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Abstract 
Developing reliable weather prediction systems is still a challenging task due 
to the complexity of the Earth System and the chaotic behavior of its compo-
nents. Small errors introduced by observations, their assimilation and the 
forecast model configuration escalate chaotically, leading to a significant loss 
in forecast skill with time. Traditionally, rainfall forecasts have been generated 
at grid-based spatial resolutions, providing valuable information on regional 
precipitation patterns. However, Weather varies markedly within a grid box 
and forecasts for specific sites have occasionally failed inevitably. The grid-
based forecasts may not always meet the needs of decision-makers at specific 
points of interest. The major challenge is dealing with variations in sub-grid 
variability, that is to say, the variation seen amongst rainfall point values 
within a given model grid box, more especially in convective situations. While 
ensemble forecasts have shown promise in capturing the uncertainty inherent 
in average rainfall predictions of much larger grid boxes, their utility at point 
locations has not been extensively explored. Most evaluation studies focus on 
grid-based verification metrics, which may not accurately reflect forecast per-
formance at individual points of interest. EcPoint, a post-processing approach 
developed at the European Centre for Medium Range Forecasts (ECMWF), is 
tailored to forecast rainfall at point locations. In this study, we evaluate the 
performance of the EcPoint post-processing method over the south China re-
gion. The analysis focuses on the reliability, accuracy and discrimination skill 
of this post-processing method over the three provinces in south China (An-
hui, Zhejiang and Jiangsu). We examine performance versus lead time, sea-
sons, and altitude. Through verifications, the study highlighted the added 
value of the post-processing method over Raw ensemble forecasts. One year 
of verification demonstrates that, between the Raw ensemble and post-pro-
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cessed EcPoint forecasts, EcPoint is the more reliable and skillful system, add-
ing significant value to most rainfall events occurring during the day and the 
seasonal associated events, as well as the topography-associated rainfall events. 
To complement the one-year verification analysis, a case study was conducted 
on an extremely heavy rainfall event observed on June 2, 2022 at 12 UTC. The 
analysis demonstrated EcPoint’s ability to provide more localized and refined 
forecasts whereas Raw didn’t provide any possibility of rainfall, particularly at 
short lead times. At longer lead times, EcPoint ensembles maintained rela-
tively low probabilities, but offered improved performance in capturing rain-
fall variability, while Raw ensemble exhibited broader but less precise rainfall 
predictions with a tendency of over warning of some areas. Future work can 
extend the evaluation to more diverse climatic and topographic regions of 
China to enhance the general applicability of the method. Although based 
solely on the global ECMWF-IFS model, EcPoint performs well over the small 
domain of south China (three provinces). Besides verifying EcPoint, the study 
confirms that the post-processing method can significantly improve the fore-
cast performance. 
 

Keywords 
Ensemble Forecasts, Post-Processing, Point Rainfall Forecasts, EcPoint,  
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1. Introduction 

Accurate predictions of heavy and intense rainfall are crucial for impact-based 
forecasting, which plays a vital role in mitigating significant damages and losses 
worldwide. In regions with diverse topography and highly variable climatic con-
ditions, precise rainfall forecasts are particularly critical for reducing the risks of 
weather-related hazards, such as floods and landslides [1]. However, existing en-
semble rainfall forecasts in such areas often fail to adequately capture the spatial 
and temporal variability of rainfall. This limitation hinders effective decision-
making and resource allocation, resulting in inefficiencies and less optimal out-
comes [2]. General Circulation Models (GCMs), despite their capability to simu-
late large-scale atmospheric circulation, exhibit low skill in predicting local rain-
fall. This deficiency arises because local precipitation is heavily influenced by to-
pography and land-sea contrasts, which are often poorly represented in coarse-
scale models [3] [4]. Ensemble forecasts offer critical insights into the uncertainty 
surrounding future weather conditions, empowering decision-makers to act con-
fidently in uncertain scenarios. By quantifying forecast uncertainty, ensemble sys-
tems enhance preparedness and planning. However, these ensemble forecasts are 
prone to biases, such as systematically underestimating or overestimating rainfall, 
or being overly confident or overly uncertain about future weather. Additionally, 
global ensemble forecasts typically represent “average weather” over predefined 
grid regions. This generalization often fails to capture the localized variability of 
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rainfall, especially in convective events like thunderstorms, where rainfall can dif-
fer significantly within the grid region [5]. One major challenge in rainfall fore-
casting is actually the significant variation observed in point values within a model 
grid box, particularly in convective situations. This variability underscores the 
pressing need to evaluate post-processing techniques that can enhance the accu-
racy and reliability of ensemble rainfall forecasts at point locations within a grid 
box. While ensemble forecasts have shown potential in addressing the inherent 
uncertainty of weather predictions, their utility at specific point locations remains 
underexplored. Conventional ensemble forecasts typically provide average rain-
fall predictions for much larger grid boxes rather than for specific sites of interest. 
This limitation highlights the necessity for tailored evaluation methodologies that 
account for the spatial variability of rainfall and the distinct characteristics of 
point-based forecasts. Correction algorithm, such as post-processed forecast en-
sembles (EcPoint), can be applied to ensemble forecasts to effectively address 
these limitations and challenges. The EcPoint post-processing method, developed 
by ECMWF, aims to enhance ensemble rainfall forecasts by addressing sub-grid 
variability and improving the reliability of probabilistic predictions. It has been 
shown to discriminate successfully between rainfall events and non-events, across 
both small and large rainfall amounts, while reliably quantifying forecast uncer-
tainty [6]. The core premise of EcPoint lies in its ability to relate forecasted values 
to point observations based on physical considerations rather than specific loca-
tions. This approach accounts for sub-grid variability and grid-scale biases ac-
cording to prevailing grid box weather situations [7]. The EcPoint post-processing 
method, designed specifically for point-based rather than region-based forecasts, 
has been shown to significantly enhance forecast quality considerably compared 
to ECMWF’s global weather model forecasts (ECMWF-IFS), in a timely manner 
and at low cost [5]. This study therefore aims to verify EcPoint over the south 
China region, evaluating its accuracy, reliability and discrimination skill through 
rigorous verifications and case studies to validate its potential improvement and 
applicability in operational forecasting systems. The study evaluates the perfor-
mance of EcPoint over south China, particularly in three provinces: Anhui, 
Zhejiang, and Jiangsu. While previous studies have demonstrated EcPoint’s effec-
tiveness, its performance in a broader range of topographical and climatic condi-
tions remains an open research question. 

EcPoint 
[5] and [8] give a comprehensive introduction to EcPoint and ECMWF’s asso-

ciated point forecast product, respectively. Here, we just provide a summary of 
EcPoint, which closely follows theirs. EcPoint, a postprocessing approach devel-
oped at the European Centre for Medium-Range Weather Forecasts (ECMWF) is 
tailored for point forecasting of rainfall and has been shown to increase forecast 
skill considerably. It is a statistical post-processing method that accounts for the 
degree of variation within each grid box, bias on the grid box scale and weather 
dependence of each. The true utility of EcPoint lies in creating and using separate 
frequency distributions for weather types that differ from one another in signifi-
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cant and physically realistic ways. It was specifically designed to improve the reli-
ability and discrimination ability of the forecast, particularly for large totals. 

It is noted that for all thresholds and all lead times, EcPoint-Rainfall has better 
discrimination ability than the corresponding Ensemble Raw and post-processed 
COSMO forecasts [9]. The methodology is based on physically relevant statistical 
relationships between the larger-scale weather features well represented by ECMWF 
forecasts and local realizations represented by point observations. These relation-
ships make it possible to compute statistically based probabilities for point rainfall 
rather than Raw-ensemble-based [10] [11]. This includes extremes, which can be 
used to infer the likelihood of flash floods for use on platforms such as the Euro-
pean and Global Flood Awareness Systems [12]. EcPoint is the name given to the 
post-processing philosophy, whilst the companion calibration software is called 
“EcPoint-calibrate” [5] [13]. The EcPoint-Calibrate performs a physical-statistical 
analysis of meteorological data (model data and observation data) that provides 
users with a tree-like graphical support tool to investigate biases and errors in the 
ensembles that is the conditional verification and post-process the ensembles to 
produce probabilistic ensemble forecasts for points. 

EcPoint Calibration Process 
EcPoint calibration follows a physically relevant statistical approach, classifying 

weather types using key governing variables such as convective precipitation, 700 
hPa wind speed, solar radiation, CAPE, and total precipitation. These parameters 
help model sub-grid variability, making EcPoint adaptable to different locations 
without requiring site-specific calibration. Each forecast grid box from an ensem-
ble member is assigned a weather type, and forecast errors are estimated based on 
the distribution of point rainfall outcomes within the grid box. This process ac-
counts for both sub-grid variability and systematic biases, generating a large cali-
bration dataset using just one year of observational data. EcPoint is based on the 
concept of conditional verification, which involves identifying and correcting er-
rors in model rainfall forecasts based on diagnosed grid-box weather types. Cali-
bration helps detect systematic forecast errors, while post-processing adjusts fore-
casts accordingly. Since weather types vary across grid boxes, lead times, and en-
semble members, EcPoint uses a decision tree approach where each level repre-
sents a governing variable, each leaf corresponds to a distinct weather type, and 
all leaves collectively account for all possible atmospheric conditions [9]. Each 
weather type is assigned a mapping function, which defines typical forecast errors 
observed worldwide under similar conditions. This function accounts for both 
sub-grid variability and grid-scale bias, ensuring better representation of localized 
rainfall patterns. During forecast construction, EcPoint assigns a weather type to 
each grid box at each time step for all ensemble members. The system then con-
verts forecasts into 100 equiprobable point rainfall values using the respective 
Forecast Error Representation (FER) mapping function. These values are blended 
across the ensemble, producing 5100 virtual ensemble members per grid point at 
each forecast time step. As a result, EcPoint post-processing transforms the raw 
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ensemble forecast into an “ensemble of ensembles”, yielding 99 calibrated ensem-
ble members that better capture rainfall variability and uncertainty. 

A key advantage of EcPoint is that its calibration is independent of location. 
Instead of relying on local observations, EcPoint calibrates forecasts based on uni-
versal weather-type classifications, assuming that the underlying physical pro-
cesses governing rainfall are globally consistent. This allows forecasts to be gener-
ated even in regions without direct observational data, making EcPoint applicable 
to areas where traditional calibration methods would fail. By blending information 
from different locations with similar rainfall generation mechanisms, EcPoint en-
sures that forecast improvements extend beyond observation sites, offering relia-
ble probabilistic predictions across diverse geographic and climatic conditions 
[14]. The post-processing system has been fully automated and requires minimal 
computing resources to run compared to high-resolution numerical models [5]. 
The final standard EcPoint output does not provide a set of spatial-temporal fore-
cast scenarios, but rather a single calibrated, probabilistic point forecast distribu-
tion for any point in space for each 12 h accumulation period for several lead 
times. It is depicted in percentile or probability format, with the user able to de-
fine, according to purpose [5] and [8]. The product aims to bridge the gap between 
the relatively coarse resolution of today’s global forecasting models and the higher 
resolution limited-area models needed to describe localized heavy rainfall. Inter-
estingly, it is believed that the point-rainfall product could support the prediction 
of flash floods across the globe [13]. The point rainfall focuses on estimating the 
range of totals likely within the grid box, and indeed delivers probabilities for dif-
ferent point values within that grid box. For example, like the range of values pre-
sented in the approximate grid box selected in Figure 1. 
 

 
Figure 1. Radar-derived rainfall totals showing how rainfall can significantly vary within a 
grid box for example in the approximate grid box, it ranges from about 4 mm to about 60 
mm. 
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2. Data and Methodology 
2.1. Datasets 

Observations database: Meteorological observation data (rain gauge data) for 
three provinces were used to represent real rainfall observation points. Observed 
Rainfall (12 hours accumulation) of these provinces for one year (2022) was used 
to verify our post processed forecast product, using a standard “nearest neighbor” 
technique to match station location with model grid forecast data. Figure 2 dis-
plays the study area for the three provinces in south China (Anhui, Zhejiang, and 
Jiangsu) and the array of rain gauge observation points that were used for verifi-
cation. The observation points show altitude variation and the annual rainfall dis-
tribution over the region for the year 2022. Previous studies indicated that the 
summertime south China precipitation is affected by a number of climate systems, 
making its prediction very challenging. The seasonal mean precipitation over the 
region is affected by the western north Pacific summer monsoon activity as sug-
gested by [15] and [16]. It is shown that the dominant patterns of interannual 
variation of early summer South China rainfall themselves depend on the phase 
of the Pacific decadal oscillation (PDO) [17]-[20]. The interannual variations of 
seasonal precipitations are quite consistent in winter and spring, indicating that 
anomalous precipitation tends to prolong in winter and spring [21]. Active warm-
rain microphysical processes can also play an important role in some extreme 
rainfall events, although the relative contributions of warm-rain, riming, and ice-
phase microphysical processes remain unclear [22]. Most rainfall anomalies on 
the whole regional scale of South China are well in phase during winter and spring, 
and the frequency of persistent drought is higher than that of persistent flood. 
 

 
Figure 2. Observation points of the study area; on the left, it’s the altitude data of the points 
and on the right, it’s the total annual rainfall of the points (2022). 

 
Forecast data: The forecast data consists of Raw Ensemble forecast (ECMWF-

IFS model forecast) comprising 50 perturbed ensemble members with a horizon-
tal resolution of 18 km. The EcPoint forecast output is made available with 99 
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members for overlapping periods of up to day 10, namely T + 240 h. Both the Raw 
ensemble forecast and post processed EcPoint ensemble forecasts were obtained 
from ECMWF for the same one-year period (2022) and 12-hour accumulation. 

2.2. Verification Methods 

Relative Operating Characteristics (ROC) diagram: To evaluate forecast dis-
crimination ability for different thresholds, we used receiver operating character-
istic (ROC) curves, a curve for a particular event, e.g., exceedance of a threshold 
generated by plotting the true positive rate against the false positive rate. A ROC 
shows how well the forecast discriminates between two events, and it measures 
the ability of the forecast system to discriminate between events and non-events 
(e.g., rain or no rain). It evaluates the hit rate (how often the event is correctly 
forecasted) against the false alarm rate (how often a non-event is incorrectly fore-
casted as an event). In our study, probabilistic forecasts were transformed into 
categorical yes/no forecasts (Observed/not observed event). For different thresh-
olds, corresponding Hit rate (true positive rate) and false alarm rate (false positive 
rate) were computed and displayed on Relative Operating Characteristics (ROC) 
diagram. The closer the ROC curve is to the upper left corner of the plot, the better 
the performance. The area under the ROC curve (AUC) was also computed to 
quantify the overall performance of the forecast. Overall, AUC provides a single 
scalar value that summarizes the performance of a classification model across all 
possible classification thresholds. AUC values between 0.5 and 1 indicate better 
performance. The higher the AUC, the better the performance in distinguishing 
between events and non-events.  

Continuous Rank Probability Scores (CRPS): We used the continuous ranked 
probability score (CRPS) [23], which depends on both forecast spread and bias, in 
order to assess the overall forecast performance. It assesses the entire cumulative 
distribution function (CDF) of the forecast compared to the CDF of the observed 
outcomes. By comparing the entire forecast CDF with the observed outcome, CRPS 
assesses not just the accuracy of the forecast’s central value, but also reliability. 
Therefore, the CRPS value is a comprehensive metric that tells us how well the 
forecast performs both in predicting the actual rainfall amounts which is accuracy 
and in ensuring the forecast probabilities are in alignment which is reliability. It 
is a single metric value that penalizes both misplaced forecasts and mis-calibrated 
probabilities of the probabilistic forecast. A low CRPS value indicates a forecast 
that is both accurate (close to the observed value) and reliable (probabilities align 
well with reality). High values suggest deficiencies in either accuracy or reliability 
or both. Unlike other scoring rules, like Mean Squared Error (MSE), which only 
evaluate deterministic forecasts, CRPS evaluates the entire probabilistic forecast 
by taking into account the spread or range of the predicted values. Continuous 
ranked probability score is unbounded and can go to infinity except for cases in 
which the forecast target itself has bounded support. It is the integral of the square 
of the difference between the cumulative distribution function (CDF) of the prob-
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abilistic predictions F and the ground truth y. 

( ) ( ) ( ) 2
CRPS , 1 dF y F x x y x

+∞

−∞
= − ≥  ∫  

where: 
• F(x) is the cumulative distribution function of the forecast. 
• 1(x ≥ y) is the indicator function, which equals 1 if x ≥ y and 0 otherwise. 
• y is the observed value. 

While CRPS provide an aggregate measure of forecast accuracy and reliability 
across the full range of potential outcomes, it does not explicitly prioritize perfor-
mance for specific thresholds (specific amount of rainfall). This limitation high-
lights the need for the complementary metric, such as the ROC curve and AUC 
described earlier, which evaluate the forecasts for events defined by thresholds. 

Different verification methods vary differently, and they often give conflicting 
indications. They vary with region, seasons, and lead times among other factors. 
What looks good might not be as good as under other circumstances. Therefore, 
to have a diverse assessment, the verification analysis is considered verse lead time 
over the whole year, then across seasonal changes and also considered for topog-
raphy variation. A Case study on a specified date was also considered to verify the 
forests across different stations with different physical characteristics to analyze 
the spatial distribution and how the forecast systems capture those observed rain-
fall distributions. 

3. Results and Discussions 

Verifications 
Verification for one year of 12 h-rainfall forecasts was carried out using truth 

rain gauge observations from specialized high-density datasets of Anhui, Zhejiang 
and Jiangsu provinces (see observation point coverage in Figure 2). Two proba-
bilistic ensemble forecasts were assessed: the ECMWF Raw Ensemble forecast and 
the post processed EcPoint forecast. In this framework of study, the fundamental 
aspects of assessing were the capacity to discriminate events, as well as accuracy 
and reliability. To evaluate the capacity to discriminate events, we used Relative 
Operating Characteristic curves and also considered the Area under the Relative 
Operating Characteristic curve (AROC) [24]. Three different precipitation thresh-
olds were initially considered, given the importance of issuing skillful predictions 
for thresholds of rain/no rain or alert levels for heavy precipitation or flooding 
possibilities. We present results for three 12 h accumulation thresholds of 0.2 mm 
for rain or no rain event, 10 mm for a wet event or moderate rainfall event and 30 
mm for high rainfall event. Figures 3-5 display the plots of ROC analysis for one-
year verification across lead time together with their associated area under the 
curves (AUC). There is a diurnal cycle reflected in AUC values with lead time 
across all the thresholds for both forecasting systems. The AUC values for EcPoint 
forecasts remain consistently higher across all lead times, with a diurnal pattern 
more noticeably observed for the threshold of 0.2 mm, reflecting the system’s ca-
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pability to better capture the subtle diurnal influences on the no rainfall events. 
Conversely, the Raw ensemble forecasts exhibit lower AUC values, with a gradual 
decline as lead time increases, indicating a reduced ability to maintain skill for 
longer forecasts. Both the Raw Ensemble Forecasts (ECMWF) and EcPoint fore-
casts provide skillful predictions for all thresholds across all lead times, with all 
AUC values consistently above 0.5. Although EcPoint does better at capturing lo-
calized rainfall events, as reflected in its consistently higher AUC values compared 
to the raw ensemble throughout. EcPoint demonstrates consistent performance 
across all thresholds, with the same AUC value particularly for the first lead time, 
including the 10 mm and 30 mm thresholds. This highlights its ability to maintain 
skill in event discrimination regardless of rainfall intensity. The added value of the 
EcPoint system, as observed in the improvement of the ROC area, is attributed to 
its enhanced ability to capture the wet tails of sub-grid point rainfall distribution, 
as was noted by [5]. By effectively addressing the variability of rainfall within grid 
cells, it delivers more refined predictions for high rainfall events than the Raw 
ensemble forecast. 

Then, three separate days were considered for analysis, specifically for night 
lead times that are at 024 for day one (short lead time), 120 for day 5 (medium lead 
time) and high lead time for day 10 at 240 lead time. Given that the performance  
 

 
Figure 3. Comparison of ROC curves and AUC values for different lead times at a 0.2 mm threshold with the 
no-skill reference line at AUC = 0.5. 
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Figure 4. Comparison of ROC curves and AUC values for different lead times at a 10mm threshold with the 
no-skill reference line at AUC = 0.5. 

 

 
Figure 5. Comparison of ROC curves and AUC values for different lead times at a 30 mm threshold with the 
no-skill reference line at AUC = 0.5. 
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drops at night, these separate days were analyzed to further highlight the capabil-
ities of the two models under such atmospheric conditions. These results would 
highlight the strengths and challenges of the forecasting systems, particularly 
when factoring in the distinct performance patterns observed during nighttime 
hours. Four thresholds were considered for this analysis: 0.2 mm, 10 mm, 30 mm 
and 50 mm (considered for an extremely high event). EcPoint continues to con-
sistently outperform the Raw ensemble across all thresholds and lead times, high-
lighting the value of statistical post-processing in addressing systematic biases and 
improving probabilistic forecast skills. In Figure 6, for the 0.2 mm threshold rep-
resenting rain or no rain event, EcPoint significantly reduces false positives, 
achieving higher AUC scores compared to the raw ensemble. For instance, at the 
24 h lead time, the AUC is 0.79 for EcPoint compared to 0.75 for the Raw ensem-
ble, with much better trends observed at 120 h and 240 h lead times. However, 
forecasting rain or no rain still remains challenging, particularly at longer lead 
times for both forecast systems where AUC values drop gradually degrading ac-
curacy. Although EcPoint’s adjustments (AUC = 0.79 at 120 h and AUC = 0.75 at 
240 h) compared to Raw Ensembles (AUC = 0.64 at 120 h and AUC = 0.58 at 240 
h) show that EcPoint can still perform better at high lead times making it a more 
reliable option for applications sensitive to light precipitation. The sharp drop of 
AUC values for Raw ensembles suggests a tendency to overpredict the light rain-
fall, given that the curves are more to the false positive rate. For the 10 mm thresh-
old moderate rainfall EcPoint achieves 0.75 at 24 h compared to 0.72 for the Raw 
ensemble and 0.77 at 120 h compared to 0.71. The benefits of EcPoint’s post-pro-
cessing are particularly evident here for a higher threshold and at longer lead 
times, where it demonstrates a better performance with a higher lead time and 
with curves more shifted to the true positive rate (reduced false alarms). 

At the 30 mm threshold, a similar trend is observed. EcPoint still enhances fore-
cast skill by improving discrimination between event and non-event cases partic-
ularly with a higher threshold and longer lead times, with AUC values of 0.73 (24 
h), 0.76 (120 h), and 0.75 (240 h), compared to the Raw Ensemble’s 0.69 (24 h), 
0.75 (120 h), and 0.72 (240 h). For the 50 mm threshold, the overall AUC values 
are lower than those for the 30 mm threshold, reflecting the increasing difficulty 
in predicting more extreme rainfall events, especially for EcPoint which exhibits 
a uniform performance for all the lead times while Raw ensembles improve com-
paratively. The AUC values for EcPoint are 0.70 (24 h), 0.70 (120 h), and 0.70 (240 
h), while the Raw Ensemble values are 0.64 (24 h), 0.76 (120 h), and 0.75 (240 h). 
Notably, the Raw ensemble curve has higher AUC values than EcPoint particu-
larly for higher thresholds, meaning that the Raw ensemble has comparable skill 
at medium-range forecasts, although it still lacks the added precision that EcPoint 
provides in the tails of the distribution. Despite having the higher AUC values, the 
shape of the ROC curves reveals important differences in their behavior. EcPoint 
demonstrates lower false positive rates, which means it is more cautious and pre-
cise in identifying rainfall events, which could be attributed to its post-processing 
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system, which accounts for sub-grid variability and reduces unnecessary event pre-
dictions, while the Raw ensemble tends to demonstrate more false positive rates 
implying a tendency of overpredicting the event. While the benefits of EcPoint 
diminish slightly at the highest threshold, it still remains the dependable forecast-
ing system, particularly for these nighttime scenarios studied at the short, medium 
and longer lead times. Generally, it is observed that both EcPoint and the Raw en-
semble do achieve high true positive rate, but the Raw ensemble does so at the cost 
of a high false positive rate too. The findings underscore. 
 

 
Figure 6. ROC curves considered at three specific days for the four different thresholds. 

 
CRPS Analysis 
The CRPS (Continuous Ranked Probability Score) analysis for one-year verifi-

cation reveals distinct differences between the performance of EcPoint and the 
Raw ensemble forecasts across lead times (Figure 7). The CRPS values for the Raw 
ensemble consistently increase with lead time, while EcPoint demonstrates a nearly 
flat CRPS trend across all lead times, with values consistently very low as lead 
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times extend even up to day 10. The ability to maintain low CRPS values through-
out the forecast period underscores the robustness of EcPoint’s post-processing 
system in delivering reliable precipitation forecasts. However, the higher CRPS 
values observed for the Raw ensemble forecasts could be partly attributed to their 
reliance on grid-averaged rainfall estimates. This grid-averaging approach inher-
ently smooths localized variations, which are often critical for accurate and relia-
ble forecasts of extreme weather events. Consequently, the Raw ensembles may 
appear more penalized in terms of CRPS, not necessarily because they lack accu-
racy or reliability, but because the metric evaluates discrepancies over the full dis-
tribution. EcPoint, on the other hand, employs a post-processing methodology 
that disaggregates grid-averaged forecasts to better represent localized point rain-
fall events. This approach aligns more closely with observations at specific loca-
tions, leading to consistently lower CRPS values. While this suggests better per-
formance, it also reflects EcPoint’s ability to resolve fine-scale features that are 
diluted in grid-averaged forecasts. By recognizing this dynamic, the analysis un-
derscores the value of combining grid-based and post-processed forecast systems. 
While it does not necessarily provide insight into the exact amount of rainfall or 
specific thresholds for its accuracy, CRPS is actually indicating that EcPoint excels 
at forecasting rainfall totals at observation point locations. 

The CRPS analysis was thereafter applied to the daily CRPS trends for the 12-
hour lead time and the 24-hour lead time, which shows noticeable variability in 
performance between EcPoint and the Raw ensemble forecasts throughout the 
year (Figure 8 & Figure 9). Both models generally exhibit low CRPS values on 
most days, indicating relatively accurate short-term predictions. However, there 
are significant spikes in CRPS values on certain days, suggesting episodes where 
forecast errors are higher, likely associated with challenging weather conditions. 
Notably, the Raw ensemble displays frequent spikes in CRPS throughout the year, 
reflecting its sensitivity to forecast uncertainties and error propagation, while 
EcPoint exhibits a trend with fewer and less pronounced spikes. This pattern is 
particularly prominent during certain clusters of days for both lead times. The 
days with the highest peak of CRPS (common to both systems) are observed to 
mostly fall in the seasons with pronounced days of heavy rainfall events. There-
fore, High CRPS values seem to align with days featuring heavy rainfall with as-
sociated severe weather phenomena or challenging weather conditions, which of-
ten involve small-scale or rapidly evolving processes that are difficult for models 
to capture accurately. Particularly on these days of the highest peak seen in both 
forecast systems for both lead times, EcPoint generally shows lower values com-
pared to Raw forecasts, indicating its ability to mitigate the uncertainties, though 
it cannot fully eliminate errors under the most challenging conditions like the 
ones observed in the days in question. 

The histograms in Figure 10 illustrate the distribution of CRPS values for both 
Raw and EcPoint forecasts at lead times of 12 hours and 24 hours. At both lead 
times for both Raw and EcPoint, all histograms show a highly skewed distribution  
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Figure 7. Average CRPS against lead time aggregated over all stations and days for the whole one 
year. 

 

 
Figure 8. The trend of daily average CRPS aggregated for all stations for the lead time of 12 h at 
daytime (12UTC). 

 

 
Figure 9. The trend of daily average CRPS aggregated for all stations for the lead time of 24 h at 
nighttime (00 UTC). 
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Figure 10. The frequency distribution of the daily CRPS scores over the year, with their annual CRPS average calculated for both 
ensembles forecast systems (EcPoint and Raw) at the two lead times. 

 
with a significant concentration of CRPS scores near zero (mostly clustered below 
2), indicating better forecast performance for the majority of the days. The distri-
butions also exhibit long tails with some scores extending towards higher CRPS 
values, which corresponds to outliers or challenging forecast conditions. The av-
erage CRPS for Raw forecasts increases from 1.75 at 12 hours to 2.61 at 24 hours, 
indicating a degradation in forecast skill with increasing lead time, whereas 
EcPoint forecasts increase slightly from 1.30 at 12 hours to 1.52 at 24 hours, 
demonstrating better performance compared to Raw forecasts as lead time in-
creases. More so for EcPoint, the frequency of lower CRPS scores is higher, with 
fewer cases in the tail region than in the raw ensembles. 

Seasonal Breakdown 
The seasonal ROC analysis was conducted using a threshold of 20 mm/12 hours, 

acknowledging that the event count naturally diminishes when subdividing data 
into seasonal subsets. The seasonal evaluation of AUC values against lead time 
provided key insights into the comparative performance of EcPoint and Raw En-
semble forecasts. Overall, EcPoint consistently demonstrates superior skill, par-
ticularly at shorter lead times. The ability of EcPoint to refine predictive accuracy 
across different seasons suggests its effectiveness in capturing rainfall variability, 
offering improved discrimination compared to Raw Ensembles. 

https://doi.org/10.4236/acs.2025.152022


T. Mwira, S. Stejik 
 

 

DOI: 10.4236/acs.2025.152022 441 Atmospheric and Climate Sciences 

 

In Figure 11, the summer (JJA) season reflects the peak of diurnally-driven 
convective activity, leading to greater variability in forecast performance. Both 
EcPoint and Raw Ensembles exhibit fluctuations in AUC values, which can be 
attributed to the chaotic nature of convective precipitation. Notably, a sharp di-
urnal cycle in AUC with lead time is observed for both forecasting systems, high-
lighting the influence of convection-driven precipitation patterns. Also, the higher 
number of observed rainfall cases during summer could contribute to the increased 
variability in performance with more events available for evaluation. Strong perfor-
mance of EcPoint also holds for discrimination ability particularly for Autumn 
(SON) and Spring seasons (MAM). This is attributed to the fact that rainfall sys-
tems are generally less challenging to predict in these seasons due to their well-
defined dynamics, which evolve over larger spatial and temporal scales. On the 
other hand, summer is influenced by strong diurnal heating characterized by lo-
calized instability, short duration heavy rainfall convective in nature thus intro-
ducing significant unpredictability. Also, for Autumn (SON), the gap between 
EcPoint and Raw Ensemble becomes more evident at longer lead times, reinforc-
ing the value of EcPoint in extended forecasts. This season shows relatively stable 
AUC values, indicating consistent forecast skill over time. For Winter (DJF), an 
interesting pattern emerges where Raw Ensemble performs comparably to EcPoint 
at longer lead times, with AUC values converging after 150 hours. However, at 
shorter lead times, EcPoint still holds an advantage. A key reason for the perfor-
mance in winter could be the lower frequency of the rainfall events (≥20 mm/12 
h) during winter. With fewer heavy rainfall cases, the ability to statistically dis-
criminate between event and non-event occurrences decreases, leading to greater 
variability in AUC values. Additionally, the scarcity of such events reduces the 
opportunity for EcPoint’s post-processing to make significant corrections, result-
ing in a smaller performance gap between the two forecasting systems. The dom-
inance of light-to-moderate precipitation in winter further limits the impact of 
the chosen threshold on ROC analysis, as there might not be as many cases of 20 
mm as there may be for other seasons. This rarity introduces uncertainty in AUC 
calculations, causing fluctuations and potentially masking EcPoint’s advantages 
over Raw Ensembles. Consequently, while EcPoint still offers improvements, its 
benefits appear less pronounced in winter due to the limited number of high-in-
tensity events available for evaluation. 

The CRPS seasonal verification analysis reveals that Generally, the Raw Ensem-
ble forecasts exhibit increasing CRPS values with lead time, indicating a degrada-
tion in forecast skill over time, while EcPoint demonstrates a significant reduction 
in CRPS across all seasons highlighting the benefit of post-processing in improv-
ing forecast accuracy and enhances forecast reliability. Among the seasons, sum-
mer (JJA) shows the highest CRPS values, suggesting greater forecast uncertainty, 
likely due to the convective and localized nature of summer rainfall events. In 
contrast, autumn (SON) and winter (DJF) exhibit lower CRPS values, reflecting 
the more predictable nature of large-scale weather systems characteristic of these 
seasons (Figure 12). 
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Figure 11. The variation of area under the curve (AUC) with lead time of up to 10 days for the four different seasons of the year. 

 

 
Figure 12. CRPS analysis for the seasons of both Raw ensembles (dashed lines) and EcPoint 
(solid lines) versus lead time of up to 10 days. 

 
The superior performance of EcPoint compared to the raw ECMWF ensemble 

can be attributed to its ability to correct systematic biases, better represent sub-
grid variability, and categorize rainfall forecasts based on distinct weather re-
gimes. While raw ensemble forecasts provide grid-scale averages, EcPoint refines 
these estimates by associating each forecast grid box with a probabilistic distribu-
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tion based on observed errors in similar meteorological conditions. This is partic-
ularly advantageous for convective and orographic rainfall, where raw ensembles 
often struggle due to resolution limitations. Additionally, EcPoint’s calibration 
process is physics-based rather than location-dependent, allowing it to improve 
forecast skills even in regions with limited observational data. By enhancing prob-
abilistic forecasts for both typical and extreme rainfall events, EcPoint signifi-
cantly increases forecast reliability, as has been demonstrated by the CRPS and 
skill by ROC. 

Topographic Analysis 
In analyzing topography, altitude ranges were categorized into three groups: 

plains/low hills (altitude < 50 m), very hilly (50 m < altitude < 100 m), and moun-
tainous (altitude > 100 m), as shown in Figure 13. These categories were not ar-
bitrarily chosen; rather, they were based on prior research and relevant studies. 
The selection follows the approach of [9], who aligned their classification with 
breakpoints identified using decision tree calibration, with some rounding and 
normalization applied. The topography assessment evaluates the ability to dis-
criminate rainfall events using ROC and AUC, focusing on a relatively high thresh-
old of 20 mm/12 h. Additionally, it examines the reliability and accuracy of fore-
cast systems through the CRPS analysis. Both CRPS and AUC results indicate that 
EcPoint consistently outperforms Raw Ensembles across various lead times for all 
altitude categories, providing more reliable forecasts with lower CRPS scores. For 
stations at lower altitudes (<50 m, orange lines), as shown in Figure 14, both Raw 
and EcPoint systems perform similarly well at the shortest lead times. However, 
over time, EcPoint demonstrates superior performance as it maintains a flat curve, 
while the Raw system exhibits a continuous gradual increase of CRPS scores. Con-
versely, CRPS scores increase for both Raw and EcPoint systems at higher alti-
tudes, with particularly high CRPS values observed for stations above 100 m (green 
lines). 
 

 
Figure 13. Observation points available for the three altitude ranges. 
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Figure 14. CRPS versus lead time (up to 10 days) for the altitude-based performance comparison of the 
two forecasting systems illustrating relative accuracy over time across different altitude ranges. 

 

 
Figure 15. Area Under the Curve (AUC) versus lead time (up to 10 days) for the altitude-based perfor-
mance comparison of the two forecasting systems illustrating how predictive skill varies over time across 
different altitude ranges. 

 
For the ability to discriminate between two events (AUC), EcPoint seems, en-

couragingly, to add the most value to Raw Ensembles in mountainous regions. See 
the blue curves in Figure 15 compared to the orange ones at a lower altitude. It 
may be because there is more discrimination ability added in mountainous areas, 
and because EcPoint post-processing is targeting this effectively via its decision 
tree subdivisions as was noted by [9]. However, despite its effectiveness in event 
discrimination, EcPoint is less effective at improving reliability in mountainous 
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areas, as observed in CRPS results. At shorter lead times, the performance differ-
ences between the two systems are relatively minor. However, as lead time in-
creases, EcPoint’s performance remains consistent, whereas Raw Ensembles show 
greater variability, particularly at lower altitudes (<50 m), where AUC values de-
cline significantly. The performance gap between Raw and EcPoint widens at 
higher altitudes and higher lead times, with EcPoint maintaining consistently 
higher AUC values. At longer lead times (beyond 120 hours), AUC values for both 
systems tend to stabilize, reflecting the inherent difficulty of long-term weather 
prediction. However, performance degradation occurs across all terrain types and 
forecast systems, with Raw Ensembles experiencing a sharper decline in AUC val-
ues. This trend highlights the challenge of maintaining forecast skill over extended 
horizons and underscores the need to address the pronounced performance drop 
especially for Raw Ensembles at longer lead times. 

Case Study 
We present a study case with the highest recording of the 12 hours of rainfall 

accumulation during the year 2022 for the three provinces, observed on June 02, 
2022 (12 UTC) at station J5269 (latitude: 28.6731, longitude: 115.3064, altitude: 
67.0 m). On this day, an exceptional rainfall amount of 457.2 mm was recorded 
(suggesting a significant weather event like a heavy rainfall storm or a monsoon 
event), subjective to flooding possibility, given the topography of the area. There-
fore, to complement the one-year verification analysis, this specific day was se-
lected for case study to further demonstrate the performance of the two forecast-
ing systems in representing the spatial distribution of rainfall over the region. In 
Figure 16, the 98th percentile reveals key differences in the predictive capabilities 
of the two forecasting systems, at varying lead times. At short lead times (12 
hours), EcPoint presents a refined and localized prediction, especially in the re-
gion where significant rainfall is observed compared to Raw ensembles. As the 
lead time increases, both models show clearer and more intense rainfall signals, 
but the raw ensemble exhibits broader and more variable patterns, while EcPoint 
provides more focused, high-confidence predictions. The results highlight the ad-
vantage of EcPoint’s refined ensemble processing in providing more reliable and 
regionally focused rainfall forecasts, particularly for extreme events (like the 98th 
percentile), while the raw ensemble, although useful, shows greater uncertainty 
and less specificity at both short and longer lead times. 

Figure 17 shows the probability of exceeding a threshold of 50 mm/12 h for 
both forecasting systems. The EcPoint probability for exceeding such an extreme 
rainfall amount of 50 mm/12 h exhibits a consistent, focused and refined spatial 
distribution of rainfall probabilities for all the lead times. The Raw ensemble prob-
abilities for exceeding 50 mm/12 h display a broader and less precise spatial extent 
of high probabilities. While the Raw ensemble successfully indicates the high po-
tential for significant rainfall, the ensembles fail to capture rainfall distribution at 
the first lead time (short lead time) compared to EcPoint, which shows the chances 
of rainfall on this short lead time. Convective rainfall, which is typically short-
lived and localized, is challenging for global models to predict at fine scales, and 
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the model may fail to resolve these features accurately. At the short lead time (012 
hours), the Raw Ensemble forecast shows negligible or no captured rainfall, likely 
due to its limitations to localized events. In contrast, EcPoint (post processed en-
semble forecast) captures some rainfall probability at this short lead time, suggest-
ing that the post-processing techniques do improve the model’s ability to handle 
small-scale features and adjust for model biases to capture localized events like 
convective events or rainfall storms. However, as the forecast lead time increases, 
both models show a clearer and more consistent prediction of rainfall, with raw 
ensembles showing higher rainfall estimations. The RAW ENS forecast tends to 
perform better at longer lead times because it is better at resolving large-scale 
weather systems. As the forecast progresses to longer lead times, the model aver-
ages out smaller, more chaotic, and unpredictable short-term events, which re-
duces the complexity of the forecast. On the other hand, at shorter lead times, the 
model struggles with capturing smaller-scale phenomena like thunderstorms or 
convection, which are more sensitive to local conditions and harder to predict 
accurately. Therefore, the forecast becomes more reliable at longer lead times due 
to the nature of broader weather patterns being easier to resolve. The tendency is 
attributed to the reliance on grid averaged rainfall amounts which inherently tend 
to smooth out the localized variation meanwhile EcPoint caters for point varia-
tions within the grid box. It was not given that the systems would appear physi-
cally reasonable and free from unwanted artifacts, even when verification results 
are positive. However, the credibility of the post processing product is a critical 
requirement for users and encouragingly our verification results and case studies 
support the expectation. 
 

 
Figure 16. 98th percentiles of 12 h rainfall forecasts for Raw and EcPoint at nominal lead times of 12 h, 36 h, 60 h and 84 h, also the 
gauge observation for verifying the forecasts on the left. 
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Figure 17. Forecast probabilities for exceeding 50 mm of 12 hours rainfall accumulation at nominal lead times of 12 h, 36 h, 60, and 
84 h for post processed ensemble, i.e., EcPoint and Raw Ensembles. Also, observations are on the left for verification. 

4. Conclusion 

The study highlighted the advancements brought by EcPoint, a state-of-the-art 
post-processing approach, in improving rainfall ensemble forecasts. The overall 
aim was to evaluate the EcPoint post-processing method over South China with 
the study area of three provinces, to determine if it can deliver much greater skill 
than can be achieved by using the Raw ensembles. By comparing the post-pro-
cessed ensemble (EcPoint) with the Raw ensemble forecast, we demonstrated that 
EcPoint consistently outperforms the Raw ensemble in terms of discrimination 
and reliability for most rainfall thresholds and lead times. These improvements 
were more noticeable for low thresholds, such as 0.2 mm, and at shorter lead 
times. However, the differences were also pronounced for heavier rainfall thresh-
olds like for a threshold of 30 mm particularly at long lead times. A key strength 
of EcPoint lies in its ability to balance true and false positive rates, especially at 
shorter lead times (e.g., at Day 1), where its post-processed outputs show clear 
added value in discriminating events. At longer lead times (e.g., Day 10), the gap 
between EcPoint and Raw Ensemble narrows due to increasing uncertainties in 
both systems. Nonetheless, EcPoint remains superior in reducing false alarms and 
maintaining better forecast skills, demonstrating its reliability in the face of inher-
ent forecast uncertainties. The Raw ensemble’s higher false positive rates during 
nighttime are likely exacerbated by the absence of diurnal forcing, while EcPoint’s 
statistical adjustments help compensate for such biases, resulting in more depend-
able predictions even during nighttime hours. Combining CRPS results with 
threshold-based evaluation confirms EcPoint’s overall improvement in forecast 
quality, particularly pronounced for specified rainfall intensities, reinforcing its 
value as a tool for high-impact weather forecasting. 
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Seasonal analysis revealed a strong diurnal cycle in the performance of both 
ensemble products during summer, with both systems showing weaker perfor-
mance in this season. This decline is attributed to the chaotic and convective na-
ture of summer rainfall. This underscores the importance of refining post-pro-
cessing techniques to better handle weather patterns in specific seasons, particu-
larly summer. The topography analysis highlighted the impact of elevation on 
forecast performance, with EcPoint consistently outperforming the Raw ensemble 
across different terrain types. In lower regions, both ensemble systems exhibit 
higher skill, while in complex terrain, EcPoint demonstrates an improvement by 
better capturing localized rainfall variability. This added value is particularly evi-
dent at shorter lead times, reinforcing the importance of post-processing in im-
proving forecasts over diverse landscapes. While the results demonstrate strong 
performance in the region of south China, further validation in more topograph-
ically diverse regions would be essential to assess the broader applicability and 
generalize these findings. The case study demonstrated EcPoint’s advantage in 
predicting extreme rainfall events, particularly at short lead times, where it pro-
vides more localized and refined forecasts compared to the Raw ensemble. The 
98th percentile analysis reveals that EcPoint captures significant rainfall patterns 
more precisely, while the Raw ensemble shows broader and less focused distribu-
tions. For the probability of exceeding 50 mm/12 h, EcPoint provided a more con-
centrated and reliable spatial distribution, whereas the Raw ensemble exhibits 
more spread-out and uncertain probabilities. While the Raw ensemble improves 
at longer lead times by better capturing large-scale weather patterns, it does so 
with several false events, as observed in the ROC analysis, potentially over-warn-
ing for areas not impacted. A key reason why EcPoint outperforms the Raw en-
semble is its ability to better represent sub-grid variability and correct systematic 
biases in rainfall forecasts. Raw ensembles often struggle to resolve localized con-
vective rainfall due to their coarser resolution, leading to underestimation of ex-
treme events. EcPoint addresses this limitation by categorizing forecasts based on 
different weather regimes and applying post-processing corrections to refine prob-
abilistic rainfall distributions. This improvement is particularly valuable in com-
plex terrain, where orographic effects play a crucial role in precipitation formation. 
Additionally, EcPoint’s calibration process is independent of specific locations, 
allowing it to be applied effectively even in regions with limited observational 
data. By leveraging physics-based adjustments and probabilistic refinements, 
EcPoint significantly enhances forecast accuracy, particularly for short lead times 
and high-impact rainfall events. Conclusively, EcPoint represents a crucial step 
forward in addressing the challenges of rainfall forecasting in complex and dy-
namic weather systems. Despite being based solely on the global ECMWF-IFS 
model, EcPoint performs well over the small domain of South China (three prov-
inces: Anhui, Zhejiang, and Jiangsu). Future studies should explore the EcPoint 
calibration software, as calibrating EcPoint with the region’s local observations 
would likely enhance its performance by better capturing regional rainfall charac-
teristics and reducing model biases. 
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