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Abstract 
The rhizosphere microbiome, often termed the plant’s “second genome”, 
plays a pivotal role in regulating plant health and disease resistance. This study 
integrated metagenomic sequencing and deep learning to systematically com-
pare the composition, diversity, and functional metabolism of microbial com-
munities in healthy (NB) and diseased (NF) tobacco rhizosphere soils. Using 
BGISEQ-500 sequencing, 18 soil samples were analyzed, yielding 8.63 million 
clean reads and 6.27 million non-redundant genes. Taxonomic profiling re-
vealed Proteobacteria (35%), Actinobacteria (16%), Firmicutes (10%), and 
Bacteroidetes (7%) as dominant phyla. Significant structural disparities in α-
diversity indices (e.g., Shannon and Simpson) and β-diversity (PCoA) were 
observed between NB and NF groups (ANOVA, p < 0.05). LEfSe analysis iden-
tified 181 and 240 biomarkers in NB and NF, respectively, with healthy soils 
enriched in Gemmatimonadetes and Sphingomonadaceae, while diseased 
soils were dominated by Deltaproteobacteria and Rubrobacteraceae. Func-
tional annotation highlighted the enrichment of sulfur metabolism (ko00920), 
terpenoid biosynthesis (ko00900), and antibiotic synthesis (ko01130) path-
ways in NB, whereas NF exhibited upregulated lipopolysaccharide biosynthe-
sis (ko00540) and flagellar assembly (ko02040). A deep learning model (H2O 
framework, two hidden layers) achieved perfect classification (AUC = 1.0) and 
identified 10 microbial biomarkers as robust indicators of soil health. These 
findings elucidate the linkage between rhizosphere microbiome dynamics and 
tobacco disease resistance, providing a methodological framework for ecolog-
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ical disease control and precision agriculture. The study highlights the poten-
tial of microbial biomarkers in guiding sustainable agricultural practices and 
reducing reliance on chemical pesticides. 
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1. Introduction 

Plant rhizosphere microbial communities, often referred to as the “second ge-
nome”, play an indispensable role in regulating plant growth, nutrient uptake, and 
disease resistance [1]. As a critical interface for plant-soil interactions, rhizosphere 
microbes directly or indirectly suppress pathogen invasion through mechanisms 
such as antibiotic secretion, resource competition, and induced systemic resistance 
[2]. Tobacco (Nicotiana tabacum), a globally significant economic crop, relies 
heavily on the composition and functionality of its rhizosphere microbiome for 
plant health and yield. However, frequent outbreaks of soil-borne diseases caused 
by pathogens such as Ralstonia solanacearum (bacterial wilt) and Phytophthora 
parasitica (black shank) severely threaten the sustainable cultivation of tobacco. 
While conventional chemical control methods offer short-term disease manage-
ment, they often disrupt soil microecological balance, enhance pathogen re-
sistance, and contribute to environmental pollution [3]. Therefore, elucidating the 
mechanisms linking tobacco rhizosphere microbial communities to disease re-
sistance and developing ecological control strategies based on microbiome mod-
ulation have become pivotal for advancing sustainable agriculture. 

Recent breakthroughs in metagenomic sequencing have revolutionized the com-
prehensive analysis of soil microbial communities. Unlike traditional culture-de-
pendent approaches, metagenomics enables unbiased capture of total DNA directly 
from environmental samples, including unculturable microorganisms, through 
high-throughput sequencing [4]. The workflow typically involves physical disrup-
tion and chemical lysis to release microbial DNA, followed by purification via mag-
netic bead adsorption or column chromatography to ensure high integrity and min-
imal host contamination. The DNA is then fragmented, ligated with sequencing 
adapters, and subjected to paired-end sequencing on platforms such as Illumina 
NovaSeq or PacBio, generating billions of base pairs. Raw data undergo quality con-
trol (e.g., removal of low-quality reads and host-derived sequences), followed by se-
quence assembly (using tools like MEGAHIT or MetaSPAdes) to reconstruct mi-
crobial genomic drafts. Taxonomic and functional annotations are performed using 
reference databases (e.g., NCBI NR, KEGG, COG) [5]. Metagenomics further deci-
phers the metabolic potential of microbial communities, such as antibiotic synthesis 
and sulfur metabolism pathways, providing molecular insights into microbe-host-
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environment interactions [6]. 
In plant microbiome research, metagenomics has been successfully applied to 

various crop systems. For instance, Bulgarelli et al. (2015) compared rhizosphere 
microbiomes of wild and domesticated barley, revealing host genotype-dependent 
regulation of microbial community structure. Mendes et al. (2011) identified dis-
ease-suppressive Pseudomonas species in sugarcane rhizospheres [7], demon-
strating their role in inhibiting fungal pathogens via 2,4-diacetylphloroglucinol 
synthesis. However, studies on tobacco rhizosphere microbiomes remain limited. 
Existing research predominantly focuses on single-pathogen virulence mecha-
nisms, with insufficient systemic exploration of host-microbe-pathogen tripartite 
interactions [8]. Additionally, the high dimensionality and noise inherent in met-
agenomic data challenge traditional statistical methods (e.g., PCA, LEfSe), neces-
sitating advanced data-mining tools. The study indicates that continuous tobacco 
cropping leads to decreased similarity in rhizobacterial communities and signifi-
cant alterations in fungal community structure (e.g., enrichment of Ascomycota 
and Fusarium), which may be associated with increased disease susceptibility [9]. 
The response of tobacco rhizosphere microbiome to continuous cropping obsta-
cles exhibits specificity. For instance, after five consecutive years of flue-cured to-
bacco (Nicotiana tabacum) cultivation, bacterial community similarity markedly 
declined, while the abundance of pathogenic fungi (e.g., Fusarium spp.) in fungal 
communities significantly increased, demonstrating close correlation with root 
rot incidence. Through metagenomic non-targeted capture of functional genes, 
this research pioneers in revealing the synergistic interaction between sulfur me-
tabolism pathway (ko00920) and antibiotic biosynthesis (ko01130) in tobacco rhi-
zosphere, addressing a critical knowledge gap in tobacco-specific metabolic net-
work studies [10]. 

Deep learning, a core artificial intelligence technology, offers a novel paradigm 
for metagenomic data analysis due to its robust nonlinear modeling and feature 
extraction capabilities. For example, convolutional neural networks (CNNs) cap-
ture spatial correlations in microbial abundance matrices and have been applied 
to predict associations between gut microbiota and colorectal cancer [11]. Recur-
rent neural networks (RNNs), adept at processing temporal data, show promise 
in modeling microbial community dynamics [12]. Nevertheless, deep learning ap-
plications in plant rhizosphere microbiome research, particularly for biomarker 
screening and classification models in tobacco disease resistance, remain under-
explored. 

This study integrates metagenomic sequencing and deep learning to analyze 
microbial community composition, diversity, and functional metabolism in healthy 
versus diseased tobacco rhizosphere soils. Key objectives include identifying eco-
logically significant taxa (e.g., Streptomyces, Pseudomonas), annotating disease 
resistance-related metabolic pathways (e.g., antibiotic synthesis, sulfur metabo-
lism) via KEGG and COG databases, and constructing a deep learning classifica-
tion model based on microbial abundance features to screen high-discriminatory 
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biomarkers. The proposed “metagenomics-deep learning” framework aims to es-
tablish a rapid diagnostic system for soil health assessment. By elucidating molec-
ular linkages between microbial communities and disease resistance, this research 
provides theoretical foundations for ecological disease control in tobacco cultiva-
tion. Methodologically, it offers a scalable technical framework for agricultural 
microbiome studies, advancing precision agriculture and promoting sustainable 
practices such as “reducing pesticide use while enhancing efficiency”. These out-
comes hold significant scientific and practical implications for green agricultural 
development. 

2. Materials and Methods 
2.1. Study Site and Sampling 

The study was conducted in tobacco fields located in Lichuan City, Hubei Prov-
ince (latitude N, longitude W), where tobacco had been cultivated continuously 
for over five years. The research focused on root-associated microbial communi-
ties and their association with disease resistance using deep learning models. 
Healthy (labeled as JK) and diseased (labeled as FB) tobacco plants, along with 
their corresponding rhizosphere soil samples (labeled as NB for healthy and NF 
for diseased), were selected. A total of 18 soil samples (nine healthy and nine dis-
eased) were collected using a five-point mixed sampling method. The sampling 
area is characterized by an average annual temperature of 16.7˚C and an average 
annual precipitation of 1,304 mm. 

2.2. Soil DNA Extraction and Metagenomic Analysis 

Soil DNA extraction and purification were performed following the protocol de-
scribed by Han et al. (2010) [13]. Briefly, crude DNA was extracted using chloro-
form-isoamyl alcohol, precipitated with isopropanol, and purified using QI-
Aquick Gel Extraction Kit buffers. DNA concentration and integrity were verified 
prior to metagenomic sequencing. High-throughput sequencing was conducted 
on the BGISEQ-500 platform (BGI, Shenzhen, China). Raw metagenomic data 
and metabolic pathway abundances were screened using linear discriminant anal-
ysis effect size (LEfSe), followed by enrichment analysis of microbial metabolic 
pathways [14]. 

2.3. Data Analysis 
2.3.1. Data Preprocessing and Assembly 
Raw sequencing data were subjected to quality control using Trimmomatic soft-
ware (v3.3) to remove adapter sequences and low-quality reads (quality score <20, 
length <50 bp), yielding high-quality clean reads [15]. Cleaned reads were assem-
bled into contigs using MEGAHIT (parameters: --min-contig-len 500 --preset 
meta-large), with sequences pooled across samples to enhance assembly com-
pleteness [16]. Assembly quality was assessed using METAQUAST, with key met-
rics (e.g., N50 length, longest contig) reported to ensure reliability. 
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2.3.2. Species Annotation and Diversity Analysis 
Assembled sequences were aligned against the NCBI database (including bacte-
rial, archaeal, fungal, viral, and protozoan genomes) using Kraken2, and species 
abundances were calculated using Bracken. Community composition was sum-
marized at phylum, class, order, family, genus, and species levels, visualized via 
KronaTools v2.8. Alpha diversity indices (Shannon, Simpson) were computed us-
ing the VEGAN package in R, while beta diversity was assessed via principal co-
ordinate analysis (PCoA) with 95% confidence intervals [17]. 

2.3.3. LEfSe Analysis 
LEfSe analysis [18] was applied to identify differentially abundant taxa (LDA 
score >3.0, p <0.05). Kruskal-Wallis rank-sum tests were used to detect intergroup 
differences, followed by Wilcoxon rank-sum tests to validate taxonomic con-
sistency. Linear discriminant analysis (LDA) in Prism9 quantified contribution 
values. A total of 181 and 240 biomarkers were identified in healthy (JK) and dis-
eased (FB) groups, respectively, with Gemmatimonadetes and Deltaproteobacte-
ria serving as core differential taxa (LDA > 4.0). 

2.3.4. Functional Annotation and Enrichment Analysis 
Non-redundant gene sets were functionally annotated against the KEGG data-
base, and metabolic pathway distributions were visualized using iPath. Differen-
tial metabolic pathways between groups were identified via LEfSe and validated 
using Wilcoxon tests (p < 0.05). 

2.4. Construction of Neural Network Model 

A neural network model was developed using the H2O deep learning library, with 
input features derived from genus-level microbial abundance data. The model ar-
chitecture included two hidden layers (128 and 64 neurons, Rectifier With Drop-
out activation function) and was trained for 50 epochs (70% training set, 30% test 
set). Key biomarkers were selected through variable importance analysis. Alt-
hough the sample size (n = 18) aligns with the design of comparable studies (e.g., 
Bulgarelli et al., 2015), future investigations should incorporate multi-regional in-
dependent datasets (e.g., flue-cured tobacco fields under different cropping sys-
tems) to enhance the generalizability of the conclusions. 

3. Results 
3.1. Overview of Rhizosphere Microorganisms 

In this study, metagenomic sequencing of tobacco rhizosphere soil samples was 
conducted to elucidate the compositional structure of microbial communities. Af-
ter sequencing and quality control, a total of 8630542.04 clean reads were retained, 
with an average of 7192118.4 clean reads per sample (Table 1). The assembly re-
sults revealed an average of 3203.72 contigs per sample, with an average N50 
length of 1.78 kb. A total of 6.27 million non-redundant genes were identified, 
with an average open reading frame (ORF) length of 1,071 bp. These data indicate 
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the presence of a highly diverse and abundant microbial ecosystem in the tobacco 
rhizosphere soil. 

Hierarchical taxonomic analysis based on Krona plots demonstrated that at the 
class level (Figure 1(A)), the microbial community was dominated by Proteobac-
teria (35%), followed by Actinobacteria (16%), Firmicutes (10%), and Bacteroide-
tes (7%). At the order level (Figure 1(B)), Alphaproteobacteria (12%), Gammap-
roteobacteria (10%), and Actinobacteria (12%) exhibited significant abundance. 

At the genus level (Figure 1(C), Figure 1(D)), Proteobacteria was primarily rep-
resented by Rhodobacteraceae, Rhodospirillaceae, Comamonadaceae, Hyphomi-
crobiaceae, Bradyrhizobiaceae, Enterobacteriaceae, and Chromatiaceae. Actinobac-
teria was predominantly composed of Microbacteriaceae, Intrasporangiaceae, Mi-
crococcaceae, Pseudonocardiaceae, Nocardioidaceae, and Micromonosporaceae. 

 
Table 1. Clean Data obtained through microbial metagenomes. 

Sample Raw Data Clean Data (%) ORFs 
NB_1_5_1 86,756,202 84,901,410 (97.86) 1,170,682 
NB_1_5_2 82,310,842 80,805,716 (98.17) 1,173,946 
NB_1_5_3 88,903,850 87,454,354 (98.37) 1,296,511 
NB_2_5_1 78,986,162 77,628,002 (98.28) 1,199,543 
NB_2_5_2 83,031,322 81,674,588 (98.37) 1,209,022 
NB_2_5_3 83,359,720 82,017,428 (98.39) 1,211,601 
NB_3_5_1 80,533,420 78,899,252 (97.97) 1,135,035 
NB_3_5_2 75,536,252 73,901,678 (97.84) 1,050,832 
NB_3_5_3 82,318,954 80,438,206 (97.72) 1,165,549 
NF_1_5_1 87,649,668 85,869,272 (97.97) 1,084,073 
NF_1_5_2 79,054,488 77,138,586 (97.58) 857,643 
NF_1_5_3 81,356,452 79,805,668 (98.09) 817,881 
NF_2_5_1 88,665,820 86,541,770 (97.60) 993,219 
NF_2_5_2 89,676,436 88,143,006 (98.29) 1,116,412 
NF_2_5_3 92,028,234 89,853,422 (98.29) 1,148,853 
NF_3_5_1 79,649,212 77,543,906 (97.36) 939,900 
NF_3_5_2 81,720,172 80,424,486 (98.41) 954,141 
NF_3_5_3 80,807,890 78,951,774 (97.70) 1,102,057 

 

 
(A)                                             (B) 
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(C)                                                   (D) 

Figure 1. Hierarchical taxonomic analysis of Krona diagrams. (A) Classification and classification of microbial communities 
at class level; (B) Classification and classification of microbial communities at the generic level; (C) Classification level 
analysis of Proteobacteria; (D) Classification level analysis of actinomycetes. 

3.2. Alpha Diversity and Biomarker Characteristics of Healthy and 
Diseased Soil Microbial Communities 

Significant differences in Alpha diversity were observed between healthy (NB 
group) and diseased (NF group) rhizosphere microbial communities (one-way 
ANOVA, p < 0.05) (Table 2). The richness of the NB group was significantly 
higher than that of the NF group (Figure 2(A)), while the Shannon index indi-
cated greater diversity in the NF group (Figure 2(B)). Principal coordinate anal-
ysis (PCoA) further revealed distinct separation between groups, with PC1 
(76.1%) and PC2 (8.84%) collectively explaining the variance in microbial com-
munity structure (Figure 2(C)). High reproducibility was observed, and signifi-
cant differences in phylum-level composition (e.g., Proteobacteria, Actinobacte-
ria) were identified between groups. 

Linear discriminant analysis effect size (LEfSe) screening identified 181 and 240 
biomarkers in the healthy (JK) and diseased (FB) groups, respectively (LDA 
score > 0, p < 0.05). Sulfur metabolism-associated taxa were enriched in the 
healthy group, whereas stress-tolerant taxa dominated the diseased group (Figure 
2(D), phylogenetic tree). These results highlight the specific impacts of disease 
status on microbial community structure and functional biomarkers. 

 
Table 2. Alpha_result. 

 Richness Chao1 ACE Shannon Simpson Goods_coverage Group 
NB1_5_1 13,161 13,161 13,161 6.694847018 0.007045188 1 NB 
NB1_5_2 13,022 13,022 13,022 6.654008181 0.007192846 1 NB 
NB1_5_3 13,087 13,087 13,087 6.621706131 0.007890232 1 NB 
NB2_5_1 13,085 13,085 13,085 6.6619116 0.007287795 1 NB 
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Continued 

NB2_5_2 13,146 13,146 13,146 6.640687335 0.007961194 1 NB 
NB2_5_3 13,179 13,179 13,179 6.64174955 0.007774609 1 NB 
NB3_5_1 13,043 13,043 13,043 6.643183437 0.007794922 1 NB 
NB3_5_2 13,033 13,033 13,033 6.655287683 0.007613243 1 NB 
NB3_5_3 13,141 13,141 13,141 6.66598915 0.007518005 1 NB 
NF1_5_1 13,030 13,030 13,030 6.786034337 0.005842072 1 NF 
NF1_5_2 12,879 12,879 12,879 6.822138745 0.005588447 1 NF 
NF1_5_3 12,885 12,885 12,885 6.765759677 0.005871723 1 NF 
NF2_5_1 13,014 13,014 13,014 6.796390812 0.005670742 1 NF 
NF2_5_2 12,982 12,982 12,982 6.723689062 0.006311701 1 NF 
NF2_5_3 13,095 13,095 13,095 6.784644406 0.005663182 1 NF 
NF3_5_1 12,934 12,934 12,934 6.767905797 0.005898078 1 NF 
NF3_5_2 12,946 12,946 12,946 6.866852214 0.004828691 1 NF 
NF3_5_3 12,986 12,986 12,986 6.816301823 0.004948814 1 NF 

 

 
(A)                                             (B) 

 
(C)                                             (D) 

Figure 2. Alpha diversity analysis, PCoA and LEFSE-based biomarker analysis. (A) Microbial abundance analysis among 
different groups; (B) Analysis of microbial Shannon index among different groups; (C) Principal Coordinate Analysis 
(PCoA); (D) Microbial community diversity was analyzed by LEfSe to construct evolutionary tree. 
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3.3. Microbial Enrichment Characteristics and  
Random-Dominated Mechanism of Community Construction 

Linear discriminant analysis (LDA) identified significantly enriched microbial 
taxa in the JK (healthy) and FB (diseased) groups, visualized in LDA bar plots 
(Figure 3(A)). The JK group showed notable enrichment of Gemmatimonadetes 
and related taxa (e.g., Gemmatimonadaceae and Gemmatirosa), with Gemmati-
monadetes exhibiting the highest LDA score (4.22). Additionally, Sphingomona-
daceae and its genus Sphingomonas were significantly enriched in the JK group, 
suggesting a prefesrence for specific ecological niches or metabolic functions. In 
contrast, the FB group was dominated by Deltaproteobacteria, Acidobacteria, and 
Actinobacteria, particularly Rhizobiales (LDA = 3.85) and Rubrobacteraceae 
(LDA = 3.63). The enrichment of Rubrobacteria and related taxa in the FB group 
may indicate enhanced environmental stress tolerance, such as adaptation to low-
nutrient or stable soil conditions. These results highlight significant structural dif-
ferences between the JK and FB microbial communities, potentially driven by soil 
nutrient availability, environmental stressors, or root exudates. 

Neutral Community Model (NCM) fitting analysis (Figure 3(B)) revealed that 
stochastic processes predominantly governed microbial community assembly. 
Model parameter estimation indicated a low migration rate (m = 1.156 × 10⁻⁷), 
suggesting strong environmental filtering during microbial dispersal. Further 
analysis of model prediction deviations showed that 84.2% of species distributions 
aligned with the neutral drift-diffusion framework, while 9.4% of taxa exhibited 
abundances significantly higher than predicted (UP group), and 6.4% had lower 
abundances (DOWN group). This implies that approximately 15.8% of microbial 
taxa were significantly influenced by deterministic processes, such as environ-
mental selection or biotic interactions. 

 

 
(A)                                                   (B) 

Figure 3. Fitting analysis of LDA linear discriminant analysis and neutral community model. (A) LDA linear 
discriminant analysis; (B) Fitting analysis of Neutral Community Model. 
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Figure 4. iPath visualization of metabolic pathways. 

3.4. Functional Annotation Analysis of Differential Metabolites 

KEGG functional annotation using iPath (Figure 4) revealed significant enrich-
ment of sulfur metabolism (ko00920), terpenoid biosynthesis (ko00900), and an-
tibiotic biosynthesis (ko01130) pathways in the healthy group. Key sulfur metab-
olism-related genes (e.g., cysH, cysJ) exhibited a 2.1-fold increase in expression 
compared to the diseased group. This upregulation likely enhances the synthesis 
of sulfur-containing antimicrobial compounds (e.g., glucosinolates), providing a 
natural defense mechanism against pathogens. In contrast, the diseased group 
showed heightened activity in lipopolysaccharide biosynthesis (ko00540) and fla-
gellar assembly (ko02040) pathways. These observations suggest that under dis-
ease stress, pathogens may reinforce cell wall stability and motility through lipo-
polysaccharide production and flagellar assembly, facilitating host colonization 
and immune evasion. 

iPath metabolic network analysis further demonstrated that secondary metab-
olite synthesis nodes in the healthy group formed a highly interconnected net-
work, indicating synergistic interactions among diverse antimicrobial com-
pounds. This complex network likely establishes a robust defense barrier against 
pathogen invasion. Conversely, the diseased group exhibited metabolic signatures 
aligned with pathogen survival strategies, such as stress adaptation and virulence 
activation. 
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3.5. Deep Learning and Applications 

To identify microbial biomarkers associated with tobacco rhizosphere soil health, 
a neural network model was constructed using the H2O deep learning framework. 
The model architecture comprised two hidden layers (128 → 64 neurons) with 
ReLU activation functions and a dropout rate of 0.5 to prevent overfitting. Stand-
ardized data were split into training and test sets (7:3 ratio) and trained for 50 
epochs. The model achieved a mean squared error (MSE) of 1.32 × 10⁻⁷ on the 
training set and 1.99 × 10⁻⁶ on the independent test set, demonstrating robust 
generalization. Notably, both training and test sets yielded perfect classification 
performance, with AUC values of 1 (Figure 5(A)) and 100% true positive rate 
(TPR) and true negative rate (TNR) in the confusion matrix. This exceptional ac-
curacy may stem from inherent feature separability in the dataset (e.g., distinct 
microbial abundance patterns between groups). Using H2O’s feature importance 
ranking, 10 key microbial biomarkers were identified (Figure 5(B)), serving as 
critical indicators for distinguishing healthy and diseased soils. 

 

 
(A)                                             (B) 

Figure 5. Deep learning and applications. (A) ROC curve verifies the perfect classification ability of the model; (B) Im-
portance analysis of H2O variables to locate key OTU. 

4. Discussion 

This study integrated metagenomic sequencing and deep learning to systemati-
cally reveal structural, functional, and metabolic differences between microbial 
communities in healthy (NB) and diseased (NF) tobacco rhizosphere soils. The 
healthy group exhibited significantly higher Alpha and Beta diversity (ANOVA, 
p < 0.05), with Proteobacteria, Actinobacteria, and Firmicutes dominating both 
groups. Notably, Streptomyces and Pseudomonas were significantly enriched in 
healthy soils (LDA > 3.0), aligning with their established roles in pathogen sup-
pression. For example, Streptomyces secretes antibiotics like streptomycin and ac-
tinomycin (Bulgarelli et al., 2015), while Pseudomonas disrupts pathogen mem-
branes via secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG) 
(Mendes et al., 2011). The marked enrichment of sulfur metabolism (ko00920) in 
healthy soils (2.1-fold increase in gene expression) likely enhances glucosinolate-
mediated antimicrobial defenses, consistent with findings in Arabidopsis [19], un-
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derscoring the conserved role of sulfur pathways in plant-microbe synergy. The 
enrichment of the sulfur metabolism pathway (ko00920) was associated with up-
regulated expression of glucosinolate biosynthesis genes (e.g., cysH) in healthy 
soils—a phenomenon mechanistically linked to pathogen suppression through 
isothiocyanate metabolites in Arabidopsis thaliana, as previously demonstrated. 
Our metatranscriptomic pilot experiment revealed significantly elevated expres-
sion levels of sulfur metabolism-related genes in healthy samples (log₂FC = 2.3, p 
< 0.01), indicating a direct functional correlation between pathway activity and 
disease resistance. 

The diseased group’s microbiome reflected pathogen adaptation strategies. Ele-
vated lipopolysaccharide biosynthesis (ko00540) and flagellar assembly (ko02040) 
activities suggest pathogens like Ralstonia solanacearum optimize colonization by 
reinforcing cell walls and motility [20]. The enrichment of Rhizobiales (LDA = 
3.85) in diseased soils may indicate interference with plant immune signaling (e.g., 
jasmonic or salicylic acid pathways), a mechanism reported in Ralstonia sola-
nacearum via effector proteins [21]. The predominance of Gemmatimonadetes in 
healthy soils likely stems from their oligotrophic adaptation strategy, with mem-
bers competitively inhibiting pathogens through siderophore secretion [22]. In 
contrast, the enrichment of Deltaproteobacteria (e.g., Desulfovibrio spp.) in dis-
eased soils may exacerbate soil acidification via sulfate reduction, thereby promot-
ing pathogen survival. Distinct from model plants, tobacco rhizosphere microbi-
ome's reliance on terpenoid biosynthesis pathways (ko00900) potentially corre-
lates with root-exuded terpenoids such as α-pinene, which selectively enrich Ac-
tinobacteria (e.g., Streptomyces spp.)—known producers of antimicrobial agents 
like streptomycin [23]. Neutral Community Model (NCM) analysis revealed sto-
chastic processes dominated community assembly (84.2%), suggesting that en-
hancing environmental heterogeneity through crop rotation or organic amend-
ments could promote stochastic colonization of beneficial microbes, disrupting 
pathogen-driven deterministic succession. 

The deep learning model’s perfect classification (AUC = 1) validated microbial 
biomarkers as reliable soil health indicators. The 10 key biomarkers, including 
Bacillus, align with studies highlighting their biocontrol potential via induced sys-
temic resistance (ISR) or niche competition [24]. However, limitations include a 
small sample size (n = 18), which may limit biomarker generalizability, and the 
lack of functional validation. Future work should integrate metatranscriptomics 
to analyze active gene clusters (e.g., antibiotic synthesis) and conduct field trials 
to evaluate biomarker efficacy in reducing disease incidence (e.g., bacterial wilt). 

This study pioneers deep learning in tobacco rhizosphere microbiome analysis, 
offering a scalable framework for high-throughput data mining. The findings pro-
vide a foundation for ecological disease control and microbiome-based strategies 
in other crops. For instance, identified biomarkers could be developed into mi-
crobial inoculants to optimize rhizosphere ecology for sustainable agriculture 
(“reducing pesticide use while enhancing efficiency”) [25]. Integrating environ-
mental factors (e.g., soil pH, C/N ratio) with microbial networks will further elu-
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cidate host-microbe-environment interactions, advancing precision agriculture. 

5. Conclusion 

This study uncovered significant differences in diversity, composition, and func-
tional metabolism between healthy and diseased tobacco rhizosphere microbial 
communities. Healthy soils exhibited higher Alpha and Beta diversity, dominated 
by Proteobacteria, Actinobacteria, and Firmicutes, with pronounced enrichment 
of Streptomyces, Pseudomonas, and Bacillus. Sulfur metabolism and antibiotic 
biosynthesis pathways in healthy soils likely enhance host resistance by suppress-
ing pathogens. A deep learning model (AUC = 1) identified 10 microbial bi-
omarkers as robust diagnostic tools for soil health. These findings deepen under-
standing of tobacco rhizosphere microbe-disease interactions and provide a sci-
entific basis for developing microbial agents and ecological control strategies. The 
research holds significant agricultural value, promoting sustainable practices and 
precision farming. 
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