
Journal of Software Engineering and Applications, 2025, 18(4), 139-147
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2025.184009 Apr. 21, 2025 139 Journal of Software Engineering and Applications

Test and Defect Driven Development (T3D):
A Novel Approach to Software
Development

Wasim Haque

Woodstock, GA, USA

Abstract

Software development methodologies have evolved significantly, transitioning
from traditional Waterfall models to more flexible Agile frameworks. How-
ever, the role of Quality Assurance (QA) in Agile methodologies has dimin-
ished, reducing QA’s influence in the development process. This paper intro-
duces Test and Defect Driven Development (T3D), a novel methodology that
integrates QA more deeply into the software development lifecycle (SDLC).
Unlike traditional Test-Driven Development (TDD), T3D emphasizes the
proactive role of QA by creating and marking test cases as failed before devel-
opment begins, allowing developers to fix defects in real time. This paper dis-
cusses the need for T3D, its advantages and disadvantages, and its potential
impact on modern software development.

Keywords

Software Development, Software Engineering, Agile, Scrum, Development
Methodology, TDD (Test Driven Development), QA (Quality Assurance),
Defect Driven Development (DDD)

1. Introduction

Modern software development methodologies aim to improve efficiency, reduce
defects, and enhance collaboration among teams. Agile methodologies such as
Scrum, XP, TDD, and Defect-Driven Development (DDD) have gained popular-
ity, but they often limit QA team’s role just to execution rather than strategic in-
volvement.

I’m proposing Test and Defect Driven Development (T3D) as an alternative
that maintains Agile’s adaptability while enhancing QA team’s role. By having QA

How to cite this paper: Haque, W. (2025)
Test and Defect Driven Development (T3D):
A Novel Approach to Software Development.
Journal of Software Engineering and Appli-
cations, 18, 139-147.
https://doi.org/10.4236/jsea.2025.184009

Received: March 8, 2025
Accepted: April 18, 2025
Published: April 21, 2025

Copyright © 2025 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2025.184009
http://www.scirp.org
https://www.scirp.org/
https://orcid.org/0009-0005-4146-7357
https://doi.org/10.4236/jsea.2025.184009
http://creativecommons.org/licenses/by/4.0/

W. Haque

DOI: 10.4236/jsea.2025.184009 140 Journal of Software Engineering and Applications

define test cases before code implementation and pre-marking them as failed, T3D
allows developers to address defects early. This paper explores the rationale be-
hind T3D, its potential impact, and how it can integrate seamlessly into existing
development frameworks.

Although T3D could work with Agile Teams of any size, irrespective of their
geolocation and composition (Dev, QA and Ops). I think a perfect candidate for
implementing T3D would be:
• In teams where QA is an integral part of their SDLC.
• In teams that have mature QA professionals with E2E knowledge of the prod-

uct, underlying architecture, tools and processes.
• In small to medium sized product or project teams.

2. A Brief Look at Agile Software Development Methodologies

In the last decade, the adoption of Agile Methods has grown substantially, high-
lighting the need for a deeper exploration of their underlying principles. This pa-
per offers a concise overview of some of the key frameworks currently in use and
examines how they align with the core values outlined in the Manifesto for Agile
Software Development [1].

2.1. Scrum

The Scrum development process addresses various technical and environmental
factors that may evolve throughout a project. It is designed to help teams maintain
their focus on software development while adapting to changing conditions [2].
Scrum is divided into three phases: pre-development, development, and post-de-
velopment. The pre-development phase consists of two key components: planning
and architecture/high-level design. During the planning stage, the team gathers
system requirements and creates a list of features and modifications.

The architecture phase refines and evolves the design based on the backlog list.
In the development phase, the team works in iterative cycles (sprints) to improve
the system and introduce new functionalities. Each sprint typically includes tasks
such as analysis, design, evolution, and delivery.

Sprints usually last between two weeks to one month. Typically, three to eight
sprints are completed before the system is ready for release. However, there are
some technology companies that release new or enhanced features in their soft-
ware products every sprint. The post-development phase marks the conclusion of
the development effort, during which no further modifications or features are
added. Retrospective is also held at the end of the sprint to help all members share
honest feedback on tasks, the project overall, and any challenges encountered. We
then collaboratively brainstorm solutions to address these roadblocks, ensuring
we’re better equipped for upcoming sprints.

2.2. Extreme Programming (XP)

Like Scrum, Extreme Programming (XP) breaks down project work into short de-

https://doi.org/10.4236/jsea.2025.184009

W. Haque

DOI: 10.4236/jsea.2025.184009 141 Journal of Software Engineering and Applications

velopment cycles known as “iterations” [3]. This approach allows Agile teams to
quickly adapt to changing user requirements, even during the later stages of the
product development lifecycle. Additionally, XP plays a significant role in enhanc-
ing product quality.

What distinguishes XP from other Agile methodologies is its strong emphasis
on technical excellence specifically, producing high-quality code. Developers re-
ceive immediate feedback and continuously refine their code through practices
like pair programming and both manual and automated testing. Project managers
facilitate daily stand-up meetings to monitor progress and address obstacles.
Meanwhile, product owners and stakeholders provide feedback based on ac-
ceptance tests and the product’s performance after each iteration.

These core practices of XP foster effective teamwork, encourage adherence to
coding best practices, and help maintain high standards for code quality and over-
all deliverables.

2.3. Test Driven Development

Test-Driven Development (TDD) is a software development methodology where
developers write automated tests before writing the actual code [4]. This approach
begins with creating unit test cases that define the expected behavior of a feature,
guiding the subsequent development of the code itself. It follows an iterative cycle
that integrates programming, unit test creation, and continuous refactoring.

The TDD workflow is structured around a repetitive cycle known as Red-
Green-Refactor:
• Red Phase: The developer writes a test that describes a specific feature or be-

havior. Initially, this test fails because the corresponding functionality hasn’t
been implemented yet (hence, the “Red” phase).

• Green Phase: The developer then writes the minimal amount of code necessary
to make the test pass, reaching the “Green” phase.

• Refactor Phase: Once the test passes, the code is refactored and optimized
without altering its functionality, ensuring the test remains successful.

TDD helps maintain a reliable and bug-free codebase by catching errors early
in the development process. It also promotes better design practices, as writing
tests first forces developers to think critically about the intended functionality and
structure of the code.

Additionally, since tests are an integral part of the development process, TDD
leads to higher code coverage. It simplifies future modifications or refactoring by
ensuring existing features remain stable and thoroughly tested.

Rooted in the principles of the Agile Manifesto and Extreme Programming
(XP), TDD emphasizes test-driven development as the foundation for writing ef-
fective, maintainable code. Developers create small, focused test cases based on
their initial understanding of each feature. Code is written or modified only when
a test fails, reducing redundancy and ensuring that every piece of code serves a
validated purpose.

https://doi.org/10.4236/jsea.2025.184009

W. Haque

DOI: 10.4236/jsea.2025.184009 142 Journal of Software Engineering and Applications

2.4. Defect Driven Development (DDD)

Defect-Driven Development (DDD) is a software development approach where
the process is heavily influenced by defects found during testing or production.
Instead of following a traditional feature-driven or test-driven approach, teams
prioritize fixing defects as they emerge, leading to continuous refinement and im-
provement of the codebase [5].

Key Characteristics of Defect-Driven Development:
• Defects as Requirements—Bugs and issues discovered during testing, user

feedback, or production monitoring drive the development process.
• Iterative Fixes—Development focuses on resolving high-impact defects before

adding new features.
• Continuous Testing & Validation—Frequent regression testing ensures that

fixes do not introduce new defects.
• Shift-Right Approach—Emphasizes post-release monitoring, observability,

and user feedback to identify real-world issues.
• Improves System Stability—Prioritizes reliability and user experience by ad-

dressing critical defects before introducing major changes.
Defect-Driven Development is often combined with Test-Driven Development

(TDD) and Continuous Integration/Continuous Deployment (CI/CD) practices
to create a balanced software quality approach.

3. Pitfalls of Agile Software Development Methodologies

While Agile, DevOps, and CI/CD have revolutionized software development by
promoting speed and flexibility, they also introduce several potential pitfalls that
teams need to be aware of to fully realize their benefits [6]. Top 3 potential pitfalls
are discussed below.

3.1. Overemphasis on Speed over Quality

Rushing to meet tight deadlines can compromise code quality and lead to tech-
nical debt. For example, frequent sprints in Agile may pressure QA team to deliver
quickly without sufficient testing leading to a potential customer escalation. In
several cases, it has been seen that QA team is bullied into giving their signoff.

Poor software quality is incredibly costly for companies, both in direct financial
losses and indirect impacts. Here are some key stats and insights:
• $2.41 trillion: The total estimated cost of poor software quality for U.S. com-

panies in 2022 according to the Consortium for Information & Software Qual-
ity (CISQ).

• $260 billion/year: Spent on fixing software defects, including post-release
bugs and maintenance.

• 30% - 40% of a software project’s total cost: Can be attributed to fixing defects
introduced during development.

• Software failures caused losses of over $1.7 trillion globally in terms of out-
ages, security breaches, and failed systems in recent years.

https://doi.org/10.4236/jsea.2025.184009

W. Haque

DOI: 10.4236/jsea.2025.184009 143 Journal of Software Engineering and Applications

3.2. Lack of Clear Ownership

Lack of clear ownership can significantly hinder Agile development methodolo-
gies in several ways:
• Ambiguity in Responsibility—Without clear ownership, team members may

not know who is accountable for specific tasks. For instance, who is responsible
for testing the software and in charge of the quality, is it the QA team or the
development team. This leads to delays in decision-making and unresolved is-
sues, disrupting Agile’s fast-paced, iterative nature.

• Reduced Accountability—Agile thrives on team ownership of deliverables. If
roles aren’t defined, accountability becomes diluted. This results in missed
deadlines or incomplete tasks without any clear responsibility.

• Bottlenecks in Collaboration—Agile depends on close collaboration between
developers, testers, and stakeholders. Without clear ownership, communica-
tion gaps increase, making it harder to address blockers efficiently.

3.3. Security Risks in Fast-Paced Development

Security checks are sometimes overlooked to maintain rapid deployment cycles.
In DevOps, pushing code without thorough vulnerability scans increases the risk
of breaches or in the absence of a QA team for security testing could potentially
ship products to customers leaving them vulnerable to serious risks like DoS (De-
nial of Service) and SQL injections thus crippling their day-to-day operations
leading to huge financial losses, latest one being the CrowdStrike security patch
mayhem in the year 2024 that brought US Airlines operations to a halt resulting
in loss of billions of dollars.

The data-driven reality highlights that modern Agile methodologies often pri-
oritize velocity over quality, leading to a lack of motivation for delivering high-qual-
ity products. While Agile excels in speed, it frequently overlooks the importance of
robust testing and defect management. So, how can we overcome these challenges
while maintaining agility and ensuring QA teams regain their significance? One
possible solution is a new methodology—T3D (Test & Defect Driven Develop-
ment)—designed to address these shortcomings. Let’s explore how it can enhance
both quality and agility.

4. Test & Defect Driven Development (T3D)

You may come across information about DDD (Defect Driven Development) on
the internet, but that’s not the focus of this article. While it might sound like Test
Driven Development (TDD), it’s something entirely different—something you’ll
understand fully by the end of this article.

All development methodologies consist of multiple phases or steps which are
interlinked with each other. It will be easier for the readers to understand if a
walkthrough of those steps is given so that they can create an impression of the
flow of process as it begins and ends in a chronological order:

1) The sprint begins with requirements or user stories being baselined and fi-

https://doi.org/10.4236/jsea.2025.184009

W. Haque

DOI: 10.4236/jsea.2025.184009 144 Journal of Software Engineering and Applications

nalized after planning sessions.
2) Rather than the developers writing business logic first, the QA team prepares

end-to-end (E2E) and Integration manual test cases, which are then reviewed by
the Leads or Product Owners. Meanwhile in parallel, developers can complete
their SCM duties, get architecture and design reviews, and begin writing unit tests.

a) For QA team to write effective manual E2E and integration TCs they should
be fully aware of the functionality and its impact on other systems. This can be
achieved by involving QA during sprint planning and grooming and other rele-
vant design sessions.

b) The tests don’t have to be very exhaustive but should be detailed enough for
developers to execute and product managers to review.

3) Once the test cases are approved, the QA team marks the test cases as “Failed”
in their test management tool.

4) Next, defects are raised for all failed test cases and assigned to the develop-
ment team. Modern test management tools streamline this process by generating
defects directly from test cases, reducing manual effort.

5) Developers then begin implementing business logic. As they complete fea-
tures or functions, they conduct initial testing before releasing them to QA, check-
ing for any defects identified in step 4 as their reference frame.

6) Development continues iteratively until all critical, high, and preferably me-
dium-severity defects are resolved. As fixes are made, developers progressively re-
lease the updated codebase to QA.

7) Once QA receives the build, they retest the defects and take appropriate ac-
tions (Close or Re-Open). Resolved defects are marked as “Closed”, and the cor-
responding test cases are updated to “Passed”. Any test cases failing due to minor,
low-priority defects remain marked as “Failed”.

8) At this stage, Automation, Performance, and Security Engineers can begin
their tasks, including automating E2E and integration tests, evaluating system per-
formance, and conducting security scans to identify and mitigate vulnerabilities.

9) In parallel, testers can perform exploratory and regression testing to ensure
no new defects have been introduced. Depending on severity, newly discovered
defects may be fixed within the sprint, deferred to a future release, or moved to
the next sprint. The QA team could also update the test suite with cases for any
missed defects.

10) As the sprint nears completion, all critical and high-severity defects should
be resolved. Automation, Performance, and Security Engineers finalize their tasks
and provide feedback.

11) The sprint concludes with a review where all stakeholders (Developers, QA,
and DevSecOps) showcase their work and determine whether to release the prod-
uct or feature. If approved, the codebase is released to production; otherwise, un-
resolved issues are added to the next sprint’s backlog.

12) Finally, a sprint retrospective allows teams to reflect on the process and
identify areas for improvement, fostering continuous enhancement of workflow
and efficiency.

https://doi.org/10.4236/jsea.2025.184009

W. Haque

DOI: 10.4236/jsea.2025.184009 145 Journal of Software Engineering and Applications

The pictorial presentation of T3D can be seen below in Figure 1.

Figure 1. T3D development process.

Example Implementation

Let’s understand the process better with the help of an example. Say an agile team
is planning to work on 3 user stories of varying complexities.

Post sprint planning the QA team should come up with a map and get it re-
viewed by the Product and Dev teams as shown below in Table 1.

Table 1. User story map.

User story Id
Test & Defect

No. of E2E tests No. of integration tests No. of defects

US-001 (High) 3 5 8

US-002 (Medium) 2 3 5

US-003 (Low) 1 2 3

As developers write code and when believe they’ve logically concluded a func-

tion or a story they will begin with testing with 2 goals:
1) Acceptance criteria documented in the story is achieved.
2) The 16 defects raised above don’t appear to block or impact the story.
This improves the build quality that will be delivered to the QA team, there

won’t be any surprises and the turnover and back-forth between Dev and QA will
also reduce. As a result, Regression testing, Performance and Security evaluations
would be faster.

In any iterative development process not all stories may be delivered to the QA
team, there’s a possibility stories delivered earlier may develop defects due to code
changes done for other stories, but the chances of this happening in T3D are very
less due to the nature of tests (E2E & integration) written by QA for devs. How-
ever, if by chance Devs miss anything QA is there to provide the safety net.

Once all the 16 defects (plus additional that team would have discovered) are

https://doi.org/10.4236/jsea.2025.184009

W. Haque

DOI: 10.4236/jsea.2025.184009 146 Journal of Software Engineering and Applications

resolved and closed, the 16 test cases (6 E2E & 10 intg.) are now marked as
“Passed”. If the team decides to defer any defects, then the corresponding test case
remains in failed state until the defect is resolved as shown below in Table 2.

Table 2. Sample results.

Tests
Test & Defect

Story Id Test result Defects open

TC-01 US-001 Passed N/A

TC-05 US-002 Passed N/A

TC-10 US-003 Failed BUG-003-10

During sprint review, everything gets reviewed, and decisions are made to re-

lease features and to defer some to upcoming releases. Next sprint same process
is followed where the team works on new backlog items along with multi-sprint
stories and defects that were deferred from previous sprints.

5. Pros and Cons of T3D

Like any agile development methodology discussed in Section 2, T3D too has its
advantages and disadvantages.

5.1. Pros

• Early Defect Resolution: Developers address defects before delivering a single
build to QA, reducing bug-fix cycles.

• Enhanced Collaboration: QA team and developers interact more frequently,
fostering better communication and teamwork.

• Stable Builds: Since defects are fixed early, regression testing is more effective,
and builds are more reliable.

• Increased QA Visibility: QA plays a strategic role, defining quality bench-
marks before development begins.

• Improved Code Quality: Developers have a clearer understanding of potential
pitfalls and quality expectations from the outset.

• Ease of Project Reporting: Defect resolution progress is easily trackable by
monitoring defect closure rates.

5.2. Cons

• Similarity to TDD: T3D resembles TDD but replaces unit tests with functional
E2E and integration tests, which may create initial resistance.

• Team Dynamics Shift: Developers may initially resist the methodology due to
the increased emphasis on defects.

• Learning Curve: Teams accustomed to traditional Agile or TDD may require
training and adaptation time.

https://doi.org/10.4236/jsea.2025.184009

W. Haque

DOI: 10.4236/jsea.2025.184009 147 Journal of Software Engineering and Applications

6. Discussion

T3D represents an evolution of test-driven methodologies, adapting to the in-
creasing complexity of modern software systems. Unlike traditional TDD, which
emphasizes unit testing, T3D integrates functional test cases as a precursor to de-
velopment, ensuring real-world defects are anticipated and addressed proactively.
The methodology does not conflict with existing Agile frameworks; instead, it en-
hances them by reinforcing collaboration and ensuring continuous quality.

By leveraging defect tracking tools and automation, T3D can be seamlessly in-
corporated into DevOps pipelines. Companies that adopt T3D may experience
higher first-pass success rates, reduced testing cycles, and improved overall soft-
ware quality.

7. Conclusion

T3D offers a balanced approach to software development, addressing the gaps left
by traditional Agile and TDD methodologies. By involving QA at an earlier stage
and ensuring developers have clear defect insights before coding, T3D enhances
efficiency, collaboration, and product stability. While adoption challenges exist,
organizations willing to experiment with T3D can benefit from improved software
quality and a more cohesive development process.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References
[1] Agile Alliance (n.d.) Agile 101. https://www.agilealliance.org/agile101

[2] Schwaber, K. and Sutherland, J. (2020) The Scrum Guide: The Definitive Guide to
Scrum: The Rules of the Game. Scrum.org & Scrum Inc.
https://www.scrumguides.org/scrum-guide.html

[3] Beck, K. and Andres, C. (2004) Extreme Programming Explained: Embrace Change.
2nd Edition, Addison-Wesley.

[4] Beck, K. (2002). Test-Driven Development by Example. Addison-Wesley.

[5] Nachiengmai, W., Ramingwong, S., Cosh, K., Ramingwong, L. and Eiamkanitchat,
N. (2019) Defect-Driven Development: A New Software Development Model for Be-
ginners. Geomate Journal, 17, 149-155.
https://geomatejournal.com/geomate/article/view/2150

[6] Shore, J. and Warden, S. (2007) The Art of Agile Development. O’Reilly Media.

https://doi.org/10.4236/jsea.2025.184009
https://www.agilealliance.org/agile101
https://geomatejournal.com/geomate/article/view/2150

	Test and Defect Driven Development (T3D): A Novel Approach to Software Development
	Abstract
	Keywords
	1. Introduction
	2. A Brief Look at Agile Software Development Methodologies
	2.1. Scrum
	2.2. Extreme Programming (XP)
	2.3. Test Driven Development
	2.4. Defect Driven Development (DDD)

	3. Pitfalls of Agile Software Development Methodologies
	3.1. Overemphasis on Speed over Quality
	3.2. Lack of Clear Ownership
	3.3. Security Risks in Fast-Paced Development

	4. Test & Defect Driven Development (T3D)
	Example Implementation

	5. Pros and Cons of T3D
	5.1. Pros
	5.2. Cons

	6. Discussion
	7. Conclusion
	Conflicts of Interest
	References

