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Abstract 
Despite all the theories on gravity of the last few decades, in this article, we 
start from those of which we are certain because, as far as we know, celestial 
bodies, with the presence of negligible relativistic phenomena at small speeds 
and large distances, essentially obey Newtonian gravity; therefore, the gravita-
tional phenomena we observe in the space around us should be able to be ex-
plained by Newtonian physics, even if viewed differently in this article. It all 
starts from a consideration: since Newtonian gravity is given by a very small 
perturbation of the temporal component of the Minkowski metric, from the 
gravitational superposition principle, where independent forces are added, it 
would mean having independent time metric perturbations simultaneously at 
the same point of spacetime where a test mass is located, which seems incon-
ceivable. On the other hand, assuming the formation of a single perturbation 
with interaction between Newtonian fields, through the interpretation of an 
experiment carried out with a rudimentary gravitational torsion balance 
(static deflection method) between 2 masses under the influence of another 
mass (the simplest case), a different value of the active gravitational mass of 
the same object is generated if not all the masses involved are known, per-
ceived by such an observer as a change in force. If we then imagine measuring 
the Newtonian gravitational constant G without taking this into account, we 
can mistakenly arrive at a variation of it, therefore presupposing that its value 
can be influenced by the Earth itself via the same mechanism proposed in the 
experiment. Here we chose to use the “old” Newtonian forces to better de-
scribe the concept of gravitational mass and gravitational potential, under-
standing that the gravitational superposition effect may not be a sum of inde-
pendent forces but rather their sum in a single force, which is different in every 
point of the created superposition that we exclusively attribute to the observed 
object. By transferring this interaction effect to the potential of the stars in our 
galaxy, we obtain a strange result: a net zero potential of the galactic plane, 
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which could help explain some phenomena around us. This theory cannot be 
considered a new theory of gravitation but rather a different vision of the New-
tonian one only that its manifestation is hidden from us by the constant su-
perposition we undergo on Earth. 
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1. Introduction 

In a very small, suitably sealed environment, a rudimentary torsion balance is 
placed on a firm, suitably oiled surface, isolated from vibrations by spongy mate-
rial. 

Space is left underneath for larger masses also isolated to avoid vibrations as 
much as possible. 

The balance has a 60 cm bar with two small 14 g steel balls (m) of 14 mm in 
diameter hanging with a 1 mm polyester thread and is balanced with two 260 g 
iron balls (M) of 4 cm in diameter resting on two movable metal bars which allow 
their approach toward m until reaching, after a few hours, a desired equilibrium 
that keeps M and m separated by 3 - 4 millimeters. 

Once equilibrium has been reached, 2 other iron masses (M1) of 7 kg with di-
ameter of 12 cm are placed very carefully approximately 0.5 cm below the 2 masses 
M, and after a few minutes, a new equilibrium is reached with M and m touching 
each other (to view it, see the bottom of the article).  

We can approach this experiment, represented in Figure 1, sowing to the grav-
itational superposition principle, in which the forces FMm and FM1m act inde-
pendently and can be divided into a horizontal component Fx and a vertical com-
ponent Fy. 

1 cosFx FMm FM m θ= + ; instead, 0Fy =  because the vertical FMm  is 0 
( sin 0 0= ), whereas that of 1FM m  is neutralized by the balance. 

By directly measuring distances and angles, we have 3 cm between the center of 
M and m, and 9 cm between M1 and m with an angle between m, M1 and the 
horizontal plane of 70˚ (whose cos is 0.34), thus obtaining a total force (Ft) acting 
on m (G is considered 6.67 × 10−11 m3·kg−1·s−2):  

4 2 3 2

10 10

10

1 cos
0.26 kg 0.014 kg 9 10 m 7 kg 0.014 kg 8.1 10 m 0.34

2.69 10 N 2.74 10 N
5.43 10 N.

Ft FMm FM m
G G

θ
− −

− −

−

= +

= × × × + × × × ×

= × + ×

= ×

 

We can also approach this issue another way, through the sum of potentials (V) 
to which m is subjected, hypothesizing the sum of VM and VM1 with a certain 
angle (therefore proportional to cosϕ ), to which adds the effect of the balance 
that shows us this only “horizontally” (therefore proportional to the cosθ ). This 
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gives an effect that we observe as a greater gravitational force existing between M 
and m, calculable at any distance from M as deriving from a new VM, which can 
be called VM ′  therefore equivalent to: 

1cos cosVM VM VM ϕ θ′ = + × , and since the angles ϕ  and θ  are congruent 
with each other, we can rewrite it as: 21cosVM VM VM θ′ = + . 

 

 

Figure 1. Representation of the various conditions assumed by varying the distance of m 
with M1 below. 

 
We can explain it even better by seeing it in reverse, that is, considering the 

presence of M1 and m first and M added later. In fact, if we bring M1 close to m, 
the balance forces us to see only the “horizontal” VM1 generating FM1m with m, 
which depends on the angle θ . If we then place M above M1 assuming that their 
Vs are added, according to the angle ϕ  that they form in the position where m 
is located, a new V is created such that its value is equal to that found in the New-
tonian field at distance R from M ′ , which we all know is characterized by the 
V/R gradient, which makes the FM m′  force appear as the only force, as we ap-
parently see in the experiment. 

In real dimensions, it is possible to calculate the force acting on m through the 
sum of single forces or through the aforementioned formula both for the situation 
of the experiment and for successive ones with m assumed, for example, at 1 cm 
distance intervals. 

We already knew the total force acting on m in the experimental situation: 5.43 
× 10−10 N. 

Knowing that VM at 3 cm is −5.78 × 10−10 m2·s−2 and VM1 at 9 cm is −5.19 × 
10−9 m2·s−2 with cos270˚ = 0.115, we have: 

2

10 2 2 9 2 2

9 2 2

1cos
–5.78 10 m s 5.19 10 m s 0.115
–1.17 10 m s

VM VM VM θ
− − − −

− −

′ = +

= × − × ×

× ⋅=

⋅ ⋅  
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By attributing this V to a radius (R) of the M ′  field and Knowing that the 
acceleration (Ac) in this field is the gradient of its V (V/R), at that point (3 cm 
from M ′ ) we obtain the same total force acting on m that we observe: 

9 2 2 8 21.17 10 m s 0.03 m 3.90 10 m s− − − −− = − ×⋅ ⋅× ; this acceleration gives a force 
with m: 

8 2 103.90 10 m s 0.014 kg 5.46 10 N− − −× ⋅ × = ×  (the same value obtained with the 
classic method). 

Similarly, for the other situations described in Figure 1, the forces obtained in 
the two ways continue to coincide; therefore, the superposition principle can be 
seen not only as the sum of independent forces derived from independent Vs but 
also as the result of their additive interaction, which locally gives rise to a new V 
that can be attributed to the observed object if the contributions of the other ob-
jects are ignored. 

Let us now look at other situations of the experiment with m assumed, for ex-
ample, at 4 and 5 cm from M, remembering that M here stands for active gravita-
tional mass (Ma), to analyze them more thoroughly. 

EXAMPLE WITH m 4 CM FROM M 
Distances (meters): M-m: 0.04 m M1-m: 0.094 m 
Angle (θ ϕ= ): 65 
Masses: M1: 7 kg M: 0.26 kg m: 0.014 kg 
TOTAL FORCE EXPERIENCED BY m FOUND WITH THE CLASSIC 

METHOD. 

( ) ( )2 100.26 0.014 0.04 1.51 10 NFMm G −= × × = ×  

( ) ( )2 101 7 0.014 0.094 7.40 10 NFM m G −= × × = ×  

The balance shows us only the “horizontal” component of FM1m so:  

 10 107.40 10 cos 65 3.12 10 N− −× × = ×  
10 10 101 cos 1.51 10 N 3.12 10 N 4.63 10 NFtot FMm FM m θ − − −= + = × + × = ×   

ALTERNATIVE METHOD. 
9 2 2of 1 at 9.4 cm 1 7 0.094 4.96 10 m sV M GM r G − −= − = − × = − × ⋅  

The balance shows us only the “horizontal” component of this V that creates 
the force with m: 

9 9 2 24.96 10 cos 65 2.09 10 m s− − −− × × = ⋅− ×  

This V will be added to the potential of M (VM) according to the angle ϕ  that 
it forms with it in that point: 

9 2 2 10 2 22.09 10 m s cos 65 8.85 10 m s− − − −− −⋅× × ⋅= ×  
10 2 2Instead, at 4 cm 0.26 0.04 4.33 10 m sVM GM R G − −= − = − × = − × ⋅  

So what we see, due to the balance and the V interaction effect, is a new V that we 
apparently can only attribute to M, or better to M ′ , and which we can rewrite as: 

2 10 10 9 2 21cos 4.33 10 8.85 10 1.32 10 m sVM VM VM θ − − − −′ = + = − × − × ⋅× = −  
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Assuming, as mentioned before, that the Ac we see derives from the M ′  field 
having a V/R gradient, this means that at that distance from M (4 cm) we have: 

9 2 2 8 21.32 10 m s 0.04 m 3.30 10 m s− − − −− = − ×⋅ ⋅×  

Therefore the force exerted on m that we see is:  
8 2 103.30 10 m s 0.014 kg 4.62 10 N− − −× × = ×⋅  

EXAMPLE WITH m 5 CM FROM M 
Distances (meters): M-m: 0.05 m M1-m: 0.098 m 
Angle (θ ϕ= ): 59˚ 
Masses: M1: 7 kg M: 0.26 kg m: 0.014 kg 
TOTAL FORCE WITH THE CLASSIC METHOD 

( ) ( )2 110.26 0.014 0.05 9.71 10 NFMm G −= × × = ×  

( ) ( )2 101 7 0.014 0.098 7.40 10 NFM m G −= × × = ×  

10 101 cos 7.40 10 cos59 3.50 10 NFM m θ − −= × × = ×  

11 10 101 cos 9.71 10 3.50 10 4.47 10 NFtot FMm FM m θ − − −= + = × + × = ×  

ALTERNATIVE METHOD 
10 2 2at 5 cm 0.26 0.05 3.46 10 m sVM G − −= − − ⋅× = ×  

9 2 21 at 9.8 cm 7 0.098 4.76 10 m sVM G − −= − × = − × ⋅  
2 10 9 2

9 2 2

1cos 3.46 10 4.76 10 cos 59
1.60 10 m s

VM VM VM θ − −

− −

= + = − × − ×

= × ⋅−

′ 

 

 9 101.60 10 0.05 0.014 4.48 10 N− −× × = ×  

Examples of Active Gravitational Mass Changes 

Let us take the same examples and observe the same force experienced by m from 
another point of view. 

Let us imagine that observer A is in front of a sheet that covers M1, which there-
fore allows only M and m to be seen, whereas observer B is behind it and can see 
all the masses involved. 

Let us now consider the situation in which M and m are 4 cm apart. 
For B: 

101 cos 4.63 10 NFtot FMm FM m θ −= + = ×  and 0.26 kgM = . 
For A, who ignores the presence of M1, m will experience the same force but that 

he has judged generated only by M, which becomes M ′  for him: 2  F GM m R′=  
with M ′  becoming: 

( )22 104.63 10 0.04 0.014 0.79 kgM FR Gm G−′ = = × × × =  

Equally let us consider the situation in which M and m are 5 cm apart. 
For B: 

101 cos 4.47 10 NFtot FMm FM m θ −= + = ×  
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with M always 0.26 kg. 
For A: 

( )22 104.47 10 0.05 0.014 1.2 kgM FR Gm G−′ = = × × × =  

M (or rather Ma) has changed because, in the points where m was located, the 
superposition between the gravitational fields of M1 and M has changed and 
therefore the resulting field that we can attribute to M ′ . To avoid any misunder-
standing, it is important to point out that the mass obviously remains the same but 
the gravitational effect around it changes due to the interaction with the other field. 
In fact, the Ma of an object depends on the gravitational Ac that it creates at a certain 
distance ( 2Ac GMa R=  therefore 2Ma AcR G= ), whereby attributing different 
accelerations to the same object at a fixed R we can attribute a different Ma to it. We 
do not experience this phenomenon on Earth because we undergo the same terres-
trial superposition, which makes us perceive only one value of Ma. 

However, let us now move on to what observer A would actually see in the ex-
periment:  

We must remember that the distance at which m is from M is determined by 
the Ac it experiences, and if we attribute the Ac resulting from the M1-M interac-
tion solely to M ′ , we can justify it by the presence of a different force between M 
and m, because the new distance they acquire does not allow us to conceive a var-
iation of M. In the experiment, always different superpositions are created at each 
radius of the M field, but in nature, as with celestial bodies at large distances, this 
should not exist (M would orbit around M1), allowing M to have a constant grav-
itational superposition of its field which allows to respect the gradient that char-
acterizes it as we usually know it (V/R). But a variation of V over its entire field 
would still cause the position of an object m to vary, which we cannot conceive as 
a variation of M but as a variation of force due to the position that m acquires. 

For example: suppose we have m (0.014 kg) 5 cm from M (0.26 kg) where it 
experiences an Ac of 6.93 × 10−9 m·s−2 in a field where it presents a gravitational 
superposition of 1 × 10−9 m·s−2.  

The resulting Ac that m would undergo would be 7.93 × 10−9 m·s−2 and this 
means that for an observer A that Ac would be developed exclusively by M ′ , 
acquiring for him the value of 0.297 kg (considering this Ac created 5 cm from its 
center), which develops a force with m at that distance of 1.10 × 10−10 N.  

But if we consider the first equilibrium achieved, what he would actually ob-
serve when moving to the second equilibrium with the superposition created, 
would be a shift of m still considering M 0.26 kg and not a variation in Ma. We 
can calculate at what distance we will obtain the same force with M still 0.26 kg: 

2 100.26 kg 0.014 kg 1.10 10 NR G −= × × × , obtaining 4.69 cm.  
If we calculate the Ac that M of 0.26 kg develops at 4.69 cm from its center, we 

obtain the previous value of 7.93 × 10−9 m·s−2, created with the superposition 5 cm 
from it, which means that 4.69 cm would be the new distance from M that m 
would acquire in the second equilibrium with the same force.  
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Therefore, if we attribute the existing Ac created with the superposition to the 
same M with m changing its distance, there is no need to hypothesize a variation of 
Ma, since seeing a force between M ′  and m at a fixed distance or between M with 
a variable distance of m is a different way of looking at the same force. This could 
create a problem (as we will see later) when we measure the Newtonian gravitational 
constant G, since it is influenced by the Ac created by Ma at a fixed distance and not 
by the position of the objects that they acquire because of it, i.e. by a force. 

So what we can see around us, considering only two observed objects M and m, 
exactly like the observer A, is a change in force between them but in reality due to 
a variation of the M field caused by the interaction with other fields not consid-
ered. Among celestial bodies, this would mean that every external contribution in 
Ac can be evaluated as belonging to the observed system without perceiving a var-
iation of Ma (or rather of GMa) but rather of force between them (note that this 
happens to FMm as well as to -FmM).  

For example: if the Moon was farther away and slower or faster and closer, 
Earth’s GMa would always be the same. It is like deciding whether to consider a 
different Ac at a changing R with the same Ma or a different Ac at a fixed R with 
a changing Ma, and among celestial bodies, we observe only the first of these two 
possibilities. With this mechanism between masses, an increase in V would be 
created between them which we will not be able to observe directly unless judging 
a greater force; in this case, it is like seeing multiple Earth-Moon systems with the 
Moon moving faster and closer to the Earth in each system, but for us, who do not 
have such a reference, it is impossible to notice it. 

We know that the first reaction to all this is: impossible, we know by principle and 
experimentally verified that Newtonian fields do not interact. In fact, if in the exper-
iment we bring M close to m horizontally, and after M1 is located vertically below M, 
we can experimentally judge that the force FMm is not influenced by M1, which adds 
an independent force giving the expected result, i.e., FMm will be independent of 
FM1m. However, if experimentally one deduces from the results that the forces do 
not interact, then here too we can provocatively say that they interact on the basis of 
the results. The force obtained is the same, its attribution is what changes. Who can 
say, on the basis of calculations alone, what is the true mechanism? 

We know that Newtonian gravitation represents that given by General Relativ-
ity in certain conditions more common to us, and starting from the geodesic equa-
tion, applying the limits that we experience as speeds much lower than that of light 
( v c

), with gravitational fields stable over time ( 0g t∂ ∂ = ) and weak, i.e. con-
sidered as a small perturbation of the flat Minkowski spacetime ( v v vg hµ µ µη= + ), 
it allows us to make many simplifications in the calculations and then considering 
the time coordinate separately we obtain: 2 0 2d d 0x s = ; whereas from the spatial 
ones a gradient is obtained: ( )( )22 2

00d d 1 2 d d 0x s h ct s+ ∇ = ; thus arriving 
through new calculations and substitutions at the equation:  

2 2 2
00d d 1 2x t c h= −∇  which is very similar to the Newtonian one we know:  

2 2d dx t φ= −∇  where therefore 2
00 1 2c hφ− = −  and being GM Rφ = − ;  
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2
00 2h GM c R= − . 
It will therefore be this dimensionless perturbation that creates the V existing 

in the flat spacetime around a non-relativistic mass.  
We can test it for example with the mass M (0.26 kg) of the experiment that we 

have seen to develop a V of −5.78 × 10−10 m2·s−2 at an R of 3 cm from its center, 
therefore:  

2 11 3 2 15 3 2 26
00 2 3.46 10 m s 2.7 10 m s 1.28 10h GM c R − − − −= − = − × ×⋅ × ⋅ = −  

2 26 16 2 2 10 2 2
00– 1 2 1.28 10 4.5 10 m s 5.76 10 m sGM R h c − − − −= = − × × × × ⋅= −⋅  

This is what we expected. Up to here nothing new, but according to the gravi-
tational superposition principle, m of the experiment, or rather 00η  where m is 
located, instead of a sum of the two 00h  in a larger one, it should simultaneously 
undergo two independent 00h , which remaining independent would represent the 
independent Vs that m experiences, but since these 00h  are also very small pertur-
bations of the “1” of the flat metric (in particular the temporal component), it would 
mean having two independent time metric perturbations simultaneously at the 
same point of the spacetime where the test mass is located, which seems inconceiv-
able. It seems that the gravitational superposition principle is a way that allows us to 
calculate the total force exerted on a test mass, but in reality it does not correspond 
to the phenomenon that the spacetime in which it is located undergoes. All this 
would suggest that the mechanism described here could be more correct than the 
commonly known one, with the formation of a single 00h  - V that generates a sin-
gle force with m, that appears to us to be derived from independent forces. 

2. Implications for Measuring G 

If it is true that M1 adds its V with that of M forming VM ′  as in the experiment, 
then each object M on Earth will also experience the sum of Earth’s V, but in this 
case, each object’s V (Vo) would experience the same increase in terrestrial V (Vt), 
generating its own new V. This means that each object would have a Vt + Vo and 
next to another, such as M and m, attract each other much more than they would 
in the absence of the Earth but between them would bring out only the forces 
deriving from Vo (VM and Vm) since the same Vt would add to both. Vt is always 
the same but the Earth is not a perfect sphere and presents small variations in Vt 
due to its oblate spheroidal shape and local anomalies (which together we will 
simply call anomalies), such that the total Ac arising from Vt + Vo swings beyond 
what is expected. In fact, if we used a torsion balance with M and m to measure G 
and did so again with the mass M1 below M, it would be larger, but we must think 
that in reality G does not change, rather the Ac from which we calculate it, making 
G appear more correct with small Vt anomalies and wrong with larger Vt anom-
alies (note that if there is a Vt that interferes, this cannot be modulated in the 
measurements as it is ubiquitous).  

For example from Cavendish’s experiment (remembering that M stands for 
Ma) we know that: ( ) ( )2 2 2 2G d R T Mθ= π  where 2 22 d Tθπ  expresses the ac-

https://doi.org/10.4236/jhepgc.2025.112032


P. A. L. Leportier 
 

 

DOI: 10.4236/jhepgc.2025.112032 446 Journal of High Energy Physics, Gravitation and Cosmology 
 

celeration Ac created by M, which with 2R M  allows G to be calculated, so that: 
2G Ac R M= × . Owing to the small variation in Ac created by the superposition 

of the Vt anomalies and being the 2R M  ratio considered fixed, an error equal 
to this variation in the measurement of G would be created. The error, being a 
measure of a variation of Ac at a fixed R, which we have seen presupposes a vari-
ation of M, would be to consider M fixed. As in the experiment, with the Earth 
standing for M1, Vt anomalies would give a very little variation of Ma of the object 
M, and at a fixed distance this variation would translate into a variation of Ac, 
then recorded, but not accompanied by a variation of the value of Ma that created 
it. It is as if during the measurement of G we were the observer A with a mass M1 
that we ignore which always changes very little allowing us to experience only a 
small variation of Ac rather than a variation of M. 

The gravitational Ac that we distinguish between the interaction of two objects 
would be that given by the V of the objects alone (Vo1 and Vo2), but in reality, 
between them, it would be: 

( ) ( )1 2Vt Vo Vt Vo+ = − +  which would be equivalent to ( ) ( )1 2c Vo c Vo+ = − +  
where c for us is a constant equal to 0; therefore 1 2Vo Vo= − . 

In terms of acceleration Ac at a certain distance between them: 
1 2Ac Ac= − ; 2 21 2GMa R GMa R= −  thus developing between them, with 

the reciprocal role of active and passive gravitational mass Ma and Mp, the forces 
that we all know. 

Note how this, starting from the third principle of dynamics, continues to guar-
antee the equality of the Ma Mp  ratio in every system. 

The situation is different when we want to measure G because we measure the 
acceleration at a fixed distance generated by a source mass (or group of masses), 
and since this derives from Vt + Vo, in this case, any variation of Vt would emerge. 
In fact, even starting from a force, we know that 2F GMm R=  and  

2G FR Mm= , but being F ma= ; 2G maR Mm=  so 2G aR M=  and we re-
turn to the previous relation 2G Ac R M= × .  

The same can also be said for other methods used to measure G, for example in 
the time of swing method with the gravitational attracting torque acted by external 
masses on a pendulum, or in the angular acceleration method which is dependent 
on “Qlm”, which are the multipole fields of the external mass distribution [1], and 
so on for the other methods.  

All this is to say that the purpose is always the same: to measure the acceleration 
at a fixed distance created by some source mass, bringing out Vt of the Vt + Vo 
interaction, even if the measurement is the result of forces involved with other 
masses, where instead Vt in that case, would acquire the value of a constant acting 
equally on all forces despite its small local variation. 

We could therefore, as mentioned before, record a variation in g (resulting from 
the variation in Vt), which we could erroneously attribute to a variation in G, 
stressing that we judge Vt + Vo as Vo (as VM ′  of the experiment composed by 
VM1 and VM). 
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Let us take a practical example: suppose that we measure G with M and m of our 
experiment exploiting the oscillation to achieve the first equilibrium (very difficult 
but it is just an example) in an environment where g is 9.8072620 m·s−2. The Ac de-
veloped by M derived from the VM at 3 cm from its center is 1.92 × 10−8 m·s−2, but 
we must remember that this Ac is obtained from the measurement of a force experi-
enced with another object in which the value of g is ubiquitous and would be added 
to all the forces, however as explained, this Ac would be 9.8072620192 m·s−2 when we 
measure G (the acceleration derived from Vt + VM), and 1.92 × 10−8 m·s−2 is what 
we distinguish in that environment between the masses. In the measurement of G we 
record the entire value given by Vt + VM at a fixed distance and if we then intend to 
perform the same measurement in an environment in which g is, for example, 
9.8077334 m·s−2, the resulting variation of ≈50 ppm in the G value will be recorded, 
emphasizing again that in this case we would judge Vt + Vo as Vo recording a change 
in Vt, which instead between forces would acquire the value of a constant. 

It is difficult on Earth to measure such a small variation, but it would be possible 
to verify with the same torsion balance and same masses in some gravitationally 
very different places on the Earth with the same nearby gravitometer and notice 
if there is an increase in G as g increases and vice versa, someone has already no-
ticed this strange correlation even though attributed to the changing G [2]. 

We take up this article from 2016 [2] in which there are the best measurements 
of G by that time but where, unfortunately, only in one case the real value of g was 
taken even if 10 years earlier (measurement Zurich 2006) [3], and this was 
9.8072335 m·s−2 instead of the theorized 9.8052360 m·s−2 which we insert together 
with the other values, which we are instead forced to use only as theoretical data 
as they were not actually detected during the measurements, and let us determine 
if a relation can exist by calculating the variations in G and g taken into consider-
ation (for convenience units of measurement are not used). 

 
 G g 

University of Colorado, Bolder 6.672340 9.796034 

Δ ΔG = 0.0011 Δg = 0.0024 

HUST Wuhan, China 6.673490 9.793537 

Δ ΔG = 0.00038 Δg = 0.0092 

St.LabMeas.St.Lab, New Zealand 6.673870 9.802807 

Δ ΔG = 0.00034 Δg = 0.0044 

University of Washington 6.674215 9.807262 

Δ ΔG = 3.7 × 10−5 Δg = 2.9 × 10−5 

University of Zurich 6.674252 9.807233 

Δ ΔG = 0.0012 Δg = 0.0021 

BIPM France 6.675540 9.809357 

 
It is repeated, unfortunately the g values are only theoretical in which there are 
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certainly errors, just think of HUST laboratory in China located underground or 
the difference from the real measurement found in Zurich, but it would be worth 
trying to measure G with the same equipment and gravitometer at different loca-
tions with very different g values (or at very different heights) to determine if such 
a relation truly exists. 

A test that could be done is the Cavendish experiment (but other types of grav-
itational balances would work) in a lunar mission looking for the value of G, al-
ways with the same torsion balance and the same masses, here on Earth and on 
the Moon, where it will be possible to evaluate Ma at fixed R and understand 
whether the lunar superposition (approximately 1/6 of that of the Earth) plays a 
role, because considering Ma as on Earth we should find a distorted value of G 
dependent on the new superposition. In reality, due to the variation of Ma, the 
small masses m would oscillate more slowly, creating a smaller angle θ for a longer 
time (the 2 22 d Tθπ  ratio, which represents Ac, decreases) and the 2R Ma  ra-
tio would increase as Ma decreases due to the smaller lunar superposition contri-
bution of its field, leaving G unchanged. To our eyes, Ma would acquire a lower 
value because it would generate a smaller Ac equal to the smaller lunar superpo-
sition attributed to it. According to the discussed relationship, 2G Ac R M= ×  
it would be like multiplying and dividing 2R  by the same superposition contri-
bution. If instead, we considered Ma with the value it acquires with the terrestrial 
superposition, G would be distorted. 

3. Methods 

This interaction would give rise to a single acceleration belonging to the observed 
object, practically a new field, which then, with another object, would give rise to 
a new force as seen in the experiment.  

The terrestrial superposition that we have hypothesized above would be total, 
without the cosine of any angle, in which the Earth would play the role of M1, 
however, when an angle is created as in the experiment, this single force is un-
masked in the forces that compose it, in fact the V/R gradient of the field of M, 
which in the experiment changes by varying the angle of superposition with M1, 
is the one we all know with the constant superposition we experience, which then 
generates a force with m that we all know.  

Therefore, the force experienced by m would be the one with M ′  and not with 
M + M1, we usually consider FMm + FM1m as independent forces rather than 
consider just FM m′  in which FM1m participates. 

This raises the hypothesis that the missing mass among celestial bodies could 
be the passage of V between one mass and another, in which the field of one mass 
creates variation in the field of the other, creating a new field adding linearly 
(given the context in which they are found), which is why we can hypothesize the 
formation of a single V among the stars discussed below, in which systems become 
increasingly stronger with the ever-increasing number of masses involved without 
us realizing it. 
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We start from two conditions: 1) the described gravitational interaction exerted 
between the masses M1 and M of the experiment is valid, even between celestial 
bodies. 2) There is so much space between masses in our galaxy that relativistic 
effects are irrelevant; therefore, the gravitational phenomena that characterize it 
must be able to be explained through Newtonian physics, even if seen here in an 
alternative way with mutual linear interaction. 

We have seen that we can hypothesize the formation of stronger gravitational 
systems between masses by assuming an additive interaction of their Vs. This 
should also occur among stars, and we can try to understand what the average 
Newtonian gravitational potential created by a set of stars could be undergone by 
the galactic plane considering their additive effect. 

If their Vs are interacting, they can be seen together as a single V, in which each 
star provides its contribution, like the field of M1 which contributed with that of 
M to create that of M ′ , acting on the galactic plane as a whole, considering that 
the galactic field is the one on which the stars “weigh”, managing to make the local 
Newtonian V of the supermassive black hole (SMBH), on which they orbit, more 
negative, like the earth for example, which creates a V around itself that is more 
negative than the local solar one. To do this we do not use any model but exploit 
the knowledge of the stellar spatial density. 

Considering the average distance between stars, the V created by each of them 
that the SMBH’s field experiences are the maximum where the star is located and 
the minimum between one and another; therefore, on average, it undergoes a po-
tential present at 1/4 of their average distance. 

Be careful, this does not mean that at that distance there is an average V created 
by each star, but that the SMBH’s field on average experiences a V present at 1/4 
of that distance due to their average distance. 

Now, let us look for the average stellar mass by analyzing the most common 
stars: 

 
Star class Main-sequence mass % of all main sequence stars Average M˳ mass Weighted mass for class % mass of class overall 

O ≥16 M˳ 0.00003 20 0.0006 0.001 

B 2.1 - 16 M˳ 0.13 9.05 1.1765 2.891 

A 1.4 - 2.1 M˳ 0.6 1.75 1.05 2.580 

F 1.04 - 1.4 M˳ 3 1.22 3.66 8.992 

G 0.8 - 1.04 M˳ 7.6 0.92 6.992 17.179 

K 0.45 - 0.8 M˳ 12.1 0.625 7.5625 18.581 

M 0.08 - 0.45 M˳ 76.45 0.265 20.2592 49.776 

TOT    40.7008 100 

 
We obtain an average value of approximately 40.7/100 ≈ 0.4 M˳. 
Starting from the analysis of the disk, the density of the stars contained in it is 

represented by a double exponential characterized by an exponentially decaying 
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density of star counts, both radially (R) and in height (Z) above and below the 
disk, where ρ is the exponentially falling off parameter (in this case, density in the 
number of stars) starting from its initial value ρ˳ and β is the scale length or scale 
height.  

( ) ( )e er zR Zβ βρ ρ ρ ρ− −= =
 

 

We first attempt to determine the stellar density in the galactic plane where the 
sun is located.  

We know that in the vicinity of the Sun the stellar density is 0.004 per cubic 
light year (8.46 × 1047 m3) [4]. 

To make this in cubic parsec (2.92 × 1049 m3), we obtain 0.13 stars pc−3. 
The disk is characterized by two main populations of stars, which give rise to a 

thick disk (T) and a thin disk (t), which differ in some characteristics and each 
with its own scale height. Recently, the scale height of the thick disk (≈800 pc) and 
that of the thin disk (≈280 pc) were evaluated, with their star number density ratio 
being 0.75 (ρT/ρt) [5]. 

This means that starting from a concentration of 0.13 stars pc−3, 0.056 are from 
the thick disk and 0.074 from the thin disk. 

We can add the two stellar populations by taking into account this decay every 
100 pc by calculating their average distance, which locally will be not only in Z but 
also in all directions, thus being able to calculate the V at 1/4 of their average dis-
tance and verify what it is the total one “weighing” on the disk plane. 

 

Z 
(pc) 

Density of 
t stars 
(pc−3) 

Density of 
T stars 
(pc−3) 

Total density 
of stars (pc3) 

Total  
density of 
stars (pc−1) 

Average distance 
between stars 

(pc) 

1/4 distance 
between stars 
(1016 meters) 

Potential at 1/4 
distance between 

stars (m2·s−2) 

Stars in 
100 pc 

(Z) 

Stellar potential 
in 100 pc (Z) 

(m2·s−2) 

0 0.074 0.056 0.13 0.50 2.00 1.54 −3461 × 50 = −173,050 

100 0.051 0.049 0.10 0.46 2.17 1.67 −3191 × 46 = −146,786 

200 0.036 0.043 0.079 0.42 2.38 1.83 −2912 × 42 = −122,304 

300 0.025 0.038 0.063 0.39 2.56 1.97 −2705 × 39 = −105,495 

400 0.017 0.034 0.051 0.37 2.70 2.08 −2562 × 37 = −94,794 

500 0.012 0.030 0.042 0.34 2.94 2.26 −2358 × 34 = −80,172 

600 8 × 10−3 0.026 0.034 0.32 3.12 2.40 −2220 × 32 = −71,040 

700  0.023 0.023 0.28 3.57 2.74 −1945 × 28 = −54,460 

800  0.020 0.020 0.27 3.70 2.84 −1876 × 27 = −50,652 

900  0.018 0.018 0.26 3.84 2.95 −1806 × 26 = −46,956 

1000  0.016 0.016 0.25 4.00 3.08 −1730 × 25 = −43,250 

1100  0.014 0.014 0.24 4.16 3.20 −1665 × 24 = −39,960 

1200  0.012 0.012 0.22 4.54 3.49 −1527 × 22 = −33,594 

1300  0.011 0.011 0.22 4.54 3.49 −1527 × 22 = −33,594 

1400  9.7 × 10−3 0.010 0.21 4.76 3.66 −1456 × 21 = −30,576 

TOT       −1,126,683 
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What we can notice initially is that the density of t after ≈600 pc has little 
influence while that of T remains appreciable up to ≈1400 pc. In fact, as appears 
from the analysis of the sum of the densities of the two disks, that height con-
tains almost all the stellar mass (in a galactic solar R of ≈ 8 kpc, Figure 2) [5], 
thus making the V of the highest stars little influential (an ever smaller number 
of stars multiplied by an ever smaller V owing to their density in space), to which 
must be added the effect of the decrease in the average stellar mass in Z not 
considered here; in fact, we know for a long time that the distribution of stars 
perpendicular to the plane has a spectral variation, with the oldest and least 
massive stars that are the most common ones at high Z [6], which would allow 
us to ignore further heights. 

 

 

Figure 2. Vertical density of simultaneous thin and thick disks at the galactocentric solar 
R [5]. 

 
If we consider the potential created in both galactic planes, we obtain the po-

tential that on average “weighs” on that radius of the disk; therefore −1,126,683 
m2·s−2 × 2 ≈ −2.25 × 106 m2·s−2. 

Notably, the Newtonian potential of the SMBH (4.29 × 106M˳) [7] developed at 
≈8 kpc is −2.32 × 106 m2·s−2. 

Obviously, there may be inaccuracies in the average mass considered, in the 
density of stars, in the scale height chosen, in the value of the SMBH mass etc., but 
it is strange that considering the enormous numbers with which we are dealing, 
the results correspond. 

We can try to do the same thing for other internal and external areas of the galaxy, 
and in doing so, we take into account the scale length of the stellar density. In recent 
years we have realized that considering the scale length of a single stellar population 
we obtain values from 1.8 kpc to 5 kpc because they are the result of different radial 
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scale lengths of different stellar disk components, which can vary strongly. 
In particular, the scale length of the old components of the thick disk is only 1.8 

- 2.2 kpc whereas that of the younger thin disk components is 3.5 - 4.5 kpc [8]. 
The effective scale length of the stellar disk is determined by the sum of all the 
components, whose combined density profile defines the effective disk scale 
length density at every radius [9], as shown in Figure 3. 

 

 

Figure 3. Effective scale length of the Milky Way disk determined by star counting [9]. 
Although in this work, in light of more recent observations, a slightly steeper slope is used 
(Reproduced by permission of the AAS). 

 
Several authors have reported scale length values of the thick disk of 1.8 kpc 

[10], whereas others have reported a scale length toward the periphery (≈12 kpc) 
of 3.8 kpc essentially due only to the thin disk [8]. Therefore, we can consider in 
the most internal and external areas a scale length of 1.8 kpc at R ≈ 4 kpc caused 
by a short scale length of the thick disk and one of 4 kpc at R ≈ 14 kpc caused by 
the thin disk. 

At the galactocentric distance R of the sun (≈8 kpc) there should be an effective 
scale length (β) of ≈2.5 kpc (Figure 3); therefore, if ρ existing near the sun is 0.13 
stars pc−3 we can go back to the initial ρ˳ of the disk origin. 

In this way: ( ) e rR βρ ρ −=


, we obtain ρ˳ = 3.1 stars pc−3, a value consistent 
with that found around ≤3 kpc from the center of the Milky Way (Table 1), where 
the disk originates. 

If we therefore want to find the stellar density in the galactic midplane at R 4 
kpc, which we say can correspond to a scale length of 1.8 kpc, we find that: 

4 1.83.1e 0.33ρ −= =  stars pc−3. 
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Table 1. Stellar densities in the Milky Way, with particular attention to the galactic nucleus [11]. (Reproduced by permission of the 
author) 

Table of Star Densities at the Galactic Core 

Radius from Center, R Star Density 
Stars within 

Radius R 
Average Distance 

Between Stars 
Irradiation by 

Surrounding Stars 
(parsecs) (stars/pc3) (Msun) (parsecs) (A.U.*) (Earth/Sol = 1.0) 

0.1 5.2 × 107 6.0 × 105 0.0034 700 6 × 10−4 
1.0 8.4 × 105 8.8 × 106 0.013 2700 9 × 10−5 
10. 1.3 × 104 1.4 × 108 0.053 11,000 6 × 10−6 
20. 3.8 × 103 3.2 × 108 0.081 17,000 4 × 10−6 
100 2.2 × 102 5.0 × 109 0.21 43,000 1 × 10−6 

(Nucleus) 800 20.0 2.0 × 1010 0.46 94,000 3 × 10−7 
(Core) 3000 3.0 -- - 0.87 180,000 9 × 10−8 

(Disk/Sol) 104 0.15 -- - 1.88 380,000 5 × 10−9 
 

This means that considering the ratio between the t and T disks with their scale 
heights, we obtain: 

 

Z 
(parsec) 

Density of 
t stars 
(pc−3) 

Density of 
T stars 
(pc−3) 

Total 
density of 
stars (pc3) 

Total 
density of 
stars (pc−1) 

Average 
distance 
between 
stars (pc) 

1/4 distance 
between stars 
(1016 meters) 

Potential at 1/4 
distance 

between stars 
(m2·s−2) 

Stars in 
100 pc 

(Z) 

Stellar potential 
in 100 pc (Z) 

(m2·s−2) 

0 0.19 0.14 0.33 0.69 1.44 1.10 −4845 × 69 = −334,305 
100 0.13 0.12 0.25 0.62 1.61 1.23 −4333 × 62 = −268,646 
200 0.093 0.10 0.19 0.57 1.75 1.34 −3977 × 57 = −226,689 
300 0.065 0.096 0.16 0.54 1.85 1.42 −3753 × 54 = −202,662 
400 0.046 0.085 0.13 0.50 2.00 1.54 −3461 × 50 = −173,050 
500 0.032 0.075 0.10 0.46 2.17 1.64 −3250 × 46 = −149,500 
600 0.022 0.066 0.088 0.44 2.27 1.74 −3063 × 44 = −134,772 
700 0.015 0.058 0.073 0.41 2.43 1.87 −2850 × 41 = −116,850 
800 0.011 0.051 0.062 0.39 2.56 1.97 −2705 × 39 = −105,495 
900 7 × 10−3 0.045 0.052 0.37 2.70 2.07 −2574 × 37 = −95,238 

1000  0.040 0.040 0.34 2.94 2.26 −2358 × 34 = −80,172 
1100  0.035 0.035 0.32 3.12 2.40 −2220 × 32 = −71,040 
1200  0.031 0.031 0.31 3.22 2.47 −2157 × 31 = −66,867 
1300  0.027 0.027 0.30 3.33 2.56 −2082 × 30 = −62,460 
1400  0.024 0.024 0.28 3.57 2.74 −1945 × 28 = −54,460 
1500  0.021 0.021 0.27 3.70 2.84 −1876 × 27 = −50,652 
1600  0.019 0.019 0.26 3.84 2.95 −1806 × 26 = −46,956 
1700  0.016 0.016 0.25 4.00 3.08 −1730 × 25 = −43,250 
1800  0.014 0.014 0.24 4.16 3.20 −1665 × 24 = −39,960 
1900  0.013 0.013 0.23 4.34 3.34 −1595 × 23 = −36,685 
2000  0.011 0.011 0.22 4.54 3.49 −1527 × 22 = −33,594 
2100  0.010 0.010 0.21 4.76 3.66 −1456 × 21 = −30,576 
2200  9 × 10−3 9 × 10−3 0.20 5.00 3.85 −1384 × 20 = −27,680 
TOT  −2,451,559 
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Here, we notice that the density of t after ≈900 pc has little influence, whereas 
that of T remains appreciable up to ≈2200 pc, and if we consider the V created in 
both galactic planes, we obtain: 

−2,451,559 m2·s−2 × 2 ≈ −4.90 × 106 m2·s−2.  
The potential of the SMBH (4.29 × 106M˳) developed at R 4 kpc is −4.65 × 106 

m2·s−2, demonstrating a correlation in this case, too. 
If we consider the periphery R ≈ 14 kpc, as mentioned, we can consider an ef-

fective scale length (β) of 4 kpc therefore: 14 43.1e 0.094ρ −= =  stars pc−3. 
However, as mentioned, according to various observations, this area seems to 

be populated only by stars of the thin disk, therefore the scale height to use is that 
of the thin disk. 

 

Z 
(parsec) 

Density of t 
stars (pc−3) 

Density of t 
stars (pc−1) 

Average distance 
between stars (pc) 

1/4 distance 
between stars 
(1016 meters) 

Potential at 1/4 
distance between 

stars (m2·s−2) 

Stars in 100 
pc (Z) 

Stellar potential in 
100 pc (Z) (m2·s−2) 

0 0.094 0.45 2.22 1.70 −3135 × 45 = −141,075 

100 0.066 0.40 2.50 1.92 −2776 × 40 = −111,040 

200 0.046 0.35 2.85 2.19 −2433 × 35 = −85,155 

300 0.032 0.31 3.22 2.47 −2157 × 31 = −66,867 

400 0.022 0.28 3.57 2.74 −1945 × 28 = −54,460 

500 0.015 0.24 4.16 3.20 −1665 × 24 = −39,960 

600 0.011 0.22 4.54 3.49 −1527 × 22 = −33,594 

700 7 × 10−3 0.19 5.26 4.05 −1316 × 19 = −25,004 

TOT  −557,155 

 
Here, we also note a correlation since −557,155 m2·s−2 × 2 ≈ −1.11 × 106 m2·s−2 

and the potential of the SMBH developed at R 14 kpc is −1.32 × 106 m2·s−2. 
If we go deeper, into the bulge, or rather into the pseudobulge, it appears con-

nected to the disk by bar-shaped structures. In particular, the long bar is present 
in the entire pseudobulge, finding a thin and a superthin component with two 
scale heights of ~180 pc and ~45 pc respectively [12], interpreting it as the coun-
terpart of the thin disk and the young thin disk near the sun. 

If we consider the proportions between these components similar to those used 
in the solar neighborhood (ρT/ρt ≈ 0.75), as suggested by the estimated masses 
(the mass of the thin component 3.3 × 109 M˳ and the mass of the superthin com-
ponent 4.0 × 109 M˳) [12], considering a galactocentric R of 800 pc where these 
conditions exist and where we know the local ρ˳ (≈20 stars pc−3, Table 1), from 
their scale heights (180 pc and 45 pc) we can trace the total number of stars grav-
itating in the disk in that area given by this double exponential. 

In this way, we can consider a superthin component up to Z ≈ 100 pc and the 
thin one up to ≈500 pc, giving a total V of −3.8 × 106 m2·s−2 and −1.5 × 107 m2·s−2 
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respectively.  
The V developed by the SMBH at R 800 pc is −2.32 × 107 m2·s−2 but it is right to 

expect that the remaining part is to be attributed to the stars of the true bulge: 
those older and sparser [13].  

For example, the previously obtained total V at R 4 kpc starting from the height 
of ≈600 pc up to an assumed height of ≈2500 pc of the bulge seems likely to fill 
this gap. 

In fact, we know that the pseudobulge can be seen as a bulge that encloses an 
internal disk [14], but both have to be orbited by the potential of the same SMBH, 
and the fact that these stars have a different kinematics and metallicity from the 
younger and more massive ones that move in a more rotary manner [14], suggests 
that this star formation in the galactic plane is subsequent to the formation of the 
bulge that was already orbiting the SMBH (which therefore starts its ρ˳ from a 
pre-existing value similar to that of the thick disk). 

This makes us understand that, taking into account the effect discussed here, 
the stars could have a non-random concentration but be arranged in such a way 
as to give the annihilation of the Newtonian V of the SMBH caused by the sum of 
their average Vs undergone by it, but starting from where? 

The further we go into the center of the galaxy, the more complicated the kin-
ematics become due to the concentric structures that are created such as the nu-
clear stellar disk and the nuclear stellar cluster. Furthermore, we must consider 
the increase in the average stellar mass that we encounter as we delve into the 
galaxy which unfortunately, due to the lack of certain data, makes the work too 
speculative. 

However, even if not proposed here, confirmation is found with the average 
mass of 1.5M˳ at R 100 pc, 2M˳ at R 20 pc, 4M˳ at R 10 pc and 10M˳ at R < 1 pc, 
which in the light of the observations seem plausible [13] [15]-[17] with an ever-
increasing presence of massive stars towards the center of the galaxy and with a 
participation of supermassive stars increasingly present in the first pc [18]. 

In fact, we can do better towards the most extreme center to understand what 
would be the maximum V reachable by the masses with this effect. We know that 
in the first pc3 there is included a stellar mass of ≈8.8 × 106 M˳ with a star density 
of 8.4 × 105 pc−3 (Table 1), so each object has an average mass of 8.8 × 106M˳/8.4 × 
105 = 10.4M˳ which, as mentioned, is made plausible by the presence of numerous 
massive and supermassive stars (notice how even at R 0.1 pc with 5.2 × 107 stars 
pc−3 in 0.1 pc3 with 6 × 105M˳ we get about the same thing). 

Therefore we know that inside this first pc there is a density that reaches 5.2 × 
107 stars pc−3 (Table 1), corresponding to 373 pc−1; and from both sides on this 
area of the galactic plane they constitute a total of 373 × 2 = 746 stars. 

These are separated by 0.0034 pc (Table 1), and at 1/4 of that distance they 
would develop a V of −5.31 × 107 m2·s−2 for a total V of 746 × −5.31 × 107 m2·s−2 ≈ 
−4 × 1010 m2·s−2.  

At this point we must also add the V obtained from the other masses above and 
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below the SMBH, which would be given by the average masses considered of 4M˳ 
(present at R 10 pc) for a considered Z of 10 pc, 2M˳ (present at R 20 pc) for a 
considered Z of 20 pc and of 1.5M˳ (present at R 100 pc) for a considered Z of 100 
pc, making the V contributions from higher Z negligible based on local spatial 
densities (Table 1), and thus obtaining from both sides a value in V respectively 
of −6.24 × 108 m2·s−2, −2.54 × 108 m2·s−2 and −1.49 × 108 m2·s−2, for an overall value 
of ≈−1 × 109 m2·s−2. 

Therefore, the maximum average V that the SMBH would experience from the 
stars, taking into account this additive effect of their Vs, would be ≈−4.1 × 1010 
m2·s−2. But starting from where more precisely?  

If we are guided by the idea that the stellar V equals that of the SMBH as in the 
rest of the galaxy, knowing its mass (4.29 × 106M˳), we can find the R in which 
this occurs. 

In fact if V GM R= ; R GM V=  where M is the mass of the SMBH and V is 
the total stellar V, obtaining a value of 1.39 × 1016 m, which is between 0.4 and 0.5 
pc. 

Those who study the center of our galaxy know this galactocentric R because it 
corresponds to the R in which the expected cusp does not appear. According to 
the Bahcall-Wolf cusp distribution, there should be a cusp with ɤ of ≈1.7, but from 
the observations, we find a slope ≈0.34 or almost flat [19] (especially for the red 
giants) so much that the theory has been changed to “the shallow cusp theory” 
accompanied by explanations of shorter relaxation times, plausible contamination 
of young stars in the observation of older ones, collisions between the innermost 
stars, etc. However, late-type stars have recently been suspected to show a core-
like rather than cusp-like distribution [20]. 

The stellar population at R < 0.3 pc appears to belong to the SMBH with a Kep-
lerian fall-off radius [21], whereas at R > 0.5 pc it seems influenced by the sur-
rounding masses [22], considering therefore R ≈ 0.4 pc a distinctive zone that will 
play a crucial role in the subsequent discussion. 

4. Results and Discussion 

As discussed above, by the transfer of potential, systems of increasing force would 
be created between the masses, which if considered among the stars of our galaxy 
would give it fundamental stability acting as a “gravitational glue”.  

In the Z direction, this could also explain the thickening of the thick disk over 
time, driven by a higher gravitational gradient towards the outside of the disk fa-
voring an “inside-out” formation, thus also explaining the vertical motions of the 
stars inside it. 

At the central level, the sum of the stars’ average V undergone by the V of the 
SMBH’s field, would reduce (or rather neutralize) the local tidal forces near it, 
increasing the gradient uniformity of its field and allowing greater star formation 
“in situ”, explaining the large star formation where we would not expect. 

However, the most important consideration of this effect concerns the SMBH, 
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which with a V resulting from all the stars together would experience a V far 
greater than that created by itself, which is therefore not able to make them orbit 
in Keplerian way as we would expect. 

The result is its “flattened” potential totally occupied by a spatial density of stars 
generating two self-gravitating halves made up of the maximum number of them 
it can make orbit, while it could make orbit in Keplerian way the innermost stars 
(S cluster), the stellar halo and the bulge in a transition zone: the pseudobulge, 
characterized by the coexistence of the pre-existing three-dimensional potential 
zones (the bulge) with the more recent flattened ones (the internal disk) which 
over time have greater star formation, mass and luminosity, therefore becoming 
increasingly larger and the bulge increasingly smaller. 

With this effect, the local V of the SMBH is made more negative for a value 
equal to its value at every R, which therefore remains the same from the point 
where it is generated, so that in the disk exists only the Keplerian potential of local 
objects such as stars, clusters, etc. that compose it but there is no proper potential 
of the disk, its potential is decided by the Keplerian potential of the SMBH around 
which the central masses orbit at R ≈ 0.4 pc. 

This would also explain why the stars of the disk in their disordered motion are 
ordered, as they would be in equilibrium between a local V determined by the 
nearby masses and that of the disk determined by the Keplerian V of the SMBH. 
Where there is less or more local mass, there will be a lower or higher speed re-
spectively, dictated by the resulting V and therefore depending on the mass-to-
light ratio, which would also explain the great success in predicting galactic veloc-
ity curves according to MOND theory and the Universal Rotation Curve (URC) 
which use the mass-to-light ratio of the visible component of each galaxy (*) as 
the only free parameter [23] [24]. 

Stellar motions are dictated both by the rotational attraction of the center (the 
point masses attract each other and begin to follow one another following the in-
ternal rotation) with consequent radial velocity, and by the local gravitational at-
traction caused by nearby objects with consequent velocity dispersion which, for 
the effect discussed here, increases in the thickness of the disk as the force of the 
star fields increases. 

Therefore, the disk, even if it orbits around the SMBH, cannot be considered 
under its direct control in the way we usually think, even if it decides its potential 
and therefore its speed. 

Consequently, if we imagine these central masses in a closed and relaxed Kep-
lerian motion around a central mass where energy conservation applies, from the 
Virial theorem we know that   1 2K U=−  where each of these masses will be 
gravitationally linked to M and so: 21 2 1 2mv GMm R=  so that each of them 
will have speed: v GM R= , and considering M the mass of the SMBH of 4.29 
× 106M˳ and R the distance at which these masses are located (≈0.4 pc), we obtain 
a speed of 215 km·s−1 with which they orbit around it and will therefore be main-
tained throughout the galaxy. This velocity manifests itself outside the strong in-

https://doi.org/10.4236/jhepgc.2025.112032


P. A. L. Leportier 
 

 

DOI: 10.4236/jhepgc.2025.112032 458 Journal of High Energy Physics, Gravitation and Cosmology 
 

fluence of the surrounding masses that create dispersion, although as mentioned, 
it always remains influenced by local dispersion, as in the disk (even if there it 
becomes less strong, having a less concentrated mass distribution and no presence 
of the bulge). 

This is not exactly the speed we know, which is about 220 km·s−1, but it is very 
close. 

Therefore, from ≈0.4 parsec, one can think that an area begins in which the 
masses are distributed to cancel the galactic potential by self-gravitating in equi-
librium with it, since, due to this effect, it is the maximum number of stars that 
can be orbited with the SMBH’s potential, allowing a constant velocity of objects 
to be maintained as a result of a necessary balance. 

Theoretically, this speed could be maintained indefinitely since the mass den-
sity of the galaxy seems to be distributed to cancel out the V of the SMBH, in fact, 
the maximum size of the galactic stellar disk is not yet known [25], only the matter 
not being infinite gradually decreases, allowing its V to rise again, reducing the 
speed of the orbiting objects at great galactocentric R [26] [27]. 

We can also interpret this as a restoration of its spacetime curvature around the 
area of the flattened disk, where the net zero disk potential would be equivalent to 
a net zero spacetime perturbation, thus creating an unexpected peripheral lensing 
effect around it. This is because, being able to assume the sum of the stellar Vs in 
a single one and knowing, as we have seen, that these are determined by the small 
spacetime perturbations 00h , this would give rise to a single 00h  equal to that 
created by the SMBH in the disk area, thus allowing us to make this consideration 
around it and creating in fact a potential well. Note that if other large masses, such 
as other galaxies, manage to lower this V again, they will gain speed, thus creating 
clusters of galaxies with unexpected speeds with an even larger lensing effect 
around them. Consider for example the arrangement of our Local Group [28]. 

This equilibrium V that is created between the galactic mass and the SMBH, 
due to the effect we are talking about, is right to be expected at a lower value with 
the secularization of the galaxy and its mass gain, thus giving greater velocity to 
the objects orbiting this increasingly lower V; a velocity then transferred to the 
entire galaxy, thus explaining the Tully-Fisher relation in disk galaxies (*). 

We are used to measure the mass of SMBHs from their surrounding kinematics, 
but we have to think that the central masses, which are located where the equilib-
rium V is generated, can have different speeds around the same SMBH dependent 
on the potential they orbit, and it may be that some SMBH, which for some reason 
does not have many of these masses around compared to its mass, may appear too 
small or absent; others, which have many masses around them compared to their 
mass, may appear too large; as if all this were caused by a different central mass. 

In the pseudobulge, the more the flattened V is present, the brighter it will ap-
pear, but this would also create a bigger disturbance of the coexisting three-di-
mensional V (the bulge), causing greater velocity dispersion (σ) of the objects in 
it, but also, as seen above, proportional to the greater kinematics created by these 
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masses around the SMBH; thus, luminosity and σ become ∝ to the kinematics 
around the SMBH, which could explain the M-σ relation (but which in reality 
would not give information on the real mass of the SMBH). 

We know that the anisotropies of the Cosmic Microwave Background (CMB) 
represent inhomogeneities at the dawn of the universe that we can interpret as an 
obstacle to the homogeneous expansion of this radiation owing, among other 
things, to the attractive gravitational effect, which we always identify with mass, 
but could also be given by the effect of which we are talking about here. 

Even if the baryonic mass in that period was much more uniform, this effect 
must have already existed, and this radiation therefore must have spread not only 
through the gravitational effect of the masses but also through the effect of a new 
V between them resulting from their interaction, creating other anisotropies.  

In fact, in the primordial universe, ordinary matter interacted strongly with this 
radiation whereas dark matter did not, it would have influenced the CMB only 
with its gravitational potential. 

This effect would also lead to greater Gravitational Instability than previously 
imagined and could help us explain why matter organized itself so quickly to form 
galactic nuclei at unexpected primordial times. 

It would also be possible to explain the behavior of the “Bullet Cluster”, in which 
the baryonic gas seen in X-rays interacts whereas the dark matter would remain 
undisturbed along with the galaxies, continuing to give the lensing effect of the 
objects behind them. In reality, the dark matter would follow the galaxies because 
it would be an effect of the V rising around the disks as mentioned above, and the 
disks are flattened mainly due to the stars inside them, which however do not 
collide, allowing this effect to be maintained. 

All of these findings suggest that if the dark matter does not interact with any-
thing except gravitationally, it could be a gravitational effect of “ordinary” mass. 

(*) In this theory, the stellar mass seems to be in equilibrium with the V of the 
SMBH because, owing to the effect described here, the stars would otherwise de-
velop a V greater than the existing one needed to make them orbit. This would be 
enabled by the continuous star formation that occurs at the median height of the 
galactic plane, which means that we can hypothesize a relation between the stellar 
mass (which we can estimate from the M/L ratio) and the Keplerian V of the 
SMBH on which these masses orbit since the galactic mass would be on the same 
V. Therefore, the relation between the galactic mass and the rotation speed of the 
galaxy, such as that of Tully-Fisher (not surprisingly, closer when talking exclu-
sively about mass), is equivalent to the relation between the V created by the stars 
of the galaxy and its rotation speed. 

Performing the calculations as previously described, for example with a V of 4 
× 1010 m2·s−2 created by these masses around a SMBH of 4.29 × 106M˳, they would 
result at an R of 1.43 × 1016 m with a speed of 200 km/s. Looking for the velocity 
that would exist at regular increments of stars’ V, for example, every 5 × 109 m2·s−2, 
we would have: 
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4.5 × 1010 m2·s−2 ≈ 212 km/s, 5 × 1010 m2·s−2 ≈ 223 km/s, 5.5 × 1010 m2·s−2 ≈ 234 
km/s, 6 × 1010 m2·s−2 ≈ 245 km/s, 6.5 × 1010 m2·s−2 ≈ 255 km/s, 7 × 1010 m2·s−2 ≈ 265 
km/s, and so on. 

Thus, every equal variation in the potential (5 × 109 m2·s−2 in this case) corre-
sponds to an equal variation in v (≈10 km/s in this case). 

By graphing this variation in potential with respect to the rotation speed, we 
obtain something very similar to a Tully-Fisher relation: 

 

 
 

In particular, the mass growth of the SMBH is considered negligible and pro-
portional over time compared to the stellar mass growth of the galaxy that hosts 
it, and therefore compared to the total V acquired by the stars. In fact, even as-
suming a large growth of the SMBH, the growth of the stellar mass would be much 
greater, and taking into account the effect described here, the equilibrium poten-
tial between them would still be at an increasingly lower value over time. This 
relation is not related to the actual mass of the SMBH (like the kinematics sur-
rounding it as described above) but is only evidence of the gravitational relation 
existing between it and the galactic mass. 

(*) MOND theory assumes that light traces mass, that is, the mass-light ratio 
(M/L) in any individual galaxy is constant. After the surface brightness distribu-
tion (preferably in the near infrared) is converted into a surface density distribu-
tion, the Newtonian gravitational force is subsequently calculated via the Poisson 
equation and the “true” gravitational force is calculated from the MOND formula 
with a fixed acceleration a0 (which would mark the entry into the MOND area if 

0a a ), and the mass of the stellar disk is adjusted until the best match to the 
observed rotation curve is achieved. 

The “fixed” value of a0 used can be interpreted as the establishment of the equi-
librium V between the SMBH and the stellar mass of each galaxy in which the 
velocity becomes no longer dependent on R because on the same V. The use of 
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the M/L ratio of the disk (baryonic matter only) as the only free parameter of the 
fit is a feature shared with the URC, and it could be due to the fact that stars cross-
ing an area of high stellar density, in which the local V of the SMBH is further 
lowered, would acquire greater speeds, whereas those crossing a less dense area, 
in which the V of the SMBH increases, would acquire lower speeds. This would 
explain the great success of MOND e URC in predicting velocity of spiral galaxies, 
which is confirmed on hundreds of them and therefore must have a physical 
meaning that is perhaps too overlooked. 

5. Conclusions 

This method cannot provide exact numbers but rather provides an alternative way 
to explain some phenomena through a different vision of Newtonian gravitation. 
Perhaps the reasoning is too simplified and the method used is not the most cor-
rect, but if the interpretation of the performed experiment is correct and the 
masses are able to provide the effect described, then the SMBH cannot make all 
the stars of the galaxy orbit in Keplerian way as we should expect, with the coin-
cidence that the maximum concentration of the mass of the galaxy should be 
found to orbit the Keplerian potential of the SMBH corresponding to a speed very 
similar to that of the objects in the disk (not taking into account the local disper-
sion). 

There may be doubts about the stellar densities and data used in various areas 
of our galaxy (Table 1), but we know the densities and measurements near us, and 
it is another coincidence that considering this effect, there is an average V under-
gone by the SMBH’s field created by the masses above and below our sun almost 
equal to that of the SMBH 8 kpc from it, furthermore, using the same criteria, 
analogies can be found in various points of the Galaxy. 

Although simple, the theory apparently remains valid and can be falsified by 
experiments such as the search for a correlation between G and g never carried 
out before or, better yet, such as the lunar experiment hypothesized here. 

Beyond the validity of the theory, it remains to be clarified why a physical phe-
nomenon such as that of gravitational superposition among masses can be as-
sumed to occur in two different ways because physically it can only occur in one.  

Do the Vs that give rise to the forces add up independently, or do they add up 
into a single one that appears to us to come from independent Vs? It may seem 
like a useless question, but if we consider it between the objects that we commonly 
test on Earth and the Earth itself or between the stars, we obtain particular results. 

For the more curious, the “home” test is here: https://youtu.be/wZ49W7JQRiw.  
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