum value of y is 3. This leaves us with 
only r − 3 possible moves since we must have z + 3 ≤ r and x and y values are set 
to one possible value. Then, since there are 8 possible directions, this gives us a 
total of 8(r − 3) for the total number of moves, or 4(r − 3) for the total number of 
edges for our graph. □ 

Theorem 3. For 4 n r≤ ≤ , ( )2, , ;1 8 20 20 48n rE N nr n r= − − + . 

Proof: We will begin by noting there are exactly 16 possible movement classes 
for this board. These come from the movement types (±1, ±2, ±3) and (±1, ±3, 
±2). Also note that all 8 movement classes in the type (±1, ±2, ±3) each have the 
same number of associated moves by symmetry. Likewise, all 8 movements classes 
in the type (±1, ±3, ±2) each have the same number of associated moves by sym-
metry. 

We will first consider movement class (1, 2, 3), without loss of generality, and 
multiply the result by 8 to obtain all possible movements of the type (±1, ±2, ±3). 
It is easy to see that since x = 1, y + 2 ≤ n, and z + 3 ≤ r, then we have (n − 2)(r − 
3) moves associated with the movement class (1, 2, 3) and 8(n − 2)(r − 3) total 
movements associated with the type (±1, ±2, ±3). 

In a similar fashion, we next consider movements of the movement class (1, 3, 
2), without loss of generality, and multiply this result by 8 to obtain all possible 
movements of the type (±1, ±3, ±2). Thus, since x = 1, y + 3 ≤ n, and z + 2 ≤ r, 
then we have (n − 3)(r − 2) moves associated with the movement class (1, 3, 2) 
and 8(n − 3)(r − 2) total moves associated with the type (±1, ±3, ±2). 

Finally, we sum these two results to obtain 8(n − 3)(r − 2) + 8(n − 2)(r − 3) = 
16nr − 40n − 40r + 96 for the total number of possible moves for this board. Di-
viding by two to go from the total number of possible moves to the number of 
edges gives us our result. □ 

Theorem 4. For 4 r≤ , ( ) ( )3,3, ;1 16 3rE N r= − . 
Proof: We will begin by noting there are exactly 16 possible movement classes 

for this board. The types are (±1, ±2, ±3) and (±2, ±1, ±3). Note first that all 8 
movement classes of the type (±1, ±2, ±3) and all 8 movement classes of the type 
(±2, ±1, ±3) have the same number of possible moves associated with them by 
symmetry. In fact, since we have the same dimension size for the first two dimen-
sions, all 16 movement classes have the same number of possible moves associated 
with them by symmetry. 

We will then consider movement class (1, 2, 3), without loss of generality, and 
multiply the result by 16 to obtain all possible movements. It is then easy to see 
that since 1 ≤ x ≤ 2, y = 1, and z + 3 ≤ r, then we have 2(r − 3) moves associated 
with the movement class (1, 2, 3), or 32(r − 3) total possible moves. Dividing by 
two to move from possible moves to the number of edges gives us our result. □ 

Theorem 5. For 4 n r≤ ≤ , ( ) ( )( ) ( )( )3, , ;1 4 3 5 3 4 3 3 5n rE N n r n r= − − + − − . 
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Proof: We will begin by noting there are exactly 32 possible movement classes 
for this board. These come from the movement types (±1, ±2, ±3), (±1, ±3, ±2), 
(±2, ±1, ±3), and (±2, ±3, ±1). Note that all 8 movement classes of any of the type 
(±1, ±2, ±3) each have the same number of associated moves by symmetry. Like-
wise, all 8 movement classes of the type (±1, ±3, ±2) have the same number of 
associated moves by symmetry. Finally, all 8 movement classes of the type (±2, ±1, 
±3) have the same number of associated moves and all 8 movement classes of the 
type (±2, ±3, ±1) also have the same number of associated moves, by symmetry, 
for both types of 8 movement classes. 

We will first consider movement class (1, 2, 3), without loss of generality, and 
multiply the result by 8 to obtain all possible movements of the type (±1, ±2, ±3). 
It is easy to see that since 1 ≤ x ≤ 2, y + 2 ≤ n, and z + 3 ≤ r, then we have 2(n − 
2)(r − 3) movements in the movement class (1, 2, 3) and 16(n − 2)(r − 3) total 
moves associated with the movement type (±1, ±2, ±3). 

In a similar fashion, we next consider movement class (1, 3, 2), without loss of 
generality, and multiply this result by 8 to obtain all possible movements of the 
type (±1, ±3, ±2). Thus, since 1 ≤ x ≤ 2, y + 3 ≤ n, and z + 2 ≤ r, then we have 2(n 
− 3)(r − 2) movements in the movement class (1, 3, 2) and 16(n − 3)(r − 2) total 
moves associated with the type (±1, ±3, ±2). 

Next, we consider movements of the movement class (2, 1, 3), without loss of 
generality, and multiply this result by 8 to obtain all possible moves associated 
with type (±2, ±1, ±3). Thus, since x = 1, y + 1 ≤ n, and z + 3 ≤ r, then we have 
exactly 8(n − 1)(r − 3) possible moves for this type.  

Finally, we consider movements of the movement class (2, 3, 1), without loss of 
generality, and multiply the result by 8 to obtain all possible movements for the 
type (±2, ±3, ±1). It is easy to see that since x = 1, y + 3 ≤ n, and z + 1 ≤ r, then we 
have (n − 3)(r − 1) movements in the type (2, 3, 1) and 8(n − 3)(r − 1) total moves 
associated with the type (±2, ±3, ±1). We then sum up all four results to obtain 
16(n − 2)(r − 3) + 16(n − 3)(r − 2) + 8(n − 1)(r − 3) + 8(n − 3)(r − 1) = (r − 3)(16n 
− 32 + 8n − 8) + (n − 3)(16r − 32 + 8r − 8) = 8(r − 3)(3n − 5) + 8(n − 3)(3r − 5) 
for the total number of moves. Dividing this by 2 gives us the result. □ 

Theorem 6. For 4 m n r≤ ≤ ≤ ,  

( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

, , ;1 4 1 2 3 4 1 3 2

4 2 1 3 4 2 3 1

4 3 1 2 4 3 2 1

m n rE N m n r m n r

m n r m n r

m n r m n r

= − − − + − − −

+ − − − + − − −

+ − − − + − − −

. 

Proof: Note there are 6 different movement types we will consider. Each of 
these types consists of 8 different movement classes which have the same number 
of edges in our graph. We will sum up all the movements over the 6 types for this 
proof. 

For the first type we have the movement classes that correspond to (±1, ±2, ±3). 
Since any of these 8 classes of moves have the same number of edges in our graph, 
let us consider the movement class (1, 2, 3) without loss of generality. It is the case 
that there are exactly (m − 1)(n − 2)(r − 3) moves that correspond to this move-
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ment class. Thus, there are exactly 8(m − 1)(n − 2)(r − 3) moves for this movement 
class. 

For the second type of movement classes that correspond to type (±1, ±3, ±2), 
it is straightforward to see there are exactly 8(m − 1)(n − 3)(r − 2) moves for this 
type. Likewise, it is easy to see that for the type of movement classes (±2, ±1, ±3) 
that there are exactly 8(m − 2)(n − 1)(r − 3) different movements. 

It is then straightforward to see that for the remaining types of movement clas-
ses (±2, ±3, ±1), (±3, ±1, ±2), and (±3, ±2, ±1) there are exactly 8(m − 2)(n − 3)(r 
− 1), 8(m − 3)(n − 1)(r − 2), and 8(m − 3)(n − 2)(r − 1) moves associated with 
these types of movement classes, respectively. By summing all 6 of these results 
and dividing by 2 we obtain the proof. □ 

Theorem 7. For 5 r≤ , ( ) ( )2,3, ;2 4 4rE N r= − . 
Proof: First, begin by noting there are exactly 8 different classes of moves pos-

sible for this board. These are associated with movement type (±1, ±2, ±4). All 8 
of these classes have the same number of possible moves due to symmetry. Thus, 
we will consider the movement class (1, 2, 4), without loss of generality, and mul-
tiply the result by 8 for the total number of possible moves, then divide by 2 to 
convert from total possible moves to edges (or, in other words, multiply the result 
by 4). 

Note that first to be able to have a (1, 2, 4) as a possible movement class for a 
square, a square must have coordinates for which x = 1 and y = 1 since the maxi-
mum value for x is 2 and the maximum value of y is 3. This leaves us with only r 
− 4 possible moves since we must have z + 4 ≤ r and x and y-values are set to one 
possible value. Then, since there are 8 possible directions, this gives us a total of 
8(r − 4) for the total number of moves, or 4(r − 4) for the total number of edges 
for our graph. □ 

Theorem 8. For 5 r≤ , ( ) ( )2,4, ;2 8 4rE N r= − . 
Proof: First, begin by noting there are exactly 8 different classes of movements 

possible for this board. These are associated with movement type (±1, ±2, ±4). All 
8 of these movement classes have the same number of possible moves due to sym-
metry. Thus, we will consider the movement class (1, 2, 4), without loss of gener-
ality, and multiply the result by 8 for the total number of possible moves, then 
divide by 2 to convert from total possible moves to edges (or, in other words, mul-
tiply the result by 4). 

Note that first to be able to have a (1, 2, 4) as a possible movement class for a 
square, a square must have coordinates for which x = 1 and y = 1 or y = 2 since 
the maximum value for x is 2 and the maximum value of y is 4. This leaves us with 
only 2(r − 4) possible moves since we must have z + 3 ≤ r, the x-values are set to 
one possible value, and the y-values are set to two possible values. Then, since 
there are 8 possible classes, this gives us a total of 16(r − 4) for the total number 
of moves, or 8(r − 4) for the total number of edges for our graph. □ 

Theorem 9. For 5 n r≤ ≤ , ( ) ( )2, , ;2 8 3 3 8n rE N nr r n= − − + . 
Proof: First, begin by noting there are exactly 16 different classes of movements 
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possible for this board. These are associated with the movement types (±1, ±2, ±4) 
and (±1, ±4, ±2). Note that all 8 classes associated with the type (±1, ±2, ±4) have 
the same number of possible moves, as do all 8 classes associated with the type 
(±1, ±4, ±2). Thus we will consider the movement class (1, 2, 4), without loss of 
generality, and multiply the result by 8 for the total number of possible moves 
associated with the type (±1, ±2, ±4). Then, we will consider the movement class 
(1, 4, 2), without loss of generality, and multiply the number of moves associated 
with it by 8. Finally, we will divide by 2 to convert from the number of possible 
moves to the total number of edges in our graph. 

Note that first to be able to have a (1, 2, 4) as a possible movement class for a 
given square, this square must have coordinates for which x = 1 and y + 2 ≤ n and 
z + 4 ≤ r. This leaves us with only (n − 2)(r − 4) possible moves. Then, since there 
are 8 possible directions, this gives us a total of 8(n − 2)(r − 4) for the total number 
of moves associated with the movement type (±1, ±2, ±4). 

Next, we will consider the movement class (1, 4, 2), without loss of generality. 
Note that first to be able to have a (1, 4, 2) as a possible movement class for a 
square, a square must have coordinates for which x = 1 and y + 4 ≤ n and z + 2 ≤ 
r. Thus, we have (n − 4)(r − 2) possible moves associated with movement class (1, 
4, 2), or 8(n − 4)(r − 2) possible moves associated with the type (±1, ±4, ±2). Thus, 
there are 8(n − 2)(r − 4) + 8(n − 4)(r − 2) = 16(nr − 3r − 3n + 8) total moves. 
Dividing this by two we obtain 8(nr − 3r − 3n + 8) edges in our graph.□ 

Theorem 10. For 5 r≤ , ( ) ( )3,3, ;2 16 4rE N r= − . 

Proof: First, begin by noting there are exactly 16 different classes of movements 
possible for this board. These are associated with movement types (±1, ±2, ±4) and 
(±2, ±1, ±4). Note that all 16 of these classes have the same number of possible moves 
since our first two dimensions are of the same size, namely 3. Thus, we will consider 
the movement class (1, 2, 4), without loss of generality, and multiply the result by 16 
for the total number of possible moves. Finally, we will divide by 2 to convert from 
the number of possible moves to the total number of edges in our graph. 

Note that first to be able to have a (1, 2, 4) as a possible movement class for a 
square, a square must have coordinates for which 1 ≤ x ≤ 2 and y = 1, and z + 4 ≤ 
r. This leaves us with only 2(r − 4) possible moves associated with the movement 
class (1, 2, 4). Multiplying this by 16 and dividing by 2 gives us a total of 16(r − 4) 
edges in our graph.□ 

Theorem 11. For 5 r≤ , ( ) ( )3,4, ;2 28 4rE N r= − . 
Proof: First, begin by noting there are exactly 16 different movement classes 

possible for this board. These are associated with the types (±1, ±2, ±4) and (±2, 
±1, ±4). Note both types consist of 8 movement classes that each have an equal 
number of possible moves associated with them. Thus, we will need only consider 
the movement classes (1, 2, 4) and (2, 1, 4), without loss of generality, then sum 
the results of these classes and multiply by 8 for the total number of possible moves 
on our board. Then, we divide by 2 to go from possible moves on our board to 
edges in our graph. 
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Consider then, without loss of generality, the movement class (1, 2, 4). It follows 
then that since we must have 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, and z + 4 ≤ r, then there are 
exactly 4(r − 4) moves associated with this movement class. Next, consider the 
movement class (2, 1, 4). It follows that since x = 1, 1 ≤ y ≤ 3, and z + 4 ≤ r, then 
there are 3(r − 4) moves associated with this movement class. Summing these two 
results, multiplying the sum by 8, and dividing by 2 gives us the proof.□ 

Theorem 12. For 5 n r≤ ≤ , 
( ) ( )( ) ( )( )

( )( ) ( )( )
3, , ;2 8 2 4 8 4 2

4 1 4 4 4 1
n rE N n r n r

n r n r

= − − + − −

+ − − + − +
. 

Proof: First, begin by noting there are exactly 32 different movement classes 
possible for this board. These are associated with the types (±1, ±2, ±4), (±1, ±4, 
±2), (±2, ±1, ±4), and (±2, ±4, ±1). Note all these types consist of 8 movement 
classes that each have an equal number of possible moves associated with them. 
Thus, we will need only consider the movement classes (1, 2, 4), (1, 4, 2), (2, 1, 4), 
and (2, 4, 1), without loss of generality, then sum the results of these classes and 
multiply by 8 for the total number of possible moves on our board. Then, we di-
vide by 2 to go from possible moves on our board to edges in our graph. 

Consider then, without loss of generality, the movement class (1, 2, 4). It follows 
then that since we must have 1 ≤ x ≤ 2, y + 2 ≤ n, and z + 4 ≤ r then there are 
exactly 2(n − 2)(r − 4) moves associated with this movement class. Next, consider 
the movement class (1, 4, 2). It follows that since 1 ≤ x ≤ 2, y + 4 ≤ n, and z + 2 ≤ 
r, then there are 2(n − 4)(r − 2) moves associated with this movement class. 

Next, consider the movement class (2, 1, 4). It is straightforward to see that 
there are (n − 1)(r − 4) moves associated with this movement class. Finally, con-
sider movement class (2, 4, 1). It is easy to see that there are (n − 4)(r − 1) moves 
associated with this movement class. Summing these four results, multiplying the 
sum by 8, and dividing by 2 gives us the proof.□ 

Theorem 13. For 5 r≤ , ( ) ( )4,4, ;2 48 4rE N r= − . 

Proof: First, begin by noting there are exactly 16 different movement classes pos-
sible for this board. These are associated with the types (±1, ±2, ±4) and (±2, ±1, ±4). 
Note both types consist of 8 movement classes that each have an equal number of 
possible moves associated with them. In fact, since the first two dimensions are of the 
same size, all 16 movement classes have an equal number of possible moves. Thus, 
we will need only consider the movement class (1, 2, 4), without loss of generality, 
and multiply by 16 for the total number of possible moves on our board. Then, we 
divide by 2 to go from possible moves on our board to edges in our graph. 

Consider then, without loss of generality, the movement class (1, 2, 4). It follows 
then that since we must have 1 ≤ x ≤ 3, 1 ≤ y ≤ 2, and z + 4 ≤ r then there are 
exactly 6(r − 4) moves associated with this movement class. Multiplying this ex-
pression by 16 and then dividing by 2 gives us the proof.□ 

Theorem 14. For 5 n r≤ ≤ ,  

( ) ( )( ) ( )( )
( )( ) ( )( )

4, , ;2 12 2 4 12 4 2

8 1 4 8 4 1
n rE N n r n r

n r n r

= − − + − −

+ − − + − −
. 
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Proof: First, begin by noting there are exactly 32 different movement classes 
possible for this board. These are associated with the types (±1, ±2, ±4), (±1, ±4, 
±2), (±2, ±1, ±4), and (±2, ±4, ±1). Note all these types consist of 8 movement 
classes that each have an equal number of possible moves associated with them. 
Thus, we will need only consider the movement classes (1, 2, 4), (1, 4, 2), (2, 1, 4), 
and (2, 4, 1) without loss of generality, then sum the results of these classes and 
multiply by 8 for the total number of possible moves on our board. Then, we di-
vide by 2 to go from possible moves on our board to edges in our graph. 

Consider then, without loss of generality, the movement class (1, 2, 4). It follows 
then that since we must have 1 ≤ x ≤ 3, y + 2 ≤ n, and z + 4 ≤ r then there are 
exactly 3(n − 2)(r − 4) moves associated with this movement class. Next, consider 
the movement class (1, 4, 2). It follows that since 1 ≤ x ≤ 3, y + 4 ≤ n, and z + 2 ≤ 
r, then there are 3(n − 4)(r − 2) moves associated with this movement class. 

Next, consider the movement class (2, 1, 4). It is straightforward to see that 
there are 2(n − 1)(r − 4) moves associated with this movement class. Finally, con-
sider movement class (2, 4, 1). It is easy to see that there are 2(n − 4)(r − 1) moves 
associated with this movement class. Summing these four results, multiplying the 
sum by 8, and dividing by 2 gives us the proof.□ 

Theorem 15. For 5 m n r≤ ≤ ≤ ,  

( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

, , ;2 4 1 2 4 4 1 4 2

4 2 1 4 4 2 4 1

4 4 1 2 4 4 2 1

m n rE N m n r m n r

m n r m n r

m n r m n r

= − − − + − − −

+ − − − + − − −

+ − − − + − − −

. 

Proof: Note there are 6 types of movements we will consider. Each of these 
types consists of 8 different movement classes which have the same number of 
edges in our graph associated with each of them. We will sum up all the move-
ments over the 6 types for this proof. 

The first type we have is (±1, ±2, ±4). Since any of these 8 movement classes 
have the same number of edges in our graph, let us consider the movement class 
(1, 2, 4), without loss of generality. It is the case that there are exactly (m − 1)(n − 
2)(r − 4) moves that correspond to this movement class. Thus, there are exactly 
8(m − 1)(n − 2)(r − 4) moves for these type of movements. 

For the second type consider (±1, ±4, ±2). It is straightforward to see there are 
exactly 8(m − 1)(n − 4)(r − 2) moves for these type of movements. Likewise, it is 
easy to see that for the type of movements (±2, ±1, ±4) that there are exactly 8(m 
− 2)(n − 1)(r − 4) different movements. 

It is then straightforward to see that for the remaining types (±2, ±4, ±1), (±4, ±1, 
±2), and (±4, ±2, ±1) there are exactly 8(m − 2)(n − 4)(r − 1), 8(m − 4)(n − 1)(r − 2), 
and 8(m − 4)(n − 2)(r − 1) moves associated with these types, respectively. By sum-
ming all 6 of these results for the types and dividing by 2 we obtain the proof.□ 

Theorem 16 For 2 m n r≤ ≤ ≤ ,  

( ) ( ) ( )( )( ( )( )
( )( )) ( )( )( )

, , 28 22 6 17 2 2 2 2

2 2 13 2 2 2

m n rE K m n r m n m r

r n m n r

= + + + − + − − + − −

+ − − + − − −
. 

https://doi.org/10.4236/ojdm.2025.152003


P. A. Burchett 
 

 

DOI: 10.4236/ojdm.2025.152003 50 Open Journal of Discrete Mathematics 
 

Proof: For this proof, we will be summing up the degrees of the vertices and 
dividing by 2. To start with, note there are 8 corner squares, each having corre-
sponding vertices of degree 7. Dividing this by 2 gives us the constant value 28 in 
our sum. 

Next, we consider the set of squares that all have exactly one coordinate which 
is either 1 or n. Note there are 4(m − 2) + 4(n − 2) + 4(r − 2) such squares. Each 
of these squares has a corresponding vertex of degree 11. It is easy to see that these 
4(m + n + r − 6) vertices of degree 11 account for the 22(m + n + r − 6) term in 
the sum, if we keep in mind to divide by the 2. 

Note there are 6 faces for our cube. Each of the faces has squares that would be 
interior squares for the face itself. These squares have exactly 2 coordinates that 
have values of either 1 or n. There are exactly 2(m − 2)(n − 2) + 2(m − 2)(r − 2) + 
2(r − 2)(n − 2) such squares. Note all these squares have corresponding vertices 
of degree 17. Summing all these degrees up and dividing by 2 gives us the third set 
of terms in our sum. 

Finally, note that there are (m − 2)(n − 2)(r − 2) squares that make up the inte-
rior of the cube. These squares are all of degree 26. It is then easy to see that di-
viding the sum of the degree of the vertices corresponding to the interior square 
by 2 gives us the final remaining term of our sum. □ 

Theorem 17. For m n r≤ ≤ ,  

( ) ( )

( ) ( )

( ) ( )

, ,

2

3 11
2 3

1 11 1
3 3

1
2 2 6 2 2

3

m n r
m n r mE Q mnr rm m n

m nnm m r mn n r

m m
m mn mr m nr n r

+ + − +   = + − −   
   

+ +   + − − + − −   
   

−
+ − − + + − −

. 

Proof: To begin note that the queen can move as a rook or a 3-D bishop – as 
well as moving to change exactly 2 of the coordinates. Since the 3-D rook’s graph 
is a regular graph with each vertex having degree m + n + r − 3, we have the first 
term in our sum. Also, by Theorem 1 we have the number of edges for the 3-D 
bishop’s graph. The last term in our sums contains this answer. It follows then 
that all we need to show is that the sum of the three middle terms in our sums 
equals the number of edges corresponding to movements that change exactly 2 of 
our coordinates. 

Consider then movement that changes both the x-coordinate and the y-coor-
dinate, but not the z-coordinate. It is clear then that the squares both before and 
after movement lie in a common plane. In fact, on any one of these planes we 
have edges corresponding to 2-D bishop’s movement on a rectangular board.  
Since the number of edges for the m×n bishop’s graph (for m ≤ n) is 

( ) 11
3

mm m n + − − 
 

, and there is r such planes where we’re moving as a 2-D 

bishop (by changing both of the first two coordinates). That gives us the second 
expression in our sum. 
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The other two remaining terms in our sums (the third and fourth expressions 
to be summed) are found in a similar fashion. For example, we have n planes of 
movement equivalent to movement on Bm,r. This would mean to find the third 
expression of the sums we would use the same formula again with different vari-
ables (and noting that m ≤ r). For the fourth term, it is easy to see this term by 
using the same principles as in the second and third expressions to be summed. 
This gives us all five terms of our sum. □ 

2.2. D-Dimensional Results 

Theorem 18. ( ) ( )
11

; 1 1

!2
! !

D d nD d D D
n d D j

dE Q n j
D d D

= −− −
= =

=
− ∑∑ . 

Proof: For this proof we will be summing up the degree of all the vertices then 
dividing the result by 2 to obtain the number of edges.  To begin to do this, first 
consider all movements for which exactly D of our coordinates are changed (in 
other words, a D-dimensional move). Any one direction in which we change 
exactly D coordinates can be considered without loss of generality due to the 
symmetry obtained by having constant dimension size n for all our dimensions.  

First, note that there are 
( )

!
! !

d
D d D−

 ways to choose the D coordinates to change  

from our available d coordinates. Note also that there are 2D ways to assign direc-
tion given that we assign each of our D changing coordinates a positive or negative 
direction. It is straightforward to see that the coordinates that we’re not changing 
in our movement can take on any value from 1 to n. This means we multiply by a 
factor of nd-D since there are going to be d − D coordinates that will not change 
value, and any of the nd-D combination of values for these d-D coordinates can be 
considered, without loss of generality. 

We will now begin summing up the number of edges by considering any direc-
tion in which exactly D of our coordinates are changed (say all our D coordinates 
are increasing by a common amount, without loss of generality). We will do this 
by considering sets of squares whose corresponding vertices all have the same 
number of adjacent edges in our corresponding direction. Note there is exactly 
one set of coordinate values for our D changing coordinates which offers up a set 
of squares with each square having exactly n − 1 adjacent squares (these initial 
squares have a value of 1 for all their D changing coordinates). Also, note there 
are exactly 2D − 1 coordinates for our D changing coordinates which have n − 2 
adjacent squares. Continuing this pattern, there are then jD − (j − 1)D coordinates 
for our D changing coordinates that offer up a set of squares with exactly n-j edges  

each. Summing up these edges gives us ( )( )( )1 1
1 11 Dj n j nD D

j jj j n j j= − = −

= =
− − − =∑ ∑  

edges given that exactly D coordinates are changing. We then sum up the expres-

sion 
( )

1
1

!
!

j nD d D D
j

dj n j
D d D

= −−
=− ∑  over all our possible values for the number of 

changing coordinates – which is from 1 to d – to obtain the proof (and divide by 
2 to move from the sum of degrees to the number of edges). □ 
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Theorem 19.  

( ) ( ) ( )1
; 1

23 1
!2 1

! ! 2

d
d

DD d D d D
n d D

n
ndE K n n

D d D
= − −
=

  − −     −
−

== ∑ . 

Proof: The proof for the series solution is very similar to the proof of Theorem 

18, except that the inner summation equals ( ) ( )1 1
1 1 Dj n D D

j j j n= − −
=

− = −∑ . This  

follows since we have only 1 adjacent square per direction for the king’s graph, 
and not the n-j adjacent square(s) per direction as seen in the inner summation of 
Theorem 18. It is easy to see that with this one adjustment to Theorem 18 the 
proof of the series solution follows. 

To see the closed form solution, the Wolfram Alpha series calculator was uti-
lized. Wolfram Alpha is available online for free. See [8]. Below is the text entered 
into the input line of Wolfram Alpha: 

Sum[2^(D-1)*n^(d-D)*d!/((d-D)!*D!)*(n − 1)^D] [{D] [1] [d}]. □ 
Theorem 20. ( ) 11

; 12 j nd d
n d jE B j= −−

=
= ∑ . 

Proof: The proof follows by only summing the moves in the solution from The-
orem 18 for which D = d and not summing from D = 1 to D = d. □ 

Theorem 21 ( ) ( )
( )

1
; ,1

! 1 !
2

1 !
d

n d

d n
E N

n d
− −

=
− −

 for 1 3n d≥ + ≥ . 

Proof: In a similar fashion to Theorem 18, it follows that since the dimension 
sizes are the same then the sum of the edges for any one direction is the same as 
any other direction. Thus, consider the edges formed by the movement class (1, 2, 
3, …, d). Note there are n − 1 first coordinates of our starting square that are 
acceptable for the move to be legal and n − 2 second coordinates for our starting 
square that allows the move, etc. This leaves us with ( ) ( )1 ! 1 !n n d− − −  possible 
coordinates, each having a legal move in our given direction. 

Note this is the number of legal moves associated with one direction. Also note 
there are d! ways to assign the absolute value changes to the coordinates and 2d 
ways to assign a positive or a negative sign to the absolute value changes in the co-
ordinates. This gives us a total of 2d × d! possible directions. Thus, we multiply our 
number of directions with the number of possible starting coordinates for a legal 
move and we obtain ( ) ( )2 ! 1 ! 1 !d d n n d− − −  possible moves. We then divide by 
two since we’re summing up the individual edges twice to obtain the result. □ 

Theorem 22. ( ) ( )11
; ,2 02 ! 2j dd j

n d jE N d n= −−
=

= −∏  for 12 1 3dn − +≥ ≥ . 

Proof: The proof of this theorem is like the proof of Theorem 21 in that there 
are 2d × d! possible directions - and any direction will have the same number of 
edges associated with it by symmetry. Thus, we can consider the movement class 
(1, 2, 4, …, 2d−1) solely, without loss of generality. Note that there are n − 1 possible 
choices for our first coordinate to allow for a legal move. Likewise, there are n − 
2 possible choices for our second coordinate to allow for a legal move. Similarly, 
there are n − 2j possible choices for the j + 1 coordinate to allow for a legal move.  
Multiplying these results together gives us ( )1

0 2j d j
j n= −

=
−∏  possible coordinates 
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for a legal move, given the one direction. Thus, we have ( )1
02 ! 2j dd j

jd n= −

=
−∏  

possible moves. Finally, we divide by two to obtain our result since the number of 
possible moves counts the number of edges twice. □ 

3. Discussion 

In Theorem 20, a series solution was obtained for the number of edges in the 
higher dimensional bishop’s graph. The output given by Wolfram Alpha men-
tioned the generalized Harmonic series. One alternate form of the solution is 

1
12d d

nH− −
−× , where r

nH  is the generalized Harmonic number. Another alternate 
form for the solution was ( ) ( )( )12 ,d d d nζ ζ− − − − , where ( )sζ  is the Riemann 
Zeta function and ( ),s aζ  is the Hurwitz Zeta function. Below is the input en-
tered for Wolfram Alpha: 

Sum[2^(d-1)*j^d] [{j] [1] [n − 1}]. 
The same series shows up as the inner series in the double summation for The-

orem 20. When the double series solution for Theorem 20 was entered as input 
into the Wolfram Alpha series calculator, there was no output given. Below is the 
input given for the double series solution given in Theorem 20: 

Sum[2^(D-1)*n^(d-D)*d!/((d-D)!*D!)*Sum[j^D] [{j] [1] [n − 1}], {D, 1, d}]. 
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