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Abstract 
Stable distributions are well-known for their desirable properties and can ef-
fectively fit data with heavy tail. However, due to the lack of an explicit prob-
ability density function and finite second moments in most cases, traditional 
parametric inference methods are no longer applicable. Bayesian Synthetic 
Likelihood is a likelihood-free Bayesian inference method based on model 
simulations, which effectively addresses parameter inference problems when 
the probability density function is not explicitly available. Semi-parametric 
Bayesian Synthetic Likelihood relaxes the normality assumption by incorpo-
rating semi-parametric estimation methods, but it performs poorly when ap-
plied to data with heavy tail and excess kurtosis. To improve this, we intro-
duced adaptive Monte Carlo algorithm to enhance the convergence speed, and 
transformed kernel density estimation to increase the estimation accuracy. 
Numerical experiments and empirical analysis on stable distributions vali-
dated the superiority of the proposed improvements. 
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1. Introduction 

Stable distributions are a class of distributions with excellent properties. They are 
the only distributions with an absorption domain, meaning that the sum of any 
random variables asymptotically converges to a stable distribution. As a result, 
stable distributions possess desirable theoretical properties. Additionally, stable 
distributions are particularly effective in fitting data with heavy-tail, making them 
widely applicable in fields such as financial markets and signal processing. 

Stable distributions were first introduced by Lévy in 1925. However, the devel-
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opment of parameter estimation methods for stable distributions has progressed 
slowly, mainly due to the following two reasons: 1) With a few exceptions, stable 
distributions do not have explicit probability density functions or distribution 
functions. As a result, traditional parameter estimation methods based on proba-
bility density functions are no longer applicable. 2) Stable distributions do not 
have finite second-order moments or higher-order moments. Therefore, tradi-
tional parameter estimation methods based on higher-order moments are also 
unsuitable. Currently, the main parameter estimation methods for stable distri-
bution models include the quantile method [1], the fractional lower-order mo-
ment method [2], and the characteristic function method [3]. The quantile method 
requires estimating from a table based on calculated quantiles, which not only has 
a limited scope of application but also lacks high precision. The effectiveness of 
the fractional lower-order moment method depends on the choice of the order, 
which the user must determine. The characteristic function method estimates re-
sults based on sample size and initial parameter values by querying estimation 
interval tables, but it requires multiple queries to meet the convergence criteria, 
resulting in large computational effort and low accuracy. Therefore, there is a need 
to develop a simple and effective parameter estimation method for stable distri-
bution models. 

The Bayesian Synthetic Likelihood (BSL) is a likelihood-free inference method 
based on the Bayesian framework, first introduced by Price et al. in 2018 [4]. This 
method has also been applied to parameter inference in various models, such as 
the SDEMEM model [5], SDEs model [6], and ARCH model [7]. However, the 
fundamental assumption of this method is that the observed data follows a Gauss-
ian distribution. When the observed data significantly deviates from a Gaussian 
distribution, this can lead to inaccurate estimates of the likelihood function, which 
in turn results in inaccurate estimates of the posterior distribution. Several studies 
have proposed improvements to the BSL method, which heavily relies on the 
Gaussian assumption. Fasiolo et al. [8] proposed a more flexible density estimator, 
called the extended empirical saddlepoint approximation, which relaxes the nor-
mality assumption. However, this method requires the user to select a shrinkage 
parameter, and both the accuracy of the results and computational efficiency de-
pend on the choice of this parameter. An et al. [9] addressed this issue by using a 
semi-parametric estimation approach to estimate the likelihood function, leading 
to the new method called semiBSL. Numerical experiments show that this method 
significantly outperforms BSL and the extended empirical saddlepoint approxi-
mation when the observed data deviates from a Gaussian distribution. In 2022, 
An et al. [10] developed an R package for the MCMC-BSL, MCMC-semiBSL, and 
related extended methods to facilitate their subsequent use. Picchini et al. [11] 
improved the convergence speed of BSL by introducing a guided adaptive sam-
pling method and demonstrated through numerical experiments that when the 
initial parameter values are far from the true values, the MCMC sampling method 
converges slowly and can even get trapped in local optima. Since semiBSL also 
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employs MCMC sampling, it theoretically faces the same issue. 
Therefore, this paper proposes improvements to the semiBSL method. On the 

one hand, the Adaptive Monte Carlo (AM) algorithm is introduced to enhance 
the convergence speed of semiBSL. On the other hand, transformed kernel density 
estimation (TKDE) is incorporated to improve the estimation accuracy of semiBSL 
when dealing with data exhibiting “heavy-tail” characteristics. Simulation study 
and empirical study based on stable distributions are conducted, and the experi-
mental results confirm the superiority of the proposed improvements. 

2. Theoretical Foundations 
2.1. Stable Distributions 

There are several ways of defining a stable random variable. First, the initial defi-
nition of a stable random variable is based on the sums of random variables. A 
random variable X  is said to have a stable distribution if for any 2n ≥ , a posi-
tive number nC  and real number nD  exist such that: 

 def
1 2 ,n n nX X X C X D=+ + + +   (1) 

where 1 2, , , nX X X  are independent copies of X . 
Second, stable variables can be defined via their Lévy measure. For any 2α < , 

the Lévy measure of a stable process is given by: 

 ( ) 0 01 11 1 ,x x
C Cdx dx
x xα αν + −

> <+ +
 = + 
 

  (2) 

where 01x>  is an indicator function. The calculation of the characteristic function 
of the stable distribution is based on the Lévy-Khintchine formula. The character-
istic function of S  given by: 

 ( )
( )

( )

exp 1 tan , 1
2

;
2exp 1 ln , 1

i t t i signt
t S

i t t i signt t

α αµ σ β α

µ σ β α

   π  − − ≠    
    Φ = 

   − + =   π  

  (3) 

where 

 
1, 0
0, 0

1, 0

t
signt t

t

>
= =
− <

  (4) 

0 2α< ≤ , 0σ ≥ , 1 1β− ≥ ≥ , and µ∈ . The parameter α  is the index of sta-
bility and it controls the behaviour of the left and right tails. When α  is close to 
2, the tail becomes thin. β , σ , and µ  are the skewness, scale, and location 
parameters, respectively. When a random variable S  follows a stable distribu-
tion, we denote it by ( ), , ,S α β σ µ . 

2.2. Bayesian Synthetic Likelihood 

In Bayesian Synthetic Likelihood (MCMC-BSL), the objective is to simulate from 
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the summary statistic posterior given by 

 ( ) ( ) ( )| |p p p∝y ys sθ θ θ   (5) 

where p∈ ⊆ θ Θ  is the parameter that requires estimation with corresponding 
prior distribution ( )p θ . Here, y  is the observed data that is subsequently re-
duced to a summary statistic ( )S=ys y  where ( )S ⋅  is the summary statistic 
function. The dimension of the statistic d  must be at least the same size as the 
parameter dimension, i.e.    d p≥ . 

The BSL involves approximating ( )|p ys θ  with 

 ( ) ( ) ( ) ( )( )| | | ,Ap p N≈ =y y ys s sθ θ µ θ θΣ   (6) 

The mean ( )µ θ  and covariance ( )θΣ  are not available in closed form but 
can be estimated via independent model simulations at θ . The procedure in-
volves drawing ( )1: 1, ,n n= x x x , where ( )~ |i p ⋅x θ  for 1, ,i n=  , and calcu-
lating the summary statistic for each dataset, ( )1: 1, ,n n= s s s , where is  is the 
summary statistic for ix , 1, ,i n=  . These simulations can be used to estimate 
µ  and Σ  unbiasedly 

 ( ) ( ) ( )( ) ( )( )T

1 1

1 1,
1

n n

n i n i n i n
i in n= =

= = − −
−∑ ∑s s sµ θ θ µ θ µ θΣ   (7) 

We can sample from the approximate posterior using MCMC, see Algorithm 1. 
 

Algorithm 1: MCMC-BSL algorithm 

Input: Summary statistic of the data, ys , the prior distribution, ( )p θ , the proposal  

distribution q , the number of iterations, T, the number of simulation runs, n, the  

initial value of the chain ( )0θ . 

Output: MCMC sample ( ) ( )( )0 , , T
θ θ  from the BSL posterior, ( ), |A np ys θ . Some  

samples can be discarded as burn-in if required. 

1: Simulate ( )( )0
1: ~ |n p ⋅x θ  and compute 1:ns  

2: Compute ( )( )0
nµ θ  and ( )( )0

n θΣ  using (7) 

3: for 1, ,i T=   do 

4:   Draw ( )( )1* ~ | iq −⋅θ θ  

5:   Simulate ( )* *
1: ~ |n p ⋅x θ  and compute *

1:ns  

6:   Compute ( )*
nµ θ  and ( )*

n θΣ  using (7) 

7:   Compute 
( ) ( ) ( )( )

( )( ) ( )( ) ( )( )
1* * *

,

1 1 1*
,

| |
min 1,

| |

i
A n

i i i
A n

p p q
r

p p q

−

− − −

 
 =
 
 

y

y

s

s

θ θ θ θ

θ θ θ θ
 

8:   if ( )0,1U r<  then 

9:      Set ( ) ( )( ) ( ) ( )( ) ( )* * *, ,i i i
n n n n= = =θ θ µ θ µ θ θ θΣ Σ  

10:  else 

11:     Set ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1, ,i i i i i i
n n n n

− − −= = =θ θ µ θ µ θ θ θΣ Σ  

12: end 
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2.3. Semi-Parametric Bayesian Synthetic Likelihood 

The difference between MCMC-semiBSL and MCMC-BSL lies in the treatment of 
the likelihood function. MCMC-BSL directly assumes the likelihood function to 
be a Gaussian distribution with unknown parameters, while MCMC-semiBSL em-
ploys a Copula model to estimate the likelihood function. The specific steps are as 
follows: First, kernel density estimation (KDE) is used to estimate each marginal 
density. Then, a Gaussian Copula function is applied to estimate the joint density. 
Finally, the resulting joint density is taken as the estimated likelihood function. 

Based on kernel density estimation, the marginal density of the j-th component 
of the summary statistic ys  can be estimated as: 

 ( ) ( )
1

1 , 1, ,ˆ
n

j j j
y h y i

i
f s K s x j d

n =

= − =∑    (8) 

where j
ys  represents the j-th component of the summary statistic ys , and j

ix  
denotes the j-th component of the i-th simulated data. The kernel density estima-
tor ( )hK u  is given by ( ) ( )1

hK u h K u h−= , where h  is the bandwidth, and 
( )K ⋅  is the kernel function, satisfying ( ) 0K ⋅ ≥  and ( )d 1K x⋅ =∫ . There are 

many kernel functions that satisfy these conditions, and in MCMC-semiBSL, the 
Gaussian kernel function ( ) ( )21 2 exp 2K u u= π −  is used. The bandwidth is 
chosen according to Silverman [12], with ( )0.2  0.9 min , IQR 1.34h n δ−= , where 
IQR denotes the interquartile range. The marginal distribution function ( )ˆ j

yF s  
can be directly estimated from the marginal density function. 

After obtaining the marginal distribution, MCMC-semiBSL uses a Gaussian 
Copula function to model the dependence structure between the components of 
the summary statistics. The Gaussian Copula density function is given by: 

 ( )
( )

( )T 11 1exp
2det

dc u − = − − 
 

R I
R

η η   (9) 

where dI  is the d-dimensional identity matrix, ( ) ( )( )T1 1
1 , , du u− −= Φ Φη , 

( )1−Φ ⋅  is the inverse of the standard normal distribution, and ( )ˆ j
j yu F s= , for 

1, ,j d=  . If the correlation matrix R  in the above expression can be esti-
mated, the likelihood function can be estimated as: 

 

( )
( )

( )

( ) ( )( ) ( ) ( )

T 1

1 1

1 1| exp
2

ˆˆ
ˆdet

|ˆ d

semiBSL d

d n
j
y i i n

j i

p

f s p S S S

−

= =

 = − − 
 

×

∫

∏ ∏ 

y yy s ss R I
R

x x x

θ η η

θ

 (10) 

MCMC-semiBSL estimates the correlation matrix using the Gaussian rank cor-
relation (GRC) method proposed by Boudt et al. in 2012 [13]. According to the 
GRC method, the ( ),i j -th component ,i jR  of the correlation matrix R  can 
be estimated as: 

 

( ) ( )1 1
1

, 2
1

1

1

1

ˆ
1

i j
k kn

k

i j
n

k

r s r s
n n

R
k

n

− −
=

−
=

   
   Φ Φ
   + +   =

 Φ  + 

∑

∑
  (11) 
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where ( ) { }: , 1, ,r n⋅ → ≡     is the rank function, and ( )1−Φ ⋅  is the in-
verse of the standard normal distribution. After estimating the likelihood func-
tion, similar to MCMC-BSL, the MCMC algorithm with iterations T is used to 
sample from ( )|p ys θ . The specific algorithm procedure is as follows: 
 

Algorithm 2: MCMC-semiBSL algorithm 

Input: Summary statistic of the data, ys , the prior distribution, ( )p θ , the proposal  
distribution q , the number of iterations, T, the number of simulation runs, n, the  
initial value of the chain ( )0θ . 
Output: MCMC sample ( ) ( )( )0 , , T

θ θ  from the BSL posterior, ( ), |A np ys θ . Some  
samples can be discarded as burn-in if required. 
1: Simulate ( )( )0

1: ~ |n p ⋅x θ  and compute 1:ns  
2: Compute ( ) ( )0f̂ ys  and ( ) ( )0F̂ ys  using (8) 
3: Compute ( )0R̂  using (11) 
4: Compute ( )( )0|semiBSLp ys θ  using (10) 
5: for 1, ,i T=   do 
6:   Draw ( )( )1* ~ | iq −⋅θ θ  
7:   Simulate ( )* *

1: ~ |n p ⋅x θ  and compute *
1:ns  

8:   Compute ( )*f̂ ys  and ( )*F̂ ys  using (8) 
9:   Compute *R̂  using (11) 
10:  Compute ( )*|semiBSLp ys θ  using (10) 

11:  Compute 
( ) ( ) ( )( )

( )( ) ( )( ) ( )( )
1* * *

1 1 1*

| |
min 1,

| |

i
semiBSL

i i i
semiBSL

p p q
r

p p q

−

− − −

 
 =
 
 

y

y

s

s

θ θ θ θ

θ θ θ θ
 

12:  if ( )0,1U r<  then 
13:    Set ( ) ( )( ) ( )* *, | |i i

semiBSL semiBSLp p= =y ys sθ θ θ θ  
14:  else 
15:    Set ( ) ( ) ( )( ) ( )( )1 1, | |i i i i

semiBSL semiBSLp p− −= =y ys sθ θ θ θ  
16: end 

2.4. Adaptive Monte Carlo Algorithm 

Markov Chain Monte Carlo (MCMC) is a stochastic simulation method based on 
Markov chains, used to estimate the numerical characteristics of complex proba-
bility distributions. The foundational algorithm of MCMC was proposed by W. 
K. Hastings in 1970, known as the Metropolis-Hastings (M-H) algorithm [14]. In 
the MCMC-semiBSL method, the M-H algorithm is also used. The basic idea is to 
generate samples from the target distribution by constructing a Markov sampling 
chain. The algorithm starts from an initial state and iteratively performs two steps: 
sampling from the proposal distribution and determining whether to accept the 
sample, until convergence is reached. 

As can be seen from the above algorithm, the M-H algorithm requires the spec-
ification of both the proposal distribution and the initial state before execution. 
The convergence rate of the M-H algorithm depends on the choice of these two 
factors. When the proposal distribution is poorly chosen or the initial state devi-
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ates from the true distribution, the convergence rate of the M-H algorithm can be 
slow, and it may even become trapped in local optima. To address this limitation 
of the M-H algorithm, Haario et al. introduced the Adaptive Monte Carlo (AM) 
algorithm in 2001 [15]. This algorithm continuously adjusts the proposal distri-
bution based on the sampled values during execution, thus accelerating the con-
vergence rate of the algorithm. In the classic M-H algorithm, a Gaussian proposal 
distribution is typically used as follows: 

 ( )( ) ( )( )1 1| | ,t tq X N X− −⋅ = ⋅ C   (12) 

where C  is an appropriate covariance matrix. The AM algorithm adjusts the co-
variance matrix C  continuously during the execution of the algorithm based on 
the sampling results. The specific adjustment method is as follows: 

Assume that at time 1t − , the state samples drawn by the algorithm are 
( ) ( )0 1, , tX X −
 , where ( )0X  is the set initial state. The candidate state at the next 

time step is then drawn from the proposal distribution ( ) ( )( )0 1| , , t
tq X X −⋅  : 

 ( ) ( )( ) ( )( )0 1 1| , , | ,t t
t tq X X N X− −⋅ = ⋅ C   (13) 

 ( ) ( )( )0 1, , t
t d d ds cov X X s ε−= +C I   (14) 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )0 T T

1

1, , 1
k

k i i k k

i
cov X X X X k X X

k =

 
= − + 

 
∑   (15) 

 ( ) ( )

1

1
1

k
k i

i
X X

k =

 =  + 
∑   (16) 

where dI  is the d-dimensional identity matrix, 0ε >  is a small constant chosen 
by the user, and ds  is a scaling parameter that depends only on the dimensionality 
d . In this paper, ds  is set to 22.4ds d=  as suggested by Gelman et al. [16]. 

Theorem 1. Let π  be the density of a target distribution supported on a 
bounded measurable subset dS∈ , and assume that π  is bounded from 
above. Let 0ε >  and let 0µ  be any initial distribution on S . Then the AM 
chain ( )nX  simulates properly the target distribution π : for any bounded and 
measurable function :f S → , the equality  

 ( ) ( ) ( )( ) ( )0 1
1lim d

1 n Sn
f X f X f X f x x

n
π

→∞
+ + + =

+ ∫   (17) 

holds almost surely. 
Theorem 2. Assume that the finite-dimensional distributions of the stochastic 

process ( ) 0n n
X ∞

=
 on the state space S , where the sequence of generalized tran-

sition probabilities ( )nK  is assumed to satisfy the following three conditions: 
(i) There are a fixed integer 0k  and a constant ( )0,1λ∈  such that 

 ( )( )0

2

1
, 21, for all and 2

n

k n
n y nK y S nδ λ

−

−
−≤ < ∈ ≥



   (18) 

(ii) There are a fixed probability measure π  on S  and a constant 0 0c >  
such that 

 
2

10
, 2, for all and 2

n

n
n y n

cK y S n
n

π π
−

−
−− ≤ ∈ ≥



   (19) 

(iii) We have the following estimate for the operator norm 
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2 2, , 1n n kn y n k y

kK K c
n− + −+− ≤

 

  (20) 

where 1c  is a fixed positive constant, , 1n k ≥  and one assumes that 2n ky + −  is 
a direct continuation of 2ny − . 

Then, if :f S →  is bounded and measurable, then the equality (17) holds 
almost surely. 

In what follows, the auxiliary constants , 2,3,ic i =   depend on ,S ε  or oC , 
and their actual value is irrelevant to our purposes here.  

Proof of Theorem 1. According to Theorem 2, it suffices to prove that the AM 
chain satisfies conditions (i)-(iii). In order to check condition (i), we observe that, 
directly from definition and by the fact that S  is bounded, all the covariances 

( )0 1, ,n nC C y y −=   satisfy the matrix inequality 

 2 30 d dc I C c I< ≤ ≤   (21) 

Hence the corresponding normal densities ( )cN x⋅ −  are uniformly bounded 
from below on S  for all x S∈ . 

We next verify condition (iii). To that end, we assume that 2n ≥  and observe 
that, for given 1

2
n k

n ky S + −
+ − ∈ , one has 

 ( ) ( )
2 2 2 2, , , ,2sup ; ;

n n k n n kn y n k y y S n y n k yK K K y A K y A
− + − − + −+ ∈ +− ≤ −

   

  (22) 

Fix y S∈  and introduce ( )1 0 2, , ,n nR C y y y−=   together with  
( )2 0 2, , ,n k n kR C y y y+ + −=  . According to the definition, 

 

( ) ( ) ( ) ( )

( )( ) ( )
( )

( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )

2 2 1 2

1 2

1 2

1 2 1 2 1

, ,

1

0

5 1 2

; ; ; ;

min 1, d

1 min 1, d

d2 d 2 d d
d

n n k

d

d d

n y n k y R R

R Rx A

A R Rx

R R R s R Rx x

K y A K y A M y A M y A

x
N N x y m x

y

x
x N N x y m x

y

N z N z z z s N z
s

c R R

π
π

π
χ

π

− + −+

∈

∈

+ −∈ ∈

− = −

 
≤ − −   

 

  
+ − − × −      

≤ − ≤

≤ −

∫

∫

∫ ∫ ∫



 

 

  (23) 

In general, 6
1t t

cC C
t−− ≤ , for 1t > . We easily see that  

( )1 2 7 0, , kR R c S C
n

ε− ≤ , and hence the previous estimates yield (iii). 

In order to check condition (ii), fix 1
2

n
ny S −
− ∈  and denote  

( )*
1 0 2, ,n nC C y y− −=  . It follows that ( )*

0 2 8, , ,n nC C y y y c n−− ≤ , where 8c  
does not depend on y S∈ . We may therefore proceed exactly as in (22) and (23) 
to deduce that 

 *2
9

, nn y C

cK M
n−

− ≤


  (24) 

Since *C
Mπ π= , we obtain  

 ( )*2 2
9

, ,n nn y n yC

cK M K
n

π π π
− −

− = − ≤
 

  (25) 

which completes the proof of Theorem 1. 
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2.5. Transformed Kernel Density Estimation 

Traditional kernel density estimation does not perform well for heavy-tail distri-
butions. To address this issue, Wand et al. proposed a kernel density estimation 
method based on the Box-Cox transformation in 1991 [17]. The basic idea of the 
method is as follows: First, transform the original data so that the transformed data 
becomes more uniform. Then, apply traditional kernel density estimation to the 
transformed data. Finally, the resulting density function is inverted and transformed 
back to the original data’s kernel density estimate. Based on this concept, this pa-
per extends the transformed kernel density estimation to the framework of BSL.  

In 1992, Park et al. [18] demonstrated the effectiveness of this method through 
numerical experiments. Since then, many studies have proposed different trans-
formation methods, such as the power transformation method proposed by Bo-
lance et al. [19], the Mobius-like mapping proposed by Clements et al. [20], the 
Champernowne transformation proposed by Buch et al. [21], and the inverse 
Beta(3,3) transformation proposed by Bolance et al. [22]. 

Among these, Bolance et al. introduced a quadratic transformation method that 
combines the Champernowne distribution function and the inverse Beta(3,3) 
function. This method first approximates the sample data distribution to a uni-
form distribution using the Champernowne distribution function, and then trans-
forms the data, which has already been transformed once, to approximately follow 
a Beta(3,3) distribution using the inverse Beta(3,3) distribution function. This 
method offers a significant advantage over other methods because of the theory 
proven by Terrell and Scott in 1985 [23], which states that the Beta(3,3) density 
function minimizes the integrated mean squared error of kernel density estimation 
within the function space ( ){ }: is a density function and 0, 1g g g x x= = ≥ . 
The kernel density estimation method adopted in this paper is an improved 
method of this quadratic transformation—the Beta kernel density estimation un-
der the generalized Logistic transformation. This method requires fewer parame-
ters and improves upon the original method by addressing the “boundary bias” 
issue. The specific method is as follows: 

First, the original data is approximately transformed into a uniform distribu-
tion on the interval [0, 1]. To achieve this, the transformation function is set to be 
the cumulative distribution function (CDF) of the original data. However, the true 
distribution function is unknown, so a generalized Logistic function is used to 
estimate the empirical distribution function. The expression of the generalized 
Logistic function is as follows: 

 
( )

( )1
1    , 0; 0

1 e X

Y
α λ

α γ λ
λγ −

= > ≥
+

  (26) 

where ( ), ,α γ λ=π  represents the parameter that needs to be estimated. 
Next, the sample data 1, , nX X  are arranged in ascending order as order 

statistics ( ) ( )1 , , nX X , and the values of the empirical distribution function at 

( ) ( )1 , , nX X  are calculated as ( ) ( )1 , , nY Y . A regression is performed on the pairs 
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( ) ( )( ) ( ) ( )( )1 1, , , ,n nX Y X Y , and the parameter estimates ( ), ,α γ λ=π  are ob-
tained by least squares. Using the generalized Logistic function as an estimate for  

the distribution function ( )
( )

ˆ1ˆ
ˆ

1

1
ˆ

eˆ ˆ x
F x

λαλγ −
=

+
π , the original data is trans-

formed as ( )ˆ , 1 ,ˆ ,i iY F X i n= = π . 

Then, a Beta kernel density estimate is applied to the transformed sample: 

 ( ) ( )11, 11

ˆ 1 n

Y y y i
i h h

f y K Y
n −

+ +=

= ∑   (27) 

where ( ),p qK ⋅  is the probability density function of the Beta(p, q) distribution, 
and h  is the bandwidth. 

Finally, the kernel density estimate of the transformed data is converted into 
the kernel density estimate of the original data as follows: 

 ( ) ( )( )ˆ ˆ
ˆ ˆˆ ˆ

X Yf x F f F x′= π π   (28) 

The AM algorithm and transformed kernel density estimation are incorporated 
into semiBSL, and the new method is named AM-semiTBSL. The detailed algo-
rithmic process is shown in Algorithm 3. 

 

Algorithm 3: AM-semiTBSL algorithm 

Input: Summary statistic of the data, ys , the prior distribution, ( )p θ , the initial  
proposal distribution 0q , the Initial covariance matrix, 0C , the number of iterations,  
T, the number of simulation runs, n, the initial value of the chain ( )0θ . 
Output: AM sample ( ) ( )( )0 , , T

θ θ  from the BSL posterior, ( )|p ys θ . Some samples  
can be discarded as burn-in if required. 
1: Simulate ( )( )0

1: ~ |n p ⋅x θ  and compute 1:ns  
2: Compute ( ) ( )0f̂ ys  and ( ) ( )0F̂ ys  using (28) 
3: Compute ( )0R̂  using (11) 
4: Compute ( )( )0|p ys θ  using (10) 
5: for 1, ,i T=   do 
6:   Draw ( )( )1* ~ | iq −⋅θ θ  
7:   Compute iC  using (14) 
8:    Compute iq  using (13) 
9:    Simulate ( )*

1: ~ |n p ⋅*x θ  and compute *
1:ns  

10:  Compute ( )*f̂ ys  and ( )*F̂ ys  using (28) 
11:  Compute *R̂  using (11) 
12:  Compute ( )*|p ys θ  using (10) 

13:  Compute 
( ) ( ) ( )( )

( )( ) ( )( ) ( )( )
1* * *

1 1 1*

| |
min 1,

| |

i
i

i i i
i

p p q
r

p p q

−

− − −

 
 =
 
 

y

y

s

s

θ θ θ θ

θ θ θ θ
 

14:  if ( )0,1U r<  then 
15:    Set ( ) ( )( ) ( )* *, | |i ip p= =y ys sθ θ θ θ  
16:  else 
17:    Set ( ) ( ) ( )( ) ( )( )1 1, | |i i i ip p− −= =y ys sθ θ θ θ  
18: end 
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3. Numerical Experiment 

The performance of MCMC-semiBSL, AM-semiBSL, MCMC-semiTBSL, and 
AM-semiTBSL is compared through numerical simulations. All numerical simu-
lations are performed on a computer configured with an AMD Ryzen 7 5800H 
3.20 GHz processor and 16.0 GB of memory, using Matlab (R2021a).  

To compare the estimation performance of different methods, the Total Varia-
tion Distance is used to measure the difference between the true posterior distri-
bution and the posterior distribution estimated by the methods. Given two distri-
butions, P and Q, the definition of the Total Variation Distance is as follows: 

 ( ) ( ) ( )1, d
2tvd P Q p x q x x= −∫   (29) 

where ( )p x  and ( )q x  are the probability density functions of distributions P 
and Q, respectively. [ ]0,1tvd ∈ , 0tvd =  when the two distributions are identical, 
and 1tvd =  when the two distributions do not overlap at all. The Total Variation 
Distance is symmetric and satisfies the triangle inequality. By comparing the Total 
Variation Distance between the estimated posterior distribution of different 
methods and the true posterior distribution, the estimation performance of the 
different methods can be effectively assessed. 

For the stable distributions provided in Section 2.1, the true parameter values 
are set as ( ) ( ), , , 0.7,0.5,1,0α β σ µ= =θ , and the observation data  

( )1 50, ,y y= y  are generated based on the model and parameters. In this nu-
merical simulation, no dimensionality reduction of the original observed data 
into summary statistics is performed, and the complete observed data are di-
rectly treated as summary statistics. The initial values for the parameters of the 
four methods are set as ( ) ( ) ( )0 , , , 2, 1,1,0α β σ µ= = −θ . Three sets of experiments 
are conducted for each method, with iteration numbers set as: T = 10,000, T = 
20,000, and T = 50,000. In each iteration, n = 1000 simulated samples are gener-
ated. 

Figure 1 shows the comparison of the estimated distributions and the true dis-
tribution under the four different iteration numbers, and Table 1 presents the 
Total Variation Distance between the estimated distributions and the true distri-
bution for each case. The numerical simulation results indicate that: 1) As the 
number of iterations increases, the estimation accuracy of all four methods im-
proves. 2) The AM algorithm effectively enhances the convergence speed, and un-
der the same number of iterations, the two methods using the AM algorithm gen-
erally outperform the methods using MCMC sampling. 3) The use of kernel den-
sity estimation based on quadratic transformations can significantly improve the 
estimation accuracy, with MCMC-semiTBSL outperforming MCMC-semiBSL, 
and AM-semiTBSL outperforming AM-semiBSL. 4) Among the four methods, 
AM-semiTBSL achieves the best performance in terms of both accuracy and con-
vergence speed, followed by MCMC-semiTBSL, then AM-semiBSL, and finally 
MCMC-semiBSL. 
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Table 1. The total variation distance between the results of different methods and the true distribution. 

The number of  
iterations 

Methods 

MCMC-semiBSL AM-semiBSL MCMC-semiTBSL AM-semiTBSL 

T = 10,000 0.3027 0.3894 0.3427 0.1473 

T = 20,000 0.2984 0.2829 0.2854 0.0362 

T = 50,000 0.2115 0.2038 0.1306 0.0151 

 

 
Figure 1. Numerical simulation results of different methods. 
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4. Empirical Analysis 

The real data used in this section is sea clutter data collected by the IPIX radar at 
McMaster University in Canada. The analysis focuses on the first 10 distance bins 
from group #269, with a total of 1,310,720 samples. 

Table 2 presents the basic statistical summary of the sea clutter sample data, 
where the skewness is −0.0252, indicating a slight “left skew” in the sample data. 
The kurtosis is 4.7240, which is greater than 3, indicating that the sample data is 
“peaked.” This is also reflected in the normal Q-Q plot shown on the right side of 
Figure 2. These characteristics suggest that the sea clutter data exhibits non-
Gaussian noise, making it suitable for modeling using stable distributions. 

 
Table 2. The basic statistics of sea clutter data. 

Mean Standard deviation Skewness Kurtosis Maximum value Minimum value 

2.7798 × 10−11 1.0000 −0.0252 4.7240 5.8344 −6.7303 

 

 
Figure 2. Time series plot and normal Q-Q plot of sea clutter data. 

 
Stable distributions are used to model the sea clutter sample data, with the 

model parameters estimated using four methods: MCMC-semiBSL, AM-sem-
iBSL, MCMC-semiTBSL, and AM-semiTBSL. To better compare the performance 
of the different methods and eliminate external factors, all four methods are ini-
tialized with the same parameter values ( ) ( ) ( )0 , , , 2, 1,1,0α β σ µ= = −θ , iteration 
number T = 50,000, and model fitting sample size n = 1500. The Total Variation 
Distance is used to assess the estimation performance of the different methods. 

From the results shown in Figure 3 and Table 3, it is evident that modeling 
radar clutter data using stable distributions is feasible. Furthermore, under the 
same number of iterations, the AM-semiTBSL method provides the best parame-
ter estimates for the stable distribution. This demonstrates that incorporating the 
AM algorithm and transformed kernel density estimation effectively enhances the 
convergence speed and estimation accuracy of MCMC-semiBSL. 
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Figure 3. The estimated distributions of different methods and the true 
distribution. 

 
Table 3. The total variation distance between the estimated distributions of different meth-
ods and the true distribution.  

 MCMC-semiBSL AM-semiBSL MCMC-semiTBSL AM-semiTBSL 

tvd  0.3612 0.2971 0.1639 0.0854 

5. Conclusion 

This paper addresses the issue of poor performance of semi-parametric Bayesian 
synthetic likelihood when handling data with heavy-tail by introducing trans-
formed kernel density estimation. It also tackles the slow convergence of MCMC 
sampling and the tendency to fall into local optima within the semi-parametric 
Bayesian synthetic likelihood framework by incorporating the Adaptive Monte 
Carlo (AM) algorithm. Subsequently, numerical experiments based on stable dis-
tributions were conducted. The results show that the transformed kernel density 
estimation improves the estimation accuracy of the semi-parametric Bayesian 
synthetic likelihood, while the Adaptive Monte Carlo algorithm enhances its con-
vergence speed. Finally, empirical analysis on a real dataset, the sea clutter data, 
further confirms the superiority of the proposed improvements. 
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