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Abstract 
Researching Supereulerian index of a graph G  is NP-hard. In this paper, we 
consider Supereulerian indices of some classes of graphs, Supereulerian index 
means the minimum integer k  of iterated line graph ( )kL G  of a graph G  

such that ( )kL G  is Supereulerian. We show that Supereulerian indices of 
those graphs obtained by replacing every vertex of Petersen graph with n -
cycle or a complete graph of order n , or adding n  pendant edges to each 
vertex of Petersen graph are both 1. Concurrently, we show that Supereulerian 
indices of partial Generalized Petersen graphs are also 1.  
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1. Introduction 

In this paper, we consider finite undirected simple graphs and follow the notation 
and terminology of [1].  

The line graph ( )L G  of a graph G  is a graph whose vertices correspond to 
the edges of G , where two vertices in ( )L G  are adjacent if and only if their 
corresponding edges in G  share a common endpoint. For 1k ≥ , the k -time 
iterated line graph ( )kL G  is defined recursively as follows: ( )0L G G= ;  

( ) ( )1L G L G= ; ( )( ) ( )( )1k kL L G L L G−=  for 2k ≥ , with the condition that  
( )( )1kE L G− ≠ ∅   (i.e., the edge set of ( )1kL G−   is non-empty). This definition 

ensures that the line graph operation can be applied iteratively as long as the pre-
vious iteration yields a non-empty graph. In a graph G , the contraction of edge 
e  (denoted by G e ) with endpoints u  and v  is the operation that merges u  
and v  into a single new vertex. The incident edges of this new vertex are all edges 
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originally incident to either u   or v  , except for e   itself (and any resulting 
loops are deleted). For ( )X E G⊆ , the contraction G X  is obtained from G  
by contracing each edge of X  and deleting the resulting loops. If H G⊆ , we 
write G H  for ( )G E H . 

A trail of a graph G , denoted by T , is a sequence 0 1 1 1: l l lT v e v v e v− , whose 
terms are alternately vertices and edges of G   such that 1iv −   and iv   are the 
ends of ( )1ie i l≤ ≤  and its edge terms are distinct. A spanning trail of a graph 
G  is a trail containing all vertices of G . A spanning closed trial of a graph G  
is a trail containing all vertices of G , and 0 lv v= . Supereulerian graphs are such 
graphs which have a spanning closed trial. The Supereulerian index means the 
minimum integer k  of iterated line graph ( )kL G  of a G  such that ( )kL G  
is Supereulerian, denoted by ( )s G . The cycle and complete graph with n  ver-
tices are denoted nC  and nK , respectively. 

The Petersen Graph is the simple graph whose vertices are the 2-element sub-
sets of a 5-element set and whose edges are the pairs of disjoint 2-element subsets. 

The concept of Generalized Petersen graphs was originally introduced by Wat-
kins in 1969 [2]. Since their introduction, these graphs have become a significant 
subject of research in graph theory. Frucht [3] later investigated a canonical repre-
sentation specifically for trivalent (3-regular) Hamiltonian Generalized Petersen 
graphs. Building on this work, Alspach [4] provided a complete classification of 
Hamiltonian Generalized Petersen graphs, establishing in particular the following 
key theorem: 

The vertex set of the Generalized Petersen graphs ( ),GP n k , 
11

2
nk − ≤ ≤   

  

is defined as ( )( ) { }, , |1i iV GP n k x y i n= ≤ ≤ , and the edge set  
( )( ) { }1, , , |1i i i i i i kE GP n k x x x y y y i n+ += ≤ ≤ , where the indices are taken as mod-

ulo n . Especially, Petersen graph is ( )5,2GP . 
Theorem 1. [4] The Generalized Petersen graph ( ),GP n k  is Hamiltonian if 

and only if it is neither   

(I) ( ), 2GP n ( ), 2GP n n≅ −
( )1

,
2

n
GP n

− 
≅  

 

( )1
,

2
n

GP n
+ 

≅  
 

,  

( )5 mod 6n ≡ , nor  

(II) ,
2
nGP n 

 
 

, ( )0 mod 4n ≡  and 8n ≥ .  

The Hamiltonian index was first introduced by Chartrand in 1968 [5], where 
he established its existence by proving that every connected graph (except paths) 
admits such an index. Chartrand et al. in [6] proved a result of Hamiltonian index, 
as follows:  

Theorem 2. [6] Let G  be a connected graph and the minimum degree of ver-
tices in G  is at least 3, then ( ) 2h G ≤ .  

Later, in 1983, Clark and Wormald [7] extended this notion by introducing the 
Hamiltonian-like index, providing a broader framework for studying Hamiltonian 
properties. Further developments came in 1990 when Catlin et al. [8] investigated 
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Hamiltonian cycles and supereulerian graphs within iterated line graphs. Building 
on these foundations, Han, Lai, et al. [9] established a key relationship between a 
graph’s Hamiltonian index and its Supereulerian index. 

Theorem 3. [9] Let G  be a connected graph but isn’t a path, then  
( ) ( ) ( ) 1s G h G s G≤ ≤ + .  
In 2005, Xiong and Yan in [10] proved the supereulerian index of the tree T . 
Let ( )B G  denote the set of branches of G , and let  
( ) ( ) ( ){ }1 1| has at least one end vertex inB G b B G b V G= ∈ . Define  
( ) ( ){ }: any edge of is a cut edge ofBC G b B G b G= ∈  and ( ) ( )

1 1BC G B G= .  
Define ( ) 0k G =   if G   is 2-connected; ( ) 1k G =   if G   is not 2-connected and 

( )BC G =∅ ; otherwise,  
( ) ( ) ( ) ( ){ } ( ) ( ){ }{ }1 1

max max : \ ,max :B B Bk G E b b C G C G E b b C G= ∈ ∈ . 
Theorem 4. [10] Let T  be a tree. Then ( ) ( )s T k T= .  
In 2010, Xiong and Li established that the supereulerian index of a claw-free 

graph remains stable under contractions and closures, their results are as follows: 
Theorem 5. [11] Let G  be a graph and H  be a collapsible subgraph of G . 

Then ( ) ( )s G s G H= .  
Theorem 6. [11] Let G   be a connected claw-free graph with at least three 

edges other than a path. Then ( ) ( )( )s G s cl G= .  
Although Hamiltonian graphs are necessarily supereulerian, the converse fails 

in general. Therefore, it is meaningful to study the Supereulerian index of a graph 
G . 

2. Our Main Results 

Motivated by these researches, we consider Supereulerian indices of some graphs 
which obtained from Petersen graph and Generalized Petersen graphs, respectively. 

Before presenting our main findings, several supplementary essential concepts 
and theorems are introduced: If 1 2 kP u u u= …  be a path in a graph G . For sub-
graphs ,S T G⊆  : P   is called an ( ),S T  -path if ( )1u V T∈   and ( )ku V S∈  . 
The distance between S  and T , denoted ( ),Gd S T , it is the minimum length 
among all ( ),S T -paths. For any vertex ( )v v G∈ : ( )Gd v  denotes the degree of 
a vertex v . ( ) ( ) ( ){ }:i GV G v V G d v i= ∈ =  defines the i -degree vertex set (for 

0i ≥ ). A branch in G  is a nontrivial path satisfying: All internal vertices have 
degree 2, both end vertices have degree other than 2. If a branch has length 1, then 
it has no internal vertex. For any subgraph H G⊆ , let  

( ) ( ) ( ){ }| all edges of belong toHB G b B G b E H= ∈ .  
Theorem 7. [12] Let G   be a connected graph with at least 3 edges. Then 
( )kL G  is supereulerian if and only if ( )kS G ≠ ∅ . Let ( )kS G  denote the set of 

all subgraphs H G⊆  satisfying the following properties: 
(I) ( ) ( ) ( )0 mod 2, Hx V H d x∀ ∈ ≡ ;  

(II) ( ) ( )
( )

( )0
3

G

i
i

V H V G V H
∆

≥

⊆ ⊆


; 

(III) Every branch ( )b B G∈  with ( ) ( )E b E H =∅  satisfies ( ) 1E b k≤ + ; 
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(IV) ( )E b k≤  for any branch ( )1b B G∈ ; 
(V) ( )1 1,Gd H H H k− ≤  for every subgraph 1H  of H  and  
( )1 1, 0Gd H H H− =  means that H  is connected; 

Based on above results, we obtain the following results: 
Theorem 8. Let G  be a Petersen graph, then ( ) 1s G = .  
Theorem 9. Let G  be the graphs obtained from the Petersen graph by vertex 

replacement with cycles ( )3nC n ≥ . We have ( ) 1s G = .  
Theorem 10. Let G  be the graphs obtained from the Petersen graph by vertex 

replacement with complete graph ( )4nK n ≥ . We have ( ) 1s G = .  
Theorem 11. Let G  be the graphs obtained from the Petersen graph by add-

ing n  pendant edges to every vertex. We have ( ) 1s G = .  
Theorem 12. Let G  be the Generalized Petersen graph satisfying  

( ) ( ) 1 1,2 , 2 , ,
2 2

n nGP n GP n n GP n GP n− +   ≅ − ≅ ≅   
   

, ( )5 mod 6n ≡ , we have  

( ) 1s G = .  

Theorem 13. Let G  be the Generalized Petersen graph satisfying ,
2
nGP n 

 
 

, 

( )0 mod 4n ≡  and 8n ≥ , we have ( ) 1s G = .  

3. Proof of Main Results 

Proof of Theorem 8. We prove this result by Theorem 7, we only prove 
( )1S G ≠ ∅ . Suppose that ( )1H S G⊆ , let H  be a subgraph of G  formed as  

( )
10

1
i

i
H H G

=

=


, where each ( )iH G  is the vertices in Petersen graph. Then H  

satisfies conditions (I)-(V) of ( )1S G , with the following properties: 

(I) ( )x V H∀ ∈ , ( ) ( )0 mod 2Hd x ≡ ;  

(II) ( ) ( )
( )

( )0
3

G

i
i

V H V G V H
∆

≥

⊆ ⊆


;  

Now, we demonstrate that (III) is satisfied. Since ( ) 0E H = , it is obviously for 
branch ( )b B G∈   with ( ) ( )E b E H =∅  , ( )E b   = 1 1 1 1k≤ + = +  , that is 

1k = . 
We know there is no ( )1V G  , so it is obviously that ( )1B G G =∅  , so 
( ) 0 1E b = ≤ . We can get 1k =  which satisfies condition (IV). 
Regarding condition (V), we can take every ( )iH G  as 1H . Subsequently, we 

have ( )1 1, 1 1Gd H H H− = ≤ , that is 1k = . So it follows that H  complies with 
condition (V). 

Thus, ( )1S G ≠ ∅  , then ( )1L G   is Supereulerian, i.e., ( ) 1s G ≤  . We cannot 
find a spanning closed trail in the Petersen graph, we can be sure that ( ) 0s G ≠ , so 
( ) 1s G =  .                                                        
Proof of Theorem 9. By Theorem 7, we only need to prove ( )1S G ≠ ∅ . Suppose  

that ( )1H S G⊆ , let H  be a subgraph of G  formed as ( )
10

1
i

i
H H G

=

=


, where  

each ( )iH G   is a n  -cycle in graph. Then H   satisfies conditions (I)-(V) of 
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( )1S G , with the following properties: 

(I) ( )x V H∀ ∈ , ( ) ( )0 mod 2Hd x ≡ ;  

(II) ( ) ( )
( )

( )0
3

G

i
i

V H V G V H
∆

≥

⊆ ⊆


;  

Now, we demonstrate that (III) is satisfied. It is obviously for branch ( )b B G∈  
with ( ) ( )E b E H =∅ , ( ) 1 1 1 1E b k= ≤ + = + , that is 1k = . 

We know there is no ( )1V G  , so it is obviously that ( )1B G G =∅  , so 
( ) 0 1E b = ≤ . We can get 1k =  satisfies condition (IV). 
Regarding condition (V), we can take every ( )iH G  as 1H . Subsequently, we 

have ( )1 1, 1 1Gd H H H− = ≤ , that is 1k = . So it follows that H  complies with 
condition (V). 

Thus, ( )1S G ≠ ∅  , then ( )1L G   is Supereulerian, i.e., ( ) 1s G ≤  . Since the 
graph G  obtained from the Petersen graph by vertex replacement with cycles 

( )3nC n ≥ , it is clear that there is no way for a spanning closed trail to exist in G , 
that is ( ) 0s G ≠ , so ( ) 1s G = .                                     

Proof of Theorem 10. By Theorem 7, we only need to prove ( )1S G ≠ ∅ . Sup-
pose that ( )1H S G⊆ , let H  be a subgraph of G  formed as ( )

10

1
i

i
H H G

=

=


, 
where each ( )iH G  is a n -cycle which induced by every complete graph nK  
in graph. Then H   satisfies conditions (I)-(V) of ( )1S G  , with the following 
properties: 

(I) ( ) ( ) ( ), 0 mod 2Hx V H d x∀ ∈ ≡ ;  

(II) ( ) ( )
( )

( )0
3

G

i
i

V H V G V H
∆

≥

⊆ ⊆


;  

Now, we demonstrate that (III) is satisfied. It is obviously for branch ( )b B G∈  
with ( ) ( )E b E H =∅ , ( ) 1 1 1 1E b k= ≤ + = + , that is 1k = . 

We know there is no ( )1V G  , so it is obviously that ( )1B G G =∅  , so 
( ) 0 1E b = ≤ . We can get 1k =  satisfies condition (IV). 
Regarding condition (V), we can take every ( )iH G  as 1H . Subsequently, we 

have ( )1 1, 1 1Gd H H H− = ≤ , that is 1k = . So it follows that H  complies with 
condition (V). 

Thus, ( )1S G ≠ ∅ , then ( )1L G  is Supereulerian, i.e., ( ) 1s G ≤ . By Theorem 
5, we can know that ( ) ( )s G s G H= , every complete graph can be contracted to 
a vertex, so the Supereulerian index of this graph is equal to Petersen graphs, we 
can make sure that there exists no spanning closed trail in G , then ( ) 0s G ≠ , so 
( ) 1s G =  .                                                       
Proof of Theorem 11. We also prove this result by Theorem 7. Suppose that  

( )1H S G⊆ , let H  be a subgraph of G  formed as ( )
10

1
i

i
H H G

=

=


, where each  

( )iH G   is a vertex in Petersen graph. Then H   satisfies conditions (I)-(V) of 
( )1S G , with the following properties: 

(I) ( ) ( ) ( )0 mod 2, Hx V H d x∀ ∈ ≡ ;  
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(II) ( ) ( )
( )

( )0
3

G

i
i

V H V G V H
∆

≥

⊆ ⊆


;  

Now, we demonstrate that (III) is satisfied. Since ( ) 0E H = , it is obviously for 
branch ( )b B G∈   with ( ) ( )E b E H =∅  , ( ) 1 1 1 1E b k= ≤ + = +  , that is 

1k = . 
For the condition (IV), since the graph G  contains pendant edges, there must 

exist ( )1V G  , it is obviously that ( ) 1 1E b k= ≤ =   for any branch ( )1b B G∈  , 
where 1k = . 

Regarding condition (V), we can take every ( )iH G  as 1H . Subsequently, we 
have ( )1 1, 1 1Gd H H H− = ≤ , that is 1k = . So it follows that H  complies with 
condition (V). 

Thus, ( )1S G ≠ ∅  , then ( )1L G   is Supereulerian, i.e., ( ) 1s G ≤  . Since the 
graph G  obtained from the Petersen graph by vertex replacement with pendant 
edges with n  . then there exists no spanning closed trail in G  , ( ) 0s G ≠  , so 
( ) 1s G =  .                                                          
Proof of Theorem 12. Due to the equivalence relation in Theorem 8, we only 

need to prove the Supereulerian index for one of the cases. Now we prove the 
result when 2k = , ( )5 mod 6n ≡ , let 6 5n t= + . For convinience, we denote the 
vertices of the inner-cycle as 0 1 2 6 4, , , , tv v v v + , the vertices of the outer-cycle as 

0 1 6 4, , , tu u u +  of the Generalized Petersen graph, the vertices of the inner and 
outer cycles are connected by i iu v , where 0 6 4i t≤ ≤ + , respectively. Next, we 
use the same method to prove.   

(I) When 0t = , 5n = , that is a Petersen graph, according to our result in The-
orem 8, ( ) 1s G = .  

(II) when 0t ≠ , 6 5n t= + , we prove this result by theorem 7. Suppose that  

( )1H S G⊆ , let H  be a subgraph of G  formed as ( )
2

1
i

i
H H G

=

=


, ( )1H G  is  

inner-cycle of the Generalized Petersen graph which has odd order vertices, 
( )2H G   is outer-cycle of the Generalized Petersen graph which has odd order 

vertices. Then H   satisfies conditions (I)-(V) of ( )1S G  , with the following 
properties: 

(I) ( ) ( ) ( )0 mod 2, Hx V H d x∀ ∈ ≡ ;  

(II) ( ) ( )
( )

( )0
3

G

i
i

V H V G V H
∆

≥

⊆ ⊆


;  

Now, we demonstrate that (iii) is satisfied. It is obviously for branch ( )b B G∈  
with ( ) ( )E b E H =∅ , ( ) 1 1 1 1E b k= ≤ + = + , that is 1k = . 

We know there is no ( )1V G  , so it is obviously that ( )1B G G =∅  , so 
( ) 0 1E b = ≤ . We can get 1k =  which satisfies condition (IV). 
Regarding condition (V), we can take every ( )iH G  as 1H . Subsequently, we 

have ( )1 1, 1 1Gd H H H− = ≤ , that is 1k = . So it follows that H  complies with 
condition (V). 

Thus, ( )1S G ≠ ∅ , then ( ) 1s G ≤ . Since these graphs G  exists no spanning 
closed trail in G , ( ) 0s G ≠ , so ( ) 1s G = . 
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(III) When 0t = , ( )6 1 5n t= + + , we prove it by same way, so ( ) 1s G = .  
Therefore, ( )( ), 2L P n  is Supereulerian, that is, ( )( ), 2 1s P n = . So  

( )( ), 1s P n k =  (where 2k = , 1
2

n − , 1
2

n +  or 2n − ).                    

Proof of Theorem 13. When 8n ≥  and ( )0 mod 4n ≡ , we prove this result 
by Theorem 7, Suppose that ( )1H S G⊆ , let H  be a subgraph of G  formed  

as ( )
1

2

1

n

i
i

H H G
+

=

=


 , where ( ) ( ) ( )2 3
2

, ,..., nH G H G H G   is a 2C   formed by the  

vertices iv  and 4iv +  inside the Generalized Petersen graph, ( )1H G  is outer-
cycle nC  of the Generalized Petersen graph which has even order vertices. Then 
H  satisfies conditions (I)-(V) of ( )1S G , with the following properties: 

(I) ( ) ( ) ( )0 mod 2, Hx V H d x∀ ∈ ≡ ;  

(II) ( ) ( )
( )

( )0
3

G

i
i

V H V G V H
∆

≥

⊆ ⊆


;  

Now, we demonstrate that (III) is satisfied. It is obviously for branch ( )b B G∈  
with ( ) ( )E b E H =∅ , ( ) 1 1 1 1E b k= ≤ + = + , that is 1k = . 

We know there is no ( )1V G , so it is obviously that ( )1B G G =∅ , so  
( ) 0 1E b = ≤ . We can get 1k =  satisfies condition (IV). 
Regarding condition (V), we can take every ( )iH G  as 1H . Subsequently, we 

have ( )1 1, 1 1Gd H H H− = ≤ , that is 1k = . So it follows that H  complies with 
condition (V). 

Thus, ( )1S G ≠ ∅  , then ( )1L G   is Supereulerian, i.e., ( ) 1s G ≤  . Since this 
graph G  exists no spanning closed trail in G , ( ) 0s G ≠ , so ( ) 1s G = .      
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